mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-15 15:06:42 +00:00
1004 lines
28 KiB
C
1004 lines
28 KiB
C
/* Simple garbage collection for the GNU compiler.
|
||
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
/* Generic garbage collection (GC) functions and data, not specific to
|
||
any particular GC implementation. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "hashtab.h"
|
||
#include "ggc.h"
|
||
#include "toplev.h"
|
||
#include "params.h"
|
||
#include "hosthooks.h"
|
||
#include "hosthooks-def.h"
|
||
|
||
#ifdef HAVE_SYS_RESOURCE_H
|
||
# include <sys/resource.h>
|
||
#endif
|
||
|
||
#ifdef HAVE_MMAP_FILE
|
||
# include <sys/mman.h>
|
||
# ifdef HAVE_MINCORE
|
||
/* This is on Solaris. */
|
||
# include <sys/types.h>
|
||
# endif
|
||
#endif
|
||
|
||
#ifndef MAP_FAILED
|
||
# define MAP_FAILED ((void *)-1)
|
||
#endif
|
||
|
||
#ifdef ENABLE_VALGRIND_CHECKING
|
||
# ifdef HAVE_VALGRIND_MEMCHECK_H
|
||
# include <valgrind/memcheck.h>
|
||
# elif defined HAVE_MEMCHECK_H
|
||
# include <memcheck.h>
|
||
# else
|
||
# include <valgrind.h>
|
||
# endif
|
||
#else
|
||
/* Avoid #ifdef:s when we can help it. */
|
||
#define VALGRIND_DISCARD(x)
|
||
#endif
|
||
|
||
/* When set, ggc_collect will do collection. */
|
||
bool ggc_force_collect;
|
||
|
||
/* Statistics about the allocation. */
|
||
static ggc_statistics *ggc_stats;
|
||
|
||
struct traversal_state;
|
||
|
||
static int ggc_htab_delete (void **, void *);
|
||
static hashval_t saving_htab_hash (const void *);
|
||
static int saving_htab_eq (const void *, const void *);
|
||
static int call_count (void **, void *);
|
||
static int call_alloc (void **, void *);
|
||
static int compare_ptr_data (const void *, const void *);
|
||
static void relocate_ptrs (void *, void *);
|
||
static void write_pch_globals (const struct ggc_root_tab * const *tab,
|
||
struct traversal_state *state);
|
||
static double ggc_rlimit_bound (double);
|
||
|
||
/* Maintain global roots that are preserved during GC. */
|
||
|
||
/* Process a slot of an htab by deleting it if it has not been marked. */
|
||
|
||
static int
|
||
ggc_htab_delete (void **slot, void *info)
|
||
{
|
||
const struct ggc_cache_tab *r = (const struct ggc_cache_tab *) info;
|
||
|
||
if (! (*r->marked_p) (*slot))
|
||
htab_clear_slot (*r->base, slot);
|
||
else
|
||
(*r->cb) (*slot);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Iterate through all registered roots and mark each element. */
|
||
|
||
void
|
||
ggc_mark_roots (void)
|
||
{
|
||
const struct ggc_root_tab *const *rt;
|
||
const struct ggc_root_tab *rti;
|
||
const struct ggc_cache_tab *const *ct;
|
||
const struct ggc_cache_tab *cti;
|
||
size_t i;
|
||
|
||
for (rt = gt_ggc_deletable_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
memset (rti->base, 0, rti->stride);
|
||
|
||
for (rt = gt_ggc_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
for (i = 0; i < rti->nelt; i++)
|
||
(*rti->cb)(*(void **)((char *)rti->base + rti->stride * i));
|
||
|
||
ggc_mark_stringpool ();
|
||
|
||
/* Now scan all hash tables that have objects which are to be deleted if
|
||
they are not already marked. */
|
||
for (ct = gt_ggc_cache_rtab; *ct; ct++)
|
||
for (cti = *ct; cti->base != NULL; cti++)
|
||
if (*cti->base)
|
||
{
|
||
ggc_set_mark (*cti->base);
|
||
htab_traverse_noresize (*cti->base, ggc_htab_delete, (void *) cti);
|
||
ggc_set_mark ((*cti->base)->entries);
|
||
}
|
||
}
|
||
|
||
/* Allocate a block of memory, then clear it. */
|
||
void *
|
||
ggc_alloc_cleared_stat (size_t size MEM_STAT_DECL)
|
||
{
|
||
void *buf = ggc_alloc_stat (size PASS_MEM_STAT);
|
||
memset (buf, 0, size);
|
||
return buf;
|
||
}
|
||
|
||
/* Resize a block of memory, possibly re-allocating it. */
|
||
void *
|
||
ggc_realloc_stat (void *x, size_t size MEM_STAT_DECL)
|
||
{
|
||
void *r;
|
||
size_t old_size;
|
||
|
||
if (x == NULL)
|
||
return ggc_alloc_stat (size PASS_MEM_STAT);
|
||
|
||
old_size = ggc_get_size (x);
|
||
|
||
if (size <= old_size)
|
||
{
|
||
/* Mark the unwanted memory as unaccessible. We also need to make
|
||
the "new" size accessible, since ggc_get_size returns the size of
|
||
the pool, not the size of the individually allocated object, the
|
||
size which was previously made accessible. Unfortunately, we
|
||
don't know that previously allocated size. Without that
|
||
knowledge we have to lose some initialization-tracking for the
|
||
old parts of the object. An alternative is to mark the whole
|
||
old_size as reachable, but that would lose tracking of writes
|
||
after the end of the object (by small offsets). Discard the
|
||
handle to avoid handle leak. */
|
||
VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) x + size,
|
||
old_size - size));
|
||
VALGRIND_DISCARD (VALGRIND_MAKE_READABLE (x, size));
|
||
return x;
|
||
}
|
||
|
||
r = ggc_alloc_stat (size PASS_MEM_STAT);
|
||
|
||
/* Since ggc_get_size returns the size of the pool, not the size of the
|
||
individually allocated object, we'd access parts of the old object
|
||
that were marked invalid with the memcpy below. We lose a bit of the
|
||
initialization-tracking since some of it may be uninitialized. */
|
||
VALGRIND_DISCARD (VALGRIND_MAKE_READABLE (x, old_size));
|
||
|
||
memcpy (r, x, old_size);
|
||
|
||
/* The old object is not supposed to be used anymore. */
|
||
ggc_free (x);
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Like ggc_alloc_cleared, but performs a multiplication. */
|
||
void *
|
||
ggc_calloc (size_t s1, size_t s2)
|
||
{
|
||
return ggc_alloc_cleared (s1 * s2);
|
||
}
|
||
|
||
/* These are for splay_tree_new_ggc. */
|
||
void *
|
||
ggc_splay_alloc (int sz, void *nl)
|
||
{
|
||
gcc_assert (!nl);
|
||
return ggc_alloc (sz);
|
||
}
|
||
|
||
void
|
||
ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl)
|
||
{
|
||
gcc_assert (!nl);
|
||
}
|
||
|
||
/* Print statistics that are independent of the collector in use. */
|
||
#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
|
||
? (x) \
|
||
: ((x) < 1024*1024*10 \
|
||
? (x) / 1024 \
|
||
: (x) / (1024*1024))))
|
||
#define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
|
||
|
||
void
|
||
ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED,
|
||
ggc_statistics *stats)
|
||
{
|
||
/* Set the pointer so that during collection we will actually gather
|
||
the statistics. */
|
||
ggc_stats = stats;
|
||
|
||
/* Then do one collection to fill in the statistics. */
|
||
ggc_collect ();
|
||
|
||
/* At present, we don't really gather any interesting statistics. */
|
||
|
||
/* Don't gather statistics any more. */
|
||
ggc_stats = NULL;
|
||
}
|
||
|
||
/* Functions for saving and restoring GCable memory to disk. */
|
||
|
||
static htab_t saving_htab;
|
||
|
||
struct ptr_data
|
||
{
|
||
void *obj;
|
||
void *note_ptr_cookie;
|
||
gt_note_pointers note_ptr_fn;
|
||
gt_handle_reorder reorder_fn;
|
||
size_t size;
|
||
void *new_addr;
|
||
enum gt_types_enum type;
|
||
};
|
||
|
||
#define POINTER_HASH(x) (hashval_t)((long)x >> 3)
|
||
|
||
/* Register an object in the hash table. */
|
||
|
||
int
|
||
gt_pch_note_object (void *obj, void *note_ptr_cookie,
|
||
gt_note_pointers note_ptr_fn,
|
||
enum gt_types_enum type)
|
||
{
|
||
struct ptr_data **slot;
|
||
|
||
if (obj == NULL || obj == (void *) 1)
|
||
return 0;
|
||
|
||
slot = (struct ptr_data **)
|
||
htab_find_slot_with_hash (saving_htab, obj, POINTER_HASH (obj),
|
||
INSERT);
|
||
if (*slot != NULL)
|
||
{
|
||
gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn
|
||
&& (*slot)->note_ptr_cookie == note_ptr_cookie);
|
||
return 0;
|
||
}
|
||
|
||
*slot = xcalloc (sizeof (struct ptr_data), 1);
|
||
(*slot)->obj = obj;
|
||
(*slot)->note_ptr_fn = note_ptr_fn;
|
||
(*slot)->note_ptr_cookie = note_ptr_cookie;
|
||
if (note_ptr_fn == gt_pch_p_S)
|
||
(*slot)->size = strlen (obj) + 1;
|
||
else
|
||
(*slot)->size = ggc_get_size (obj);
|
||
(*slot)->type = type;
|
||
return 1;
|
||
}
|
||
|
||
/* Register an object in the hash table. */
|
||
|
||
void
|
||
gt_pch_note_reorder (void *obj, void *note_ptr_cookie,
|
||
gt_handle_reorder reorder_fn)
|
||
{
|
||
struct ptr_data *data;
|
||
|
||
if (obj == NULL || obj == (void *) 1)
|
||
return;
|
||
|
||
data = htab_find_with_hash (saving_htab, obj, POINTER_HASH (obj));
|
||
gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie);
|
||
|
||
data->reorder_fn = reorder_fn;
|
||
}
|
||
|
||
/* Hash and equality functions for saving_htab, callbacks for htab_create. */
|
||
|
||
static hashval_t
|
||
saving_htab_hash (const void *p)
|
||
{
|
||
return POINTER_HASH (((struct ptr_data *)p)->obj);
|
||
}
|
||
|
||
static int
|
||
saving_htab_eq (const void *p1, const void *p2)
|
||
{
|
||
return ((struct ptr_data *)p1)->obj == p2;
|
||
}
|
||
|
||
/* Handy state for the traversal functions. */
|
||
|
||
struct traversal_state
|
||
{
|
||
FILE *f;
|
||
struct ggc_pch_data *d;
|
||
size_t count;
|
||
struct ptr_data **ptrs;
|
||
size_t ptrs_i;
|
||
};
|
||
|
||
/* Callbacks for htab_traverse. */
|
||
|
||
static int
|
||
call_count (void **slot, void *state_p)
|
||
{
|
||
struct ptr_data *d = (struct ptr_data *)*slot;
|
||
struct traversal_state *state = (struct traversal_state *)state_p;
|
||
|
||
ggc_pch_count_object (state->d, d->obj, d->size,
|
||
d->note_ptr_fn == gt_pch_p_S,
|
||
d->type);
|
||
state->count++;
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
call_alloc (void **slot, void *state_p)
|
||
{
|
||
struct ptr_data *d = (struct ptr_data *)*slot;
|
||
struct traversal_state *state = (struct traversal_state *)state_p;
|
||
|
||
d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size,
|
||
d->note_ptr_fn == gt_pch_p_S,
|
||
d->type);
|
||
state->ptrs[state->ptrs_i++] = d;
|
||
return 1;
|
||
}
|
||
|
||
/* Callback for qsort. */
|
||
|
||
static int
|
||
compare_ptr_data (const void *p1_p, const void *p2_p)
|
||
{
|
||
struct ptr_data *p1 = *(struct ptr_data *const *)p1_p;
|
||
struct ptr_data *p2 = *(struct ptr_data *const *)p2_p;
|
||
return (((size_t)p1->new_addr > (size_t)p2->new_addr)
|
||
- ((size_t)p1->new_addr < (size_t)p2->new_addr));
|
||
}
|
||
|
||
/* Callbacks for note_ptr_fn. */
|
||
|
||
static void
|
||
relocate_ptrs (void *ptr_p, void *state_p)
|
||
{
|
||
void **ptr = (void **)ptr_p;
|
||
struct traversal_state *state ATTRIBUTE_UNUSED
|
||
= (struct traversal_state *)state_p;
|
||
struct ptr_data *result;
|
||
|
||
if (*ptr == NULL || *ptr == (void *)1)
|
||
return;
|
||
|
||
result = htab_find_with_hash (saving_htab, *ptr, POINTER_HASH (*ptr));
|
||
gcc_assert (result);
|
||
*ptr = result->new_addr;
|
||
}
|
||
|
||
/* Write out, after relocation, the pointers in TAB. */
|
||
static void
|
||
write_pch_globals (const struct ggc_root_tab * const *tab,
|
||
struct traversal_state *state)
|
||
{
|
||
const struct ggc_root_tab *const *rt;
|
||
const struct ggc_root_tab *rti;
|
||
size_t i;
|
||
|
||
for (rt = tab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
for (i = 0; i < rti->nelt; i++)
|
||
{
|
||
void *ptr = *(void **)((char *)rti->base + rti->stride * i);
|
||
struct ptr_data *new_ptr;
|
||
if (ptr == NULL || ptr == (void *)1)
|
||
{
|
||
if (fwrite (&ptr, sizeof (void *), 1, state->f)
|
||
!= 1)
|
||
fatal_error ("can't write PCH file: %m");
|
||
}
|
||
else
|
||
{
|
||
new_ptr = htab_find_with_hash (saving_htab, ptr,
|
||
POINTER_HASH (ptr));
|
||
if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f)
|
||
!= 1)
|
||
fatal_error ("can't write PCH file: %m");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Hold the information we need to mmap the file back in. */
|
||
|
||
struct mmap_info
|
||
{
|
||
size_t offset;
|
||
size_t size;
|
||
void *preferred_base;
|
||
};
|
||
|
||
/* Write out the state of the compiler to F. */
|
||
|
||
void
|
||
gt_pch_save (FILE *f)
|
||
{
|
||
const struct ggc_root_tab *const *rt;
|
||
const struct ggc_root_tab *rti;
|
||
size_t i;
|
||
struct traversal_state state;
|
||
char *this_object = NULL;
|
||
size_t this_object_size = 0;
|
||
struct mmap_info mmi;
|
||
const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity();
|
||
|
||
gt_pch_save_stringpool ();
|
||
|
||
saving_htab = htab_create (50000, saving_htab_hash, saving_htab_eq, free);
|
||
|
||
for (rt = gt_ggc_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
for (i = 0; i < rti->nelt; i++)
|
||
(*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
|
||
|
||
for (rt = gt_pch_cache_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
for (i = 0; i < rti->nelt; i++)
|
||
(*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
|
||
|
||
/* Prepare the objects for writing, determine addresses and such. */
|
||
state.f = f;
|
||
state.d = init_ggc_pch();
|
||
state.count = 0;
|
||
htab_traverse (saving_htab, call_count, &state);
|
||
|
||
mmi.size = ggc_pch_total_size (state.d);
|
||
|
||
/* Try to arrange things so that no relocation is necessary, but
|
||
don't try very hard. On most platforms, this will always work,
|
||
and on the rest it's a lot of work to do better.
|
||
(The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and
|
||
HOST_HOOKS_GT_PCH_USE_ADDRESS.) */
|
||
mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f));
|
||
|
||
ggc_pch_this_base (state.d, mmi.preferred_base);
|
||
|
||
state.ptrs = XNEWVEC (struct ptr_data *, state.count);
|
||
state.ptrs_i = 0;
|
||
htab_traverse (saving_htab, call_alloc, &state);
|
||
qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data);
|
||
|
||
/* Write out all the scalar variables. */
|
||
for (rt = gt_pch_scalar_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
if (fwrite (rti->base, rti->stride, 1, f) != 1)
|
||
fatal_error ("can't write PCH file: %m");
|
||
|
||
/* Write out all the global pointers, after translation. */
|
||
write_pch_globals (gt_ggc_rtab, &state);
|
||
write_pch_globals (gt_pch_cache_rtab, &state);
|
||
|
||
/* Pad the PCH file so that the mmapped area starts on an allocation
|
||
granularity (usually page) boundary. */
|
||
{
|
||
long o;
|
||
o = ftell (state.f) + sizeof (mmi);
|
||
if (o == -1)
|
||
fatal_error ("can't get position in PCH file: %m");
|
||
mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment;
|
||
if (mmi.offset == mmap_offset_alignment)
|
||
mmi.offset = 0;
|
||
mmi.offset += o;
|
||
}
|
||
if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1)
|
||
fatal_error ("can't write PCH file: %m");
|
||
if (mmi.offset != 0
|
||
&& fseek (state.f, mmi.offset, SEEK_SET) != 0)
|
||
fatal_error ("can't write padding to PCH file: %m");
|
||
|
||
ggc_pch_prepare_write (state.d, state.f);
|
||
|
||
/* Actually write out the objects. */
|
||
for (i = 0; i < state.count; i++)
|
||
{
|
||
if (this_object_size < state.ptrs[i]->size)
|
||
{
|
||
this_object_size = state.ptrs[i]->size;
|
||
this_object = xrealloc (this_object, this_object_size);
|
||
}
|
||
memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size);
|
||
if (state.ptrs[i]->reorder_fn != NULL)
|
||
state.ptrs[i]->reorder_fn (state.ptrs[i]->obj,
|
||
state.ptrs[i]->note_ptr_cookie,
|
||
relocate_ptrs, &state);
|
||
state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj,
|
||
state.ptrs[i]->note_ptr_cookie,
|
||
relocate_ptrs, &state);
|
||
ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj,
|
||
state.ptrs[i]->new_addr, state.ptrs[i]->size,
|
||
state.ptrs[i]->note_ptr_fn == gt_pch_p_S);
|
||
if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S)
|
||
memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size);
|
||
}
|
||
ggc_pch_finish (state.d, state.f);
|
||
gt_pch_fixup_stringpool ();
|
||
|
||
free (state.ptrs);
|
||
htab_delete (saving_htab);
|
||
}
|
||
|
||
/* Read the state of the compiler back in from F. */
|
||
|
||
void
|
||
gt_pch_restore (FILE *f)
|
||
{
|
||
const struct ggc_root_tab *const *rt;
|
||
const struct ggc_root_tab *rti;
|
||
size_t i;
|
||
struct mmap_info mmi;
|
||
int result;
|
||
|
||
/* Delete any deletable objects. This makes ggc_pch_read much
|
||
faster, as it can be sure that no GCable objects remain other
|
||
than the ones just read in. */
|
||
for (rt = gt_ggc_deletable_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
memset (rti->base, 0, rti->stride);
|
||
|
||
/* Read in all the scalar variables. */
|
||
for (rt = gt_pch_scalar_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
if (fread (rti->base, rti->stride, 1, f) != 1)
|
||
fatal_error ("can't read PCH file: %m");
|
||
|
||
/* Read in all the global pointers, in 6 easy loops. */
|
||
for (rt = gt_ggc_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
for (i = 0; i < rti->nelt; i++)
|
||
if (fread ((char *)rti->base + rti->stride * i,
|
||
sizeof (void *), 1, f) != 1)
|
||
fatal_error ("can't read PCH file: %m");
|
||
|
||
for (rt = gt_pch_cache_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
for (i = 0; i < rti->nelt; i++)
|
||
if (fread ((char *)rti->base + rti->stride * i,
|
||
sizeof (void *), 1, f) != 1)
|
||
fatal_error ("can't read PCH file: %m");
|
||
|
||
if (fread (&mmi, sizeof (mmi), 1, f) != 1)
|
||
fatal_error ("can't read PCH file: %m");
|
||
|
||
result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size,
|
||
fileno (f), mmi.offset);
|
||
if (result < 0)
|
||
fatal_error ("had to relocate PCH");
|
||
if (result == 0)
|
||
{
|
||
if (fseek (f, mmi.offset, SEEK_SET) != 0
|
||
|| fread (mmi.preferred_base, mmi.size, 1, f) != 1)
|
||
fatal_error ("can't read PCH file: %m");
|
||
}
|
||
else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0)
|
||
fatal_error ("can't read PCH file: %m");
|
||
|
||
ggc_pch_read (f, mmi.preferred_base);
|
||
|
||
gt_pch_restore_stringpool ();
|
||
}
|
||
|
||
/* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present.
|
||
Select no address whatsoever, and let gt_pch_save choose what it will with
|
||
malloc, presumably. */
|
||
|
||
void *
|
||
default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED,
|
||
int fd ATTRIBUTE_UNUSED)
|
||
{
|
||
return NULL;
|
||
}
|
||
|
||
/* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present.
|
||
Allocate SIZE bytes with malloc. Return 0 if the address we got is the
|
||
same as base, indicating that the memory has been allocated but needs to
|
||
be read in from the file. Return -1 if the address differs, to relocation
|
||
of the PCH file would be required. */
|
||
|
||
int
|
||
default_gt_pch_use_address (void *base, size_t size, int fd ATTRIBUTE_UNUSED,
|
||
size_t offset ATTRIBUTE_UNUSED)
|
||
{
|
||
void *addr = xmalloc (size);
|
||
return (addr == base) - 1;
|
||
}
|
||
|
||
/* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return the
|
||
alignment required for allocating virtual memory. Usually this is the
|
||
same as pagesize. */
|
||
|
||
size_t
|
||
default_gt_pch_alloc_granularity (void)
|
||
{
|
||
return getpagesize();
|
||
}
|
||
|
||
#if HAVE_MMAP_FILE
|
||
/* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present.
|
||
We temporarily allocate SIZE bytes, and let the kernel place the data
|
||
wherever it will. If it worked, that's our spot, if not we're likely
|
||
to be in trouble. */
|
||
|
||
void *
|
||
mmap_gt_pch_get_address (size_t size, int fd)
|
||
{
|
||
void *ret;
|
||
|
||
ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
|
||
if (ret == (void *) MAP_FAILED)
|
||
ret = NULL;
|
||
else
|
||
munmap (ret, size);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present.
|
||
Map SIZE bytes of FD+OFFSET at BASE. Return 1 if we succeeded at
|
||
mapping the data at BASE, -1 if we couldn't.
|
||
|
||
This version assumes that the kernel honors the START operand of mmap
|
||
even without MAP_FIXED if START through START+SIZE are not currently
|
||
mapped with something. */
|
||
|
||
int
|
||
mmap_gt_pch_use_address (void *base, size_t size, int fd, size_t offset)
|
||
{
|
||
void *addr;
|
||
|
||
/* We're called with size == 0 if we're not planning to load a PCH
|
||
file at all. This allows the hook to free any static space that
|
||
we might have allocated at link time. */
|
||
if (size == 0)
|
||
return -1;
|
||
|
||
addr = mmap (base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
|
||
fd, offset);
|
||
|
||
return addr == base ? 1 : -1;
|
||
}
|
||
#endif /* HAVE_MMAP_FILE */
|
||
|
||
/* Modify the bound based on rlimits. */
|
||
static double
|
||
ggc_rlimit_bound (double limit)
|
||
{
|
||
#if defined(HAVE_GETRLIMIT)
|
||
struct rlimit rlim;
|
||
# if defined (RLIMIT_AS)
|
||
/* RLIMIT_AS is what POSIX says is the limit on mmap. Presumably
|
||
any OS which has RLIMIT_AS also has a working mmap that GCC will use. */
|
||
if (getrlimit (RLIMIT_AS, &rlim) == 0
|
||
&& rlim.rlim_cur != (rlim_t) RLIM_INFINITY
|
||
&& rlim.rlim_cur < limit)
|
||
limit = rlim.rlim_cur;
|
||
# elif defined (RLIMIT_DATA)
|
||
/* ... but some older OSs bound mmap based on RLIMIT_DATA, or we
|
||
might be on an OS that has a broken mmap. (Others don't bound
|
||
mmap at all, apparently.) */
|
||
if (getrlimit (RLIMIT_DATA, &rlim) == 0
|
||
&& rlim.rlim_cur != (rlim_t) RLIM_INFINITY
|
||
&& rlim.rlim_cur < limit
|
||
/* Darwin has this horribly bogus default setting of
|
||
RLIMIT_DATA, to 6144Kb. No-one notices because RLIMIT_DATA
|
||
appears to be ignored. Ignore such silliness. If a limit
|
||
this small was actually effective for mmap, GCC wouldn't even
|
||
start up. */
|
||
&& rlim.rlim_cur >= 8 * 1024 * 1024)
|
||
limit = rlim.rlim_cur;
|
||
# endif /* RLIMIT_AS or RLIMIT_DATA */
|
||
#endif /* HAVE_GETRLIMIT */
|
||
|
||
return limit;
|
||
}
|
||
|
||
/* Heuristic to set a default for GGC_MIN_EXPAND. */
|
||
int
|
||
ggc_min_expand_heuristic (void)
|
||
{
|
||
double min_expand = physmem_total();
|
||
|
||
/* Adjust for rlimits. */
|
||
min_expand = ggc_rlimit_bound (min_expand);
|
||
|
||
/* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding
|
||
a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB). */
|
||
min_expand /= 1024*1024*1024;
|
||
min_expand *= 70;
|
||
min_expand = MIN (min_expand, 70);
|
||
min_expand += 30;
|
||
|
||
return min_expand;
|
||
}
|
||
|
||
/* Heuristic to set a default for GGC_MIN_HEAPSIZE. */
|
||
int
|
||
ggc_min_heapsize_heuristic (void)
|
||
{
|
||
double phys_kbytes = physmem_total();
|
||
double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2);
|
||
|
||
phys_kbytes /= 1024; /* Convert to Kbytes. */
|
||
limit_kbytes /= 1024;
|
||
|
||
/* The heuristic is RAM/8, with a lower bound of 4M and an upper
|
||
bound of 128M (when RAM >= 1GB). */
|
||
phys_kbytes /= 8;
|
||
|
||
#if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS)
|
||
/* Try not to overrun the RSS limit while doing garbage collection.
|
||
The RSS limit is only advisory, so no margin is subtracted. */
|
||
{
|
||
struct rlimit rlim;
|
||
if (getrlimit (RLIMIT_RSS, &rlim) == 0
|
||
&& rlim.rlim_cur != (rlim_t) RLIM_INFINITY)
|
||
phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / 1024);
|
||
}
|
||
# endif
|
||
|
||
/* Don't blindly run over our data limit; do GC at least when the
|
||
*next* GC would be within 16Mb of the limit. If GCC does hit the
|
||
data limit, compilation will fail, so this tries to be
|
||
conservative. */
|
||
limit_kbytes = MAX (0, limit_kbytes - 16 * 1024);
|
||
limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic());
|
||
phys_kbytes = MIN (phys_kbytes, limit_kbytes);
|
||
|
||
phys_kbytes = MAX (phys_kbytes, 4 * 1024);
|
||
phys_kbytes = MIN (phys_kbytes, 128 * 1024);
|
||
|
||
return phys_kbytes;
|
||
}
|
||
|
||
void
|
||
init_ggc_heuristics (void)
|
||
{
|
||
#if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
|
||
set_param_value ("ggc-min-expand", ggc_min_expand_heuristic());
|
||
set_param_value ("ggc-min-heapsize", ggc_min_heapsize_heuristic());
|
||
#endif
|
||
}
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
|
||
/* Datastructure used to store per-call-site statistics. */
|
||
struct loc_descriptor
|
||
{
|
||
const char *file;
|
||
int line;
|
||
const char *function;
|
||
int times;
|
||
size_t allocated;
|
||
size_t overhead;
|
||
size_t freed;
|
||
size_t collected;
|
||
};
|
||
|
||
/* Hashtable used for statistics. */
|
||
static htab_t loc_hash;
|
||
|
||
/* Hash table helpers functions. */
|
||
static hashval_t
|
||
hash_descriptor (const void *p)
|
||
{
|
||
const struct loc_descriptor *d = p;
|
||
|
||
return htab_hash_pointer (d->function) | d->line;
|
||
}
|
||
|
||
static int
|
||
eq_descriptor (const void *p1, const void *p2)
|
||
{
|
||
const struct loc_descriptor *d = p1;
|
||
const struct loc_descriptor *d2 = p2;
|
||
|
||
return (d->file == d2->file && d->line == d2->line
|
||
&& d->function == d2->function);
|
||
}
|
||
|
||
/* Hashtable converting address of allocated field to loc descriptor. */
|
||
static htab_t ptr_hash;
|
||
struct ptr_hash_entry
|
||
{
|
||
void *ptr;
|
||
struct loc_descriptor *loc;
|
||
size_t size;
|
||
};
|
||
|
||
/* Hash table helpers functions. */
|
||
static hashval_t
|
||
hash_ptr (const void *p)
|
||
{
|
||
const struct ptr_hash_entry *d = p;
|
||
|
||
return htab_hash_pointer (d->ptr);
|
||
}
|
||
|
||
static int
|
||
eq_ptr (const void *p1, const void *p2)
|
||
{
|
||
const struct ptr_hash_entry *p = p1;
|
||
|
||
return (p->ptr == p2);
|
||
}
|
||
|
||
/* Return descriptor for given call site, create new one if needed. */
|
||
static struct loc_descriptor *
|
||
loc_descriptor (const char *name, int line, const char *function)
|
||
{
|
||
struct loc_descriptor loc;
|
||
struct loc_descriptor **slot;
|
||
|
||
loc.file = name;
|
||
loc.line = line;
|
||
loc.function = function;
|
||
if (!loc_hash)
|
||
loc_hash = htab_create (10, hash_descriptor, eq_descriptor, NULL);
|
||
|
||
slot = (struct loc_descriptor **) htab_find_slot (loc_hash, &loc, 1);
|
||
if (*slot)
|
||
return *slot;
|
||
*slot = xcalloc (sizeof (**slot), 1);
|
||
(*slot)->file = name;
|
||
(*slot)->line = line;
|
||
(*slot)->function = function;
|
||
return *slot;
|
||
}
|
||
|
||
/* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION). */
|
||
void
|
||
ggc_record_overhead (size_t allocated, size_t overhead, void *ptr,
|
||
const char *name, int line, const char *function)
|
||
{
|
||
struct loc_descriptor *loc = loc_descriptor (name, line, function);
|
||
struct ptr_hash_entry *p = XNEW (struct ptr_hash_entry);
|
||
PTR *slot;
|
||
|
||
p->ptr = ptr;
|
||
p->loc = loc;
|
||
p->size = allocated + overhead;
|
||
if (!ptr_hash)
|
||
ptr_hash = htab_create (10, hash_ptr, eq_ptr, NULL);
|
||
slot = htab_find_slot_with_hash (ptr_hash, ptr, htab_hash_pointer (ptr), INSERT);
|
||
gcc_assert (!*slot);
|
||
*slot = p;
|
||
|
||
loc->times++;
|
||
loc->allocated+=allocated;
|
||
loc->overhead+=overhead;
|
||
}
|
||
|
||
/* Helper function for prune_overhead_list. See if SLOT is still marked and
|
||
remove it from hashtable if it is not. */
|
||
static int
|
||
ggc_prune_ptr (void **slot, void *b ATTRIBUTE_UNUSED)
|
||
{
|
||
struct ptr_hash_entry *p = *slot;
|
||
if (!ggc_marked_p (p->ptr))
|
||
{
|
||
p->loc->collected += p->size;
|
||
htab_clear_slot (ptr_hash, slot);
|
||
free (p);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* After live values has been marked, walk all recorded pointers and see if
|
||
they are still live. */
|
||
void
|
||
ggc_prune_overhead_list (void)
|
||
{
|
||
htab_traverse (ptr_hash, ggc_prune_ptr, NULL);
|
||
}
|
||
|
||
/* Notice that the pointer has been freed. */
|
||
void
|
||
ggc_free_overhead (void *ptr)
|
||
{
|
||
PTR *slot = htab_find_slot_with_hash (ptr_hash, ptr, htab_hash_pointer (ptr),
|
||
NO_INSERT);
|
||
struct ptr_hash_entry *p = *slot;
|
||
p->loc->freed += p->size;
|
||
htab_clear_slot (ptr_hash, slot);
|
||
free (p);
|
||
}
|
||
|
||
/* Helper for qsort; sort descriptors by amount of memory consumed. */
|
||
static int
|
||
cmp_statistic (const void *loc1, const void *loc2)
|
||
{
|
||
struct loc_descriptor *l1 = *(struct loc_descriptor **) loc1;
|
||
struct loc_descriptor *l2 = *(struct loc_descriptor **) loc2;
|
||
return ((l1->allocated + l1->overhead - l1->freed) -
|
||
(l2->allocated + l2->overhead - l2->freed));
|
||
}
|
||
|
||
/* Collect array of the descriptors from hashtable. */
|
||
struct loc_descriptor **loc_array;
|
||
static int
|
||
add_statistics (void **slot, void *b)
|
||
{
|
||
int *n = (int *)b;
|
||
loc_array[*n] = (struct loc_descriptor *) *slot;
|
||
(*n)++;
|
||
return 1;
|
||
}
|
||
|
||
/* Dump per-site memory statistics. */
|
||
#endif
|
||
void
|
||
dump_ggc_loc_statistics (void)
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
int nentries = 0;
|
||
char s[4096];
|
||
size_t collected = 0, freed = 0, allocated = 0, overhead = 0, times = 0;
|
||
int i;
|
||
|
||
ggc_force_collect = true;
|
||
ggc_collect ();
|
||
|
||
loc_array = xcalloc (sizeof (*loc_array), loc_hash->n_elements);
|
||
fprintf (stderr, "-------------------------------------------------------\n");
|
||
fprintf (stderr, "\n%-48s %10s %10s %10s %10s %10s\n",
|
||
"source location", "Garbage", "Freed", "Leak", "Overhead", "Times");
|
||
fprintf (stderr, "-------------------------------------------------------\n");
|
||
htab_traverse (loc_hash, add_statistics, &nentries);
|
||
qsort (loc_array, nentries, sizeof (*loc_array), cmp_statistic);
|
||
for (i = 0; i < nentries; i++)
|
||
{
|
||
struct loc_descriptor *d = loc_array[i];
|
||
allocated += d->allocated;
|
||
times += d->times;
|
||
freed += d->freed;
|
||
collected += d->collected;
|
||
overhead += d->overhead;
|
||
}
|
||
for (i = 0; i < nentries; i++)
|
||
{
|
||
struct loc_descriptor *d = loc_array[i];
|
||
if (d->allocated)
|
||
{
|
||
const char *s1 = d->file;
|
||
const char *s2;
|
||
while ((s2 = strstr (s1, "gcc/")))
|
||
s1 = s2 + 4;
|
||
sprintf (s, "%s:%i (%s)", s1, d->line, d->function);
|
||
s[48] = 0;
|
||
fprintf (stderr, "%-48s %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li\n", s,
|
||
(long)d->collected,
|
||
(d->collected) * 100.0 / collected,
|
||
(long)d->freed,
|
||
(d->freed) * 100.0 / freed,
|
||
(long)(d->allocated + d->overhead - d->freed - d->collected),
|
||
(d->allocated + d->overhead - d->freed - d->collected) * 100.0
|
||
/ (allocated + overhead - freed - collected),
|
||
(long)d->overhead,
|
||
d->overhead * 100.0 / overhead,
|
||
(long)d->times);
|
||
}
|
||
}
|
||
fprintf (stderr, "%-48s %10ld %10ld %10ld %10ld %10ld\n",
|
||
"Total", (long)collected, (long)freed,
|
||
(long)(allocated + overhead - freed - collected), (long)overhead,
|
||
(long)times);
|
||
fprintf (stderr, "%-48s %10s %10s %10s %10s %10s\n",
|
||
"source location", "Garbage", "Freed", "Leak", "Overhead", "Times");
|
||
fprintf (stderr, "-------------------------------------------------------\n");
|
||
#endif
|
||
}
|