1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-24 11:29:10 +00:00
freebsd/sys/kern/subr_intr.c
Michal Meloun 895c8b1c39 INTRNG: Rework handling with resources. Partially revert r301453.
- Read interrupt properties at bus enumeration time and store
   it into global mapping table.
 - At bus_activate_resource() time, given mapping entry is resolved and
   connected to real interrupt source. A copy of mapping entry is attached
   to given resource.
 - At bus_setup_intr() time, mapping entry stored in resource is used
   for delivery of requested interrupt configuration.
 - For MSI/MSIX interrupts, mapping entry is created within
   pci_alloc_msi()/pci_alloc_msix() call.
 - For legacy PCI interrupts, mapping entry must be created within
   pcib_route_interrupt() by pcib driver itself.

Reviewed by: nwhitehorn, andrew
Differential Revision: https://reviews.freebsd.org/D7493
2016-08-19 10:52:39 +00:00

1623 lines
37 KiB
C

/*-
* Copyright (c) 2015-2016 Svatopluk Kraus
* Copyright (c) 2015-2016 Michal Meloun
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* New-style Interrupt Framework
*
* TODO: - add support for disconnected PICs.
* - to support IPI (PPI) enabling on other CPUs if already started.
* - to complete things for removable PICs.
*/
#include "opt_ddb.h"
#include "opt_hwpmc_hooks.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/conf.h>
#include <sys/cpuset.h>
#include <sys/rman.h>
#include <sys/sched.h>
#include <sys/smp.h>
#ifdef HWPMC_HOOKS
#include <sys/pmckern.h>
#endif
#include <machine/atomic.h>
#include <machine/intr.h>
#include <machine/cpu.h>
#include <machine/smp.h>
#include <machine/stdarg.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include "pic_if.h"
#include "msi_if.h"
#define INTRNAME_LEN (2*MAXCOMLEN + 1)
#ifdef DEBUG
#define debugf(fmt, args...) do { printf("%s(): ", __func__); \
printf(fmt,##args); } while (0)
#else
#define debugf(fmt, args...)
#endif
MALLOC_DECLARE(M_INTRNG);
MALLOC_DEFINE(M_INTRNG, "intr", "intr interrupt handling");
/* Main interrupt handler called from assembler -> 'hidden' for C code. */
void intr_irq_handler(struct trapframe *tf);
/* Root interrupt controller stuff. */
device_t intr_irq_root_dev;
static intr_irq_filter_t *irq_root_filter;
static void *irq_root_arg;
static u_int irq_root_ipicount;
struct intr_pic_child {
SLIST_ENTRY(intr_pic_child) pc_next;
struct intr_pic *pc_pic;
intr_child_irq_filter_t *pc_filter;
void *pc_filter_arg;
uintptr_t pc_start;
uintptr_t pc_length;
};
/* Interrupt controller definition. */
struct intr_pic {
SLIST_ENTRY(intr_pic) pic_next;
intptr_t pic_xref; /* hardware identification */
device_t pic_dev;
#define FLAG_PIC (1 << 0)
#define FLAG_MSI (1 << 1)
u_int pic_flags;
struct mtx pic_child_lock;
SLIST_HEAD(, intr_pic_child) pic_children;
};
static struct mtx pic_list_lock;
static SLIST_HEAD(, intr_pic) pic_list;
static struct intr_pic *pic_lookup(device_t dev, intptr_t xref);
/* Interrupt source definition. */
static struct mtx isrc_table_lock;
static struct intr_irqsrc *irq_sources[NIRQ];
u_int irq_next_free;
#ifdef SMP
static boolean_t irq_assign_cpu = FALSE;
#endif
/*
* - 2 counters for each I/O interrupt.
* - MAXCPU counters for each IPI counters for SMP.
*/
#ifdef SMP
#define INTRCNT_COUNT (NIRQ * 2 + INTR_IPI_COUNT * MAXCPU)
#else
#define INTRCNT_COUNT (NIRQ * 2)
#endif
/* Data for MI statistics reporting. */
u_long intrcnt[INTRCNT_COUNT];
char intrnames[INTRCNT_COUNT * INTRNAME_LEN];
size_t sintrcnt = sizeof(intrcnt);
size_t sintrnames = sizeof(intrnames);
static u_int intrcnt_index;
static struct intr_irqsrc *intr_map_get_isrc(u_int res_id);
static void intr_map_set_isrc(u_int res_id, struct intr_irqsrc *isrc);
static void intr_map_copy_map_data(u_int res_id, device_t *dev, intptr_t *xref,
struct intr_map_data **data);
/*
* Interrupt framework initialization routine.
*/
static void
intr_irq_init(void *dummy __unused)
{
SLIST_INIT(&pic_list);
mtx_init(&pic_list_lock, "intr pic list", NULL, MTX_DEF);
mtx_init(&isrc_table_lock, "intr isrc table", NULL, MTX_DEF);
}
SYSINIT(intr_irq_init, SI_SUB_INTR, SI_ORDER_FIRST, intr_irq_init, NULL);
static void
intrcnt_setname(const char *name, int index)
{
snprintf(intrnames + INTRNAME_LEN * index, INTRNAME_LEN, "%-*s",
INTRNAME_LEN - 1, name);
}
/*
* Update name for interrupt source with interrupt event.
*/
static void
intrcnt_updatename(struct intr_irqsrc *isrc)
{
/* QQQ: What about stray counter name? */
mtx_assert(&isrc_table_lock, MA_OWNED);
intrcnt_setname(isrc->isrc_event->ie_fullname, isrc->isrc_index);
}
/*
* Virtualization for interrupt source interrupt counter increment.
*/
static inline void
isrc_increment_count(struct intr_irqsrc *isrc)
{
if (isrc->isrc_flags & INTR_ISRCF_PPI)
atomic_add_long(&isrc->isrc_count[0], 1);
else
isrc->isrc_count[0]++;
}
/*
* Virtualization for interrupt source interrupt stray counter increment.
*/
static inline void
isrc_increment_straycount(struct intr_irqsrc *isrc)
{
isrc->isrc_count[1]++;
}
/*
* Virtualization for interrupt source interrupt name update.
*/
static void
isrc_update_name(struct intr_irqsrc *isrc, const char *name)
{
char str[INTRNAME_LEN];
mtx_assert(&isrc_table_lock, MA_OWNED);
if (name != NULL) {
snprintf(str, INTRNAME_LEN, "%s: %s", isrc->isrc_name, name);
intrcnt_setname(str, isrc->isrc_index);
snprintf(str, INTRNAME_LEN, "stray %s: %s", isrc->isrc_name,
name);
intrcnt_setname(str, isrc->isrc_index + 1);
} else {
snprintf(str, INTRNAME_LEN, "%s:", isrc->isrc_name);
intrcnt_setname(str, isrc->isrc_index);
snprintf(str, INTRNAME_LEN, "stray %s:", isrc->isrc_name);
intrcnt_setname(str, isrc->isrc_index + 1);
}
}
/*
* Virtualization for interrupt source interrupt counters setup.
*/
static void
isrc_setup_counters(struct intr_irqsrc *isrc)
{
u_int index;
/*
* XXX - it does not work well with removable controllers and
* interrupt sources !!!
*/
index = atomic_fetchadd_int(&intrcnt_index, 2);
isrc->isrc_index = index;
isrc->isrc_count = &intrcnt[index];
isrc_update_name(isrc, NULL);
}
/*
* Virtualization for interrupt source interrupt counters release.
*/
static void
isrc_release_counters(struct intr_irqsrc *isrc)
{
panic("%s: not implemented", __func__);
}
#ifdef SMP
/*
* Virtualization for interrupt source IPI counters setup.
*/
u_long *
intr_ipi_setup_counters(const char *name)
{
u_int index, i;
char str[INTRNAME_LEN];
index = atomic_fetchadd_int(&intrcnt_index, MAXCPU);
for (i = 0; i < MAXCPU; i++) {
snprintf(str, INTRNAME_LEN, "cpu%d:%s", i, name);
intrcnt_setname(str, index + i);
}
return (&intrcnt[index]);
}
#endif
/*
* Main interrupt dispatch handler. It's called straight
* from the assembler, where CPU interrupt is served.
*/
void
intr_irq_handler(struct trapframe *tf)
{
struct trapframe * oldframe;
struct thread * td;
KASSERT(irq_root_filter != NULL, ("%s: no filter", __func__));
PCPU_INC(cnt.v_intr);
critical_enter();
td = curthread;
oldframe = td->td_intr_frame;
td->td_intr_frame = tf;
irq_root_filter(irq_root_arg);
td->td_intr_frame = oldframe;
critical_exit();
#ifdef HWPMC_HOOKS
if (pmc_hook && TRAPF_USERMODE(tf) &&
(PCPU_GET(curthread)->td_pflags & TDP_CALLCHAIN))
pmc_hook(PCPU_GET(curthread), PMC_FN_USER_CALLCHAIN, tf);
#endif
}
int
intr_child_irq_handler(struct intr_pic *parent, uintptr_t irq)
{
struct intr_pic_child *child;
bool found;
found = false;
mtx_lock_spin(&parent->pic_child_lock);
SLIST_FOREACH(child, &parent->pic_children, pc_next) {
if (child->pc_start <= irq &&
irq < (child->pc_start + child->pc_length)) {
found = true;
break;
}
}
mtx_unlock_spin(&parent->pic_child_lock);
if (found)
return (child->pc_filter(child->pc_filter_arg, irq));
return (FILTER_STRAY);
}
/*
* interrupt controller dispatch function for interrupts. It should
* be called straight from the interrupt controller, when associated interrupt
* source is learned.
*/
int
intr_isrc_dispatch(struct intr_irqsrc *isrc, struct trapframe *tf)
{
KASSERT(isrc != NULL, ("%s: no source", __func__));
isrc_increment_count(isrc);
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL) {
int error;
error = isrc->isrc_filter(isrc->isrc_arg, tf);
PIC_POST_FILTER(isrc->isrc_dev, isrc);
if (error == FILTER_HANDLED)
return (0);
} else
#endif
if (isrc->isrc_event != NULL) {
if (intr_event_handle(isrc->isrc_event, tf) == 0)
return (0);
}
isrc_increment_straycount(isrc);
return (EINVAL);
}
/*
* Alloc unique interrupt number (resource handle) for interrupt source.
*
* There could be various strategies how to allocate free interrupt number
* (resource handle) for new interrupt source.
*
* 1. Handles are always allocated forward, so handles are not recycled
* immediately. However, if only one free handle left which is reused
* constantly...
*/
static inline int
isrc_alloc_irq(struct intr_irqsrc *isrc)
{
u_int maxirqs, irq;
mtx_assert(&isrc_table_lock, MA_OWNED);
maxirqs = nitems(irq_sources);
if (irq_next_free >= maxirqs)
return (ENOSPC);
for (irq = irq_next_free; irq < maxirqs; irq++) {
if (irq_sources[irq] == NULL)
goto found;
}
for (irq = 0; irq < irq_next_free; irq++) {
if (irq_sources[irq] == NULL)
goto found;
}
irq_next_free = maxirqs;
return (ENOSPC);
found:
isrc->isrc_irq = irq;
irq_sources[irq] = isrc;
irq_next_free = irq + 1;
if (irq_next_free >= maxirqs)
irq_next_free = 0;
return (0);
}
/*
* Free unique interrupt number (resource handle) from interrupt source.
*/
static inline int
isrc_free_irq(struct intr_irqsrc *isrc)
{
mtx_assert(&isrc_table_lock, MA_OWNED);
if (isrc->isrc_irq >= nitems(irq_sources))
return (EINVAL);
if (irq_sources[isrc->isrc_irq] != isrc)
return (EINVAL);
irq_sources[isrc->isrc_irq] = NULL;
isrc->isrc_irq = INTR_IRQ_INVALID; /* just to be safe */
return (0);
}
/*
* Initialize interrupt source and register it into global interrupt table.
*/
int
intr_isrc_register(struct intr_irqsrc *isrc, device_t dev, u_int flags,
const char *fmt, ...)
{
int error;
va_list ap;
bzero(isrc, sizeof(struct intr_irqsrc));
isrc->isrc_dev = dev;
isrc->isrc_irq = INTR_IRQ_INVALID; /* just to be safe */
isrc->isrc_flags = flags;
va_start(ap, fmt);
vsnprintf(isrc->isrc_name, INTR_ISRC_NAMELEN, fmt, ap);
va_end(ap);
mtx_lock(&isrc_table_lock);
error = isrc_alloc_irq(isrc);
if (error != 0) {
mtx_unlock(&isrc_table_lock);
return (error);
}
/*
* Setup interrupt counters, but not for IPI sources. Those are setup
* later and only for used ones (up to INTR_IPI_COUNT) to not exhaust
* our counter pool.
*/
if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0)
isrc_setup_counters(isrc);
mtx_unlock(&isrc_table_lock);
return (0);
}
/*
* Deregister interrupt source from global interrupt table.
*/
int
intr_isrc_deregister(struct intr_irqsrc *isrc)
{
int error;
mtx_lock(&isrc_table_lock);
if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0)
isrc_release_counters(isrc);
error = isrc_free_irq(isrc);
mtx_unlock(&isrc_table_lock);
return (error);
}
#ifdef SMP
/*
* A support function for a PIC to decide if provided ISRC should be inited
* on given cpu. The logic of INTR_ISRCF_BOUND flag and isrc_cpu member of
* struct intr_irqsrc is the following:
*
* If INTR_ISRCF_BOUND is set, the ISRC should be inited only on cpus
* set in isrc_cpu. If not, the ISRC should be inited on every cpu and
* isrc_cpu is kept consistent with it. Thus isrc_cpu is always correct.
*/
bool
intr_isrc_init_on_cpu(struct intr_irqsrc *isrc, u_int cpu)
{
if (isrc->isrc_handlers == 0)
return (false);
if ((isrc->isrc_flags & (INTR_ISRCF_PPI | INTR_ISRCF_IPI)) == 0)
return (false);
if (isrc->isrc_flags & INTR_ISRCF_BOUND)
return (CPU_ISSET(cpu, &isrc->isrc_cpu));
CPU_SET(cpu, &isrc->isrc_cpu);
return (true);
}
#endif
#ifdef INTR_SOLO
/*
* Setup filter into interrupt source.
*/
static int
iscr_setup_filter(struct intr_irqsrc *isrc, const char *name,
intr_irq_filter_t *filter, void *arg, void **cookiep)
{
if (filter == NULL)
return (EINVAL);
mtx_lock(&isrc_table_lock);
/*
* Make sure that we do not mix the two ways
* how we handle interrupt sources.
*/
if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) {
mtx_unlock(&isrc_table_lock);
return (EBUSY);
}
isrc->isrc_filter = filter;
isrc->isrc_arg = arg;
isrc_update_name(isrc, name);
mtx_unlock(&isrc_table_lock);
*cookiep = isrc;
return (0);
}
#endif
/*
* Interrupt source pre_ithread method for MI interrupt framework.
*/
static void
intr_isrc_pre_ithread(void *arg)
{
struct intr_irqsrc *isrc = arg;
PIC_PRE_ITHREAD(isrc->isrc_dev, isrc);
}
/*
* Interrupt source post_ithread method for MI interrupt framework.
*/
static void
intr_isrc_post_ithread(void *arg)
{
struct intr_irqsrc *isrc = arg;
PIC_POST_ITHREAD(isrc->isrc_dev, isrc);
}
/*
* Interrupt source post_filter method for MI interrupt framework.
*/
static void
intr_isrc_post_filter(void *arg)
{
struct intr_irqsrc *isrc = arg;
PIC_POST_FILTER(isrc->isrc_dev, isrc);
}
/*
* Interrupt source assign_cpu method for MI interrupt framework.
*/
static int
intr_isrc_assign_cpu(void *arg, int cpu)
{
#ifdef SMP
struct intr_irqsrc *isrc = arg;
int error;
if (isrc->isrc_dev != intr_irq_root_dev)
return (EINVAL);
mtx_lock(&isrc_table_lock);
if (cpu == NOCPU) {
CPU_ZERO(&isrc->isrc_cpu);
isrc->isrc_flags &= ~INTR_ISRCF_BOUND;
} else {
CPU_SETOF(cpu, &isrc->isrc_cpu);
isrc->isrc_flags |= INTR_ISRCF_BOUND;
}
/*
* In NOCPU case, it's up to PIC to either leave ISRC on same CPU or
* re-balance it to another CPU or enable it on more CPUs. However,
* PIC is expected to change isrc_cpu appropriately to keep us well
* informed if the call is successful.
*/
if (irq_assign_cpu) {
error = PIC_BIND_INTR(isrc->isrc_dev, isrc);
if (error) {
CPU_ZERO(&isrc->isrc_cpu);
mtx_unlock(&isrc_table_lock);
return (error);
}
}
mtx_unlock(&isrc_table_lock);
return (0);
#else
return (EOPNOTSUPP);
#endif
}
/*
* Create interrupt event for interrupt source.
*/
static int
isrc_event_create(struct intr_irqsrc *isrc)
{
struct intr_event *ie;
int error;
error = intr_event_create(&ie, isrc, 0, isrc->isrc_irq,
intr_isrc_pre_ithread, intr_isrc_post_ithread, intr_isrc_post_filter,
intr_isrc_assign_cpu, "%s:", isrc->isrc_name);
if (error)
return (error);
mtx_lock(&isrc_table_lock);
/*
* Make sure that we do not mix the two ways
* how we handle interrupt sources. Let contested event wins.
*/
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) {
#else
if (isrc->isrc_event != NULL) {
#endif
mtx_unlock(&isrc_table_lock);
intr_event_destroy(ie);
return (isrc->isrc_event != NULL ? EBUSY : 0);
}
isrc->isrc_event = ie;
mtx_unlock(&isrc_table_lock);
return (0);
}
#ifdef notyet
/*
* Destroy interrupt event for interrupt source.
*/
static void
isrc_event_destroy(struct intr_irqsrc *isrc)
{
struct intr_event *ie;
mtx_lock(&isrc_table_lock);
ie = isrc->isrc_event;
isrc->isrc_event = NULL;
mtx_unlock(&isrc_table_lock);
if (ie != NULL)
intr_event_destroy(ie);
}
#endif
/*
* Add handler to interrupt source.
*/
static int
isrc_add_handler(struct intr_irqsrc *isrc, const char *name,
driver_filter_t filter, driver_intr_t handler, void *arg,
enum intr_type flags, void **cookiep)
{
int error;
if (isrc->isrc_event == NULL) {
error = isrc_event_create(isrc);
if (error)
return (error);
}
error = intr_event_add_handler(isrc->isrc_event, name, filter, handler,
arg, intr_priority(flags), flags, cookiep);
if (error == 0) {
mtx_lock(&isrc_table_lock);
intrcnt_updatename(isrc);
mtx_unlock(&isrc_table_lock);
}
return (error);
}
/*
* Lookup interrupt controller locked.
*/
static inline struct intr_pic *
pic_lookup_locked(device_t dev, intptr_t xref)
{
struct intr_pic *pic;
mtx_assert(&pic_list_lock, MA_OWNED);
if (dev == NULL && xref == 0)
return (NULL);
/* Note that pic->pic_dev is never NULL on registered PIC. */
SLIST_FOREACH(pic, &pic_list, pic_next) {
if (dev == NULL) {
if (xref == pic->pic_xref)
return (pic);
} else if (xref == 0 || pic->pic_xref == 0) {
if (dev == pic->pic_dev)
return (pic);
} else if (xref == pic->pic_xref && dev == pic->pic_dev)
return (pic);
}
return (NULL);
}
/*
* Lookup interrupt controller.
*/
static struct intr_pic *
pic_lookup(device_t dev, intptr_t xref)
{
struct intr_pic *pic;
mtx_lock(&pic_list_lock);
pic = pic_lookup_locked(dev, xref);
mtx_unlock(&pic_list_lock);
return (pic);
}
/*
* Create interrupt controller.
*/
static struct intr_pic *
pic_create(device_t dev, intptr_t xref)
{
struct intr_pic *pic;
mtx_lock(&pic_list_lock);
pic = pic_lookup_locked(dev, xref);
if (pic != NULL) {
mtx_unlock(&pic_list_lock);
return (pic);
}
pic = malloc(sizeof(*pic), M_INTRNG, M_NOWAIT | M_ZERO);
if (pic == NULL) {
mtx_unlock(&pic_list_lock);
return (NULL);
}
pic->pic_xref = xref;
pic->pic_dev = dev;
mtx_init(&pic->pic_child_lock, "pic child lock", NULL, MTX_SPIN);
SLIST_INSERT_HEAD(&pic_list, pic, pic_next);
mtx_unlock(&pic_list_lock);
return (pic);
}
#ifdef notyet
/*
* Destroy interrupt controller.
*/
static void
pic_destroy(device_t dev, intptr_t xref)
{
struct intr_pic *pic;
mtx_lock(&pic_list_lock);
pic = pic_lookup_locked(dev, xref);
if (pic == NULL) {
mtx_unlock(&pic_list_lock);
return;
}
SLIST_REMOVE(&pic_list, pic, intr_pic, pic_next);
mtx_unlock(&pic_list_lock);
free(pic, M_INTRNG);
}
#endif
/*
* Register interrupt controller.
*/
struct intr_pic *
intr_pic_register(device_t dev, intptr_t xref)
{
struct intr_pic *pic;
if (dev == NULL)
return (NULL);
pic = pic_create(dev, xref);
if (pic == NULL)
return (NULL);
pic->pic_flags |= FLAG_PIC;
debugf("PIC %p registered for %s <dev %p, xref %x>\n", pic,
device_get_nameunit(dev), dev, xref);
return (pic);
}
/*
* Unregister interrupt controller.
*/
int
intr_pic_deregister(device_t dev, intptr_t xref)
{
panic("%s: not implemented", __func__);
}
/*
* Mark interrupt controller (itself) as a root one.
*
* Note that only an interrupt controller can really know its position
* in interrupt controller's tree. So root PIC must claim itself as a root.
*
* In FDT case, according to ePAPR approved version 1.1 from 08 April 2011,
* page 30:
* "The root of the interrupt tree is determined when traversal
* of the interrupt tree reaches an interrupt controller node without
* an interrupts property and thus no explicit interrupt parent."
*/
int
intr_pic_claim_root(device_t dev, intptr_t xref, intr_irq_filter_t *filter,
void *arg, u_int ipicount)
{
struct intr_pic *pic;
pic = pic_lookup(dev, xref);
if (pic == NULL) {
device_printf(dev, "not registered\n");
return (EINVAL);
}
KASSERT((pic->pic_flags & FLAG_PIC) != 0,
("%s: Found a non-PIC controller: %s", __func__,
device_get_name(pic->pic_dev)));
if (filter == NULL) {
device_printf(dev, "filter missing\n");
return (EINVAL);
}
/*
* Only one interrupt controllers could be on the root for now.
* Note that we further suppose that there is not threaded interrupt
* routine (handler) on the root. See intr_irq_handler().
*/
if (intr_irq_root_dev != NULL) {
device_printf(dev, "another root already set\n");
return (EBUSY);
}
intr_irq_root_dev = dev;
irq_root_filter = filter;
irq_root_arg = arg;
irq_root_ipicount = ipicount;
debugf("irq root set to %s\n", device_get_nameunit(dev));
return (0);
}
/*
* Add a handler to manage a sub range of a parents interrupts.
*/
struct intr_pic *
intr_pic_add_handler(device_t parent, struct intr_pic *pic,
intr_child_irq_filter_t *filter, void *arg, uintptr_t start,
uintptr_t length)
{
struct intr_pic *parent_pic;
struct intr_pic_child *newchild;
#ifdef INVARIANTS
struct intr_pic_child *child;
#endif
parent_pic = pic_lookup(parent, 0);
if (parent_pic == NULL)
return (NULL);
newchild = malloc(sizeof(*newchild), M_INTRNG, M_WAITOK | M_ZERO);
newchild->pc_pic = pic;
newchild->pc_filter = filter;
newchild->pc_filter_arg = arg;
newchild->pc_start = start;
newchild->pc_length = length;
mtx_lock_spin(&parent_pic->pic_child_lock);
#ifdef INVARIANTS
SLIST_FOREACH(child, &parent_pic->pic_children, pc_next) {
KASSERT(child->pc_pic != pic, ("%s: Adding a child PIC twice",
__func__));
}
#endif
SLIST_INSERT_HEAD(&parent_pic->pic_children, newchild, pc_next);
mtx_unlock_spin(&parent_pic->pic_child_lock);
return (pic);
}
static int
intr_resolve_irq(device_t dev, intptr_t xref, struct intr_map_data *data,
struct intr_irqsrc **isrc)
{
struct intr_pic *pic;
struct intr_map_data_msi *msi;
if (data == NULL)
return (EINVAL);
pic = pic_lookup(dev, xref);
if (pic == NULL)
return (ESRCH);
switch (data->type) {
case INTR_MAP_DATA_MSI:
KASSERT((pic->pic_flags & FLAG_MSI) != 0,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
msi = (struct intr_map_data_msi *)data;
*isrc = msi->isrc;
return (0);
default:
KASSERT((pic->pic_flags & FLAG_PIC) != 0,
("%s: Found a non-PIC controller: %s", __func__,
device_get_name(pic->pic_dev)));
return (PIC_MAP_INTR(pic->pic_dev, data, isrc));
}
}
int
intr_activate_irq(device_t dev, struct resource *res)
{
device_t map_dev;
intptr_t map_xref;
struct intr_map_data *data;
struct intr_irqsrc *isrc;
u_int res_id;
int error;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
res_id = (u_int)rman_get_start(res);
if (intr_map_get_isrc(res_id) != NULL)
panic("Attempt to double activation of resource id: %u\n",
res_id);
intr_map_copy_map_data(res_id, &map_dev, &map_xref, &data);
error = intr_resolve_irq(map_dev, map_xref, data, &isrc);
if (error != 0) {
free(data, M_INTRNG);
/* XXX TODO DISCONECTED PICs */
/* if (error == EINVAL) return(0); */
return (error);
}
intr_map_set_isrc(res_id, isrc);
rman_set_virtual(res, data);
return (PIC_ACTIVATE_INTR(isrc->isrc_dev, isrc, res, data));
}
int
intr_deactivate_irq(device_t dev, struct resource *res)
{
struct intr_map_data *data;
struct intr_irqsrc *isrc;
u_int res_id;
int error;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
res_id = (u_int)rman_get_start(res);
isrc = intr_map_get_isrc(res_id);
if (isrc == NULL)
panic("Attempt to deactivate non-active resource id: %u\n",
res_id);
data = rman_get_virtual(res);
error = PIC_DEACTIVATE_INTR(isrc->isrc_dev, isrc, res, data);
intr_map_set_isrc(res_id, NULL);
rman_set_virtual(res, NULL);
free(data, M_INTRNG);
return (error);
}
int
intr_setup_irq(device_t dev, struct resource *res, driver_filter_t filt,
driver_intr_t hand, void *arg, int flags, void **cookiep)
{
int error;
struct intr_map_data *data;
struct intr_irqsrc *isrc;
const char *name;
u_int res_id;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
res_id = (u_int)rman_get_start(res);
isrc = intr_map_get_isrc(res_id);
if (isrc == NULL) {
/* XXX TODO DISCONECTED PICs */
return (EINVAL);
}
data = rman_get_virtual(res);
name = device_get_nameunit(dev);
#ifdef INTR_SOLO
/*
* Standard handling is done through MI interrupt framework. However,
* some interrupts could request solely own special handling. This
* non standard handling can be used for interrupt controllers without
* handler (filter only), so in case that interrupt controllers are
* chained, MI interrupt framework is called only in leaf controller.
*
* Note that root interrupt controller routine is served as well,
* however in intr_irq_handler(), i.e. main system dispatch routine.
*/
if (flags & INTR_SOLO && hand != NULL) {
debugf("irq %u cannot solo on %s\n", irq, name);
return (EINVAL);
}
if (flags & INTR_SOLO) {
error = iscr_setup_filter(isrc, name, (intr_irq_filter_t *)filt,
arg, cookiep);
debugf("irq %u setup filter error %d on %s\n", irq, error,
name);
} else
#endif
{
error = isrc_add_handler(isrc, name, filt, hand, arg, flags,
cookiep);
debugf("irq %u add handler error %d on %s\n", irq, error, name);
}
if (error != 0)
return (error);
mtx_lock(&isrc_table_lock);
error = PIC_SETUP_INTR(isrc->isrc_dev, isrc, res, data);
if (error == 0) {
isrc->isrc_handlers++;
if (isrc->isrc_handlers == 1)
PIC_ENABLE_INTR(isrc->isrc_dev, isrc);
}
mtx_unlock(&isrc_table_lock);
if (error != 0)
intr_event_remove_handler(*cookiep);
return (error);
}
int
intr_teardown_irq(device_t dev, struct resource *res, void *cookie)
{
int error;
struct intr_map_data *data;
struct intr_irqsrc *isrc;
u_int res_id;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
res_id = (u_int)rman_get_start(res);
isrc = intr_map_get_isrc(res_id);
if (isrc == NULL || isrc->isrc_handlers == 0)
return (EINVAL);
data = rman_get_virtual(res);
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL) {
if (isrc != cookie)
return (EINVAL);
mtx_lock(&isrc_table_lock);
isrc->isrc_filter = NULL;
isrc->isrc_arg = NULL;
isrc->isrc_handlers = 0;
PIC_DISABLE_INTR(isrc->isrc_dev, isrc);
PIC_TEARDOWN_INTR(isrc->isrc_dev, isrc, res, data);
isrc_update_name(isrc, NULL);
mtx_unlock(&isrc_table_lock);
return (0);
}
#endif
if (isrc != intr_handler_source(cookie))
return (EINVAL);
error = intr_event_remove_handler(cookie);
if (error == 0) {
mtx_lock(&isrc_table_lock);
isrc->isrc_handlers--;
if (isrc->isrc_handlers == 0)
PIC_DISABLE_INTR(isrc->isrc_dev, isrc);
PIC_TEARDOWN_INTR(isrc->isrc_dev, isrc, res, data);
intrcnt_updatename(isrc);
mtx_unlock(&isrc_table_lock);
}
return (error);
}
int
intr_describe_irq(device_t dev, struct resource *res, void *cookie,
const char *descr)
{
int error;
struct intr_irqsrc *isrc;
u_int res_id;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
res_id = (u_int)rman_get_start(res);
isrc = intr_map_get_isrc(res_id);
if (isrc == NULL || isrc->isrc_handlers == 0)
return (EINVAL);
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL) {
if (isrc != cookie)
return (EINVAL);
mtx_lock(&isrc_table_lock);
isrc_update_name(isrc, descr);
mtx_unlock(&isrc_table_lock);
return (0);
}
#endif
error = intr_event_describe_handler(isrc->isrc_event, cookie, descr);
if (error == 0) {
mtx_lock(&isrc_table_lock);
intrcnt_updatename(isrc);
mtx_unlock(&isrc_table_lock);
}
return (error);
}
#ifdef SMP
int
intr_bind_irq(device_t dev, struct resource *res, int cpu)
{
struct intr_irqsrc *isrc;
u_int res_id;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
res_id = (u_int)rman_get_start(res);
isrc = intr_map_get_isrc(res_id);
if (isrc == NULL || isrc->isrc_handlers == 0)
return (EINVAL);
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL)
return (intr_isrc_assign_cpu(isrc, cpu));
#endif
return (intr_event_bind(isrc->isrc_event, cpu));
}
/*
* Return the CPU that the next interrupt source should use.
* For now just returns the next CPU according to round-robin.
*/
u_int
intr_irq_next_cpu(u_int last_cpu, cpuset_t *cpumask)
{
if (!irq_assign_cpu || mp_ncpus == 1)
return (PCPU_GET(cpuid));
do {
last_cpu++;
if (last_cpu > mp_maxid)
last_cpu = 0;
} while (!CPU_ISSET(last_cpu, cpumask));
return (last_cpu);
}
/*
* Distribute all the interrupt sources among the available
* CPUs once the AP's have been launched.
*/
static void
intr_irq_shuffle(void *arg __unused)
{
struct intr_irqsrc *isrc;
u_int i;
if (mp_ncpus == 1)
return;
mtx_lock(&isrc_table_lock);
irq_assign_cpu = TRUE;
for (i = 0; i < NIRQ; i++) {
isrc = irq_sources[i];
if (isrc == NULL || isrc->isrc_handlers == 0 ||
isrc->isrc_flags & (INTR_ISRCF_PPI | INTR_ISRCF_IPI))
continue;
if (isrc->isrc_event != NULL &&
isrc->isrc_flags & INTR_ISRCF_BOUND &&
isrc->isrc_event->ie_cpu != CPU_FFS(&isrc->isrc_cpu) - 1)
panic("%s: CPU inconsistency", __func__);
if ((isrc->isrc_flags & INTR_ISRCF_BOUND) == 0)
CPU_ZERO(&isrc->isrc_cpu); /* start again */
/*
* We are in wicked position here if the following call fails
* for bound ISRC. The best thing we can do is to clear
* isrc_cpu so inconsistency with ie_cpu will be detectable.
*/
if (PIC_BIND_INTR(isrc->isrc_dev, isrc) != 0)
CPU_ZERO(&isrc->isrc_cpu);
}
mtx_unlock(&isrc_table_lock);
}
SYSINIT(intr_irq_shuffle, SI_SUB_SMP, SI_ORDER_SECOND, intr_irq_shuffle, NULL);
#else
u_int
intr_irq_next_cpu(u_int current_cpu, cpuset_t *cpumask)
{
return (PCPU_GET(cpuid));
}
#endif
/*
* Allocate memory for new intr_map_data structure.
* Initialize common fields.
*/
struct intr_map_data *
intr_alloc_map_data(enum intr_map_data_type type, size_t len, int flags)
{
struct intr_map_data *data;
data = malloc(len, M_INTRNG, flags);
data->type = type;
data->len = len;
return (data);
}
void intr_free_intr_map_data(struct intr_map_data *data)
{
free(data, M_INTRNG);
}
/*
* Register a MSI/MSI-X interrupt controller
*/
int
intr_msi_register(device_t dev, intptr_t xref)
{
struct intr_pic *pic;
if (dev == NULL)
return (EINVAL);
pic = pic_create(dev, xref);
if (pic == NULL)
return (ENOMEM);
pic->pic_flags |= FLAG_MSI;
debugf("PIC %p registered for %s <dev %p, xref %jx>\n", pic,
device_get_nameunit(dev), dev, (uintmax_t)xref);
return (0);
}
int
intr_alloc_msi(device_t pci, device_t child, intptr_t xref, int count,
int maxcount, int *irqs)
{
struct intr_irqsrc **isrc;
struct intr_pic *pic;
device_t pdev;
struct intr_map_data_msi *msi;
int err, i;
pic = pic_lookup(NULL, xref);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_MSI) != 0,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
isrc = malloc(sizeof(*isrc) * count, M_INTRNG, M_WAITOK);
err = MSI_ALLOC_MSI(pic->pic_dev, child, count, maxcount, &pdev, isrc);
if (err != 0) {
free(isrc, M_INTRNG);
return (err);
}
for (i = 0; i < count; i++) {
msi = (struct intr_map_data_msi *)intr_alloc_map_data(
INTR_MAP_DATA_MSI, sizeof(*msi), M_WAITOK | M_ZERO);
msi-> isrc = isrc[i];
irqs[i] = intr_map_irq(pic->pic_dev, xref,
(struct intr_map_data *)msi);
}
free(isrc, M_INTRNG);
return (err);
}
int
intr_release_msi(device_t pci, device_t child, intptr_t xref, int count,
int *irqs)
{
struct intr_irqsrc **isrc;
struct intr_pic *pic;
int i, err;
pic = pic_lookup(NULL, xref);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_MSI) != 0,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
isrc = malloc(sizeof(*isrc) * count, M_INTRNG, M_WAITOK);
for (i = 0; i < count; i++)
isrc[i] = intr_map_get_isrc(irqs[i]);
err = MSI_RELEASE_MSI(pic->pic_dev, child, count, isrc);
for (i = 0; i < count; i++) {
if (isrc[i] != NULL)
intr_unmap_irq(irqs[i]);
}
free(isrc, M_INTRNG);
return (err);
}
int
intr_alloc_msix(device_t pci, device_t child, intptr_t xref, int *irq)
{
struct intr_irqsrc *isrc;
struct intr_pic *pic;
device_t pdev;
struct intr_map_data_msi *msi;
int err;
pic = pic_lookup(NULL, xref);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_MSI) != 0,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
err = MSI_ALLOC_MSIX(pic->pic_dev, child, &pdev, &isrc);
if (err != 0)
return (err);
msi = (struct intr_map_data_msi *)intr_alloc_map_data(
INTR_MAP_DATA_MSI, sizeof(*msi), M_WAITOK | M_ZERO);
msi->isrc = isrc;
*irq = intr_map_irq(pic->pic_dev, xref, (struct intr_map_data *)msi);
return (0);
}
int
intr_release_msix(device_t pci, device_t child, intptr_t xref, int irq)
{
struct intr_irqsrc *isrc;
struct intr_pic *pic;
int err;
pic = pic_lookup(NULL, xref);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_MSI) != 0,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
isrc = intr_map_get_isrc(irq);
if (isrc == NULL) {
intr_unmap_irq(irq);
return (EINVAL);
}
err = MSI_RELEASE_MSIX(pic->pic_dev, child, isrc);
intr_unmap_irq(irq);
return (err);
}
int
intr_map_msi(device_t pci, device_t child, intptr_t xref, int irq,
uint64_t *addr, uint32_t *data)
{
struct intr_irqsrc *isrc;
struct intr_pic *pic;
int err;
pic = pic_lookup(NULL, xref);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_MSI) != 0,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
isrc = intr_map_get_isrc(irq);
if (isrc == NULL)
return (EINVAL);
err = MSI_MAP_MSI(pic->pic_dev, child, isrc, addr, data);
return (err);
}
void dosoftints(void);
void
dosoftints(void)
{
}
#ifdef SMP
/*
* Init interrupt controller on another CPU.
*/
void
intr_pic_init_secondary(void)
{
/*
* QQQ: Only root PIC is aware of other CPUs ???
*/
KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__));
//mtx_lock(&isrc_table_lock);
PIC_INIT_SECONDARY(intr_irq_root_dev);
//mtx_unlock(&isrc_table_lock);
}
#endif
#ifdef DDB
DB_SHOW_COMMAND(irqs, db_show_irqs)
{
u_int i, irqsum;
u_long num;
struct intr_irqsrc *isrc;
for (irqsum = 0, i = 0; i < NIRQ; i++) {
isrc = irq_sources[i];
if (isrc == NULL)
continue;
num = isrc->isrc_count != NULL ? isrc->isrc_count[0] : 0;
db_printf("irq%-3u <%s>: cpu %02lx%s cnt %lu\n", i,
isrc->isrc_name, isrc->isrc_cpu.__bits[0],
isrc->isrc_flags & INTR_ISRCF_BOUND ? " (bound)" : "", num);
irqsum += num;
}
db_printf("irq total %u\n", irqsum);
}
#endif
/*
* Interrupt mapping table functions.
*
* Please, keep this part separately, it can be transformed to
* extension of standard resources.
*/
struct intr_map_entry
{
device_t dev;
intptr_t xref;
struct intr_map_data *map_data;
struct intr_irqsrc *isrc;
/* XXX TODO DISCONECTED PICs */
/*int flags */
};
/* XXX Convert irq_map[] to dynamicaly expandable one. */
static struct intr_map_entry *irq_map[2 * NIRQ];
static int irq_map_count = nitems(irq_map);
static int irq_map_first_free_idx;
static struct mtx irq_map_lock;
static struct intr_irqsrc *
intr_map_get_isrc(u_int res_id)
{
struct intr_irqsrc *isrc;
mtx_lock(&irq_map_lock);
if ((res_id >= irq_map_count) || (irq_map[res_id] == NULL)) {
mtx_unlock(&irq_map_lock);
return (NULL);
}
isrc = irq_map[res_id]->isrc;
mtx_unlock(&irq_map_lock);
return (isrc);
}
static void
intr_map_set_isrc(u_int res_id, struct intr_irqsrc *isrc)
{
mtx_lock(&irq_map_lock);
if ((res_id >= irq_map_count) || (irq_map[res_id] == NULL)) {
mtx_unlock(&irq_map_lock);
return;
}
irq_map[res_id]->isrc = isrc;
mtx_unlock(&irq_map_lock);
}
/*
* Get a copy of intr_map_entry data
*/
static void
intr_map_copy_map_data(u_int res_id, device_t *map_dev, intptr_t *map_xref,
struct intr_map_data **data)
{
size_t len;
len = 0;
mtx_lock(&irq_map_lock);
if (res_id >= irq_map_count || irq_map[res_id] == NULL)
panic("Attempt to copy invalid resource id: %u\n", res_id);
if (irq_map[res_id]->map_data != NULL)
len = irq_map[res_id]->map_data->len;
mtx_unlock(&irq_map_lock);
if (len == 0)
*data = NULL;
else
*data = malloc(len, M_INTRNG, M_WAITOK | M_ZERO);
mtx_lock(&irq_map_lock);
if (irq_map[res_id] == NULL)
panic("Attempt to copy invalid resource id: %u\n", res_id);
if (len != 0) {
if (len != irq_map[res_id]->map_data->len)
panic("Resource id: %u has changed.\n", res_id);
memcpy(*data, irq_map[res_id]->map_data, len);
}
*map_dev = irq_map[res_id]->dev;
*map_xref = irq_map[res_id]->xref;
mtx_unlock(&irq_map_lock);
}
/*
* Allocate and fill new entry in irq_map table.
*/
u_int
intr_map_irq(device_t dev, intptr_t xref, struct intr_map_data *data)
{
u_int i;
struct intr_map_entry *entry;
/* Prepare new entry first. */
entry = malloc(sizeof(*entry), M_INTRNG, M_WAITOK | M_ZERO);
entry->dev = dev;
entry->xref = xref;
entry->map_data = data;
entry->isrc = NULL;
mtx_lock(&irq_map_lock);
for (i = irq_map_first_free_idx; i < irq_map_count; i++) {
if (irq_map[i] == NULL) {
irq_map[i] = entry;
irq_map_first_free_idx = i + 1;
mtx_unlock(&irq_map_lock);
return (i);
}
}
mtx_unlock(&irq_map_lock);
/* XXX Expand irq_map table */
panic("IRQ mapping table is full.");
}
/*
* Remove and free mapping entry.
*/
void
intr_unmap_irq(u_int res_id)
{
struct intr_map_entry *entry;
mtx_lock(&irq_map_lock);
if ((res_id >= irq_map_count) || (irq_map[res_id] == NULL))
panic("Attempt to unmap invalid resource id: %u\n", res_id);
entry = irq_map[res_id];
irq_map[res_id] = NULL;
irq_map_first_free_idx = res_id;
mtx_unlock(&irq_map_lock);
intr_free_intr_map_data(entry->map_data);
free(entry, M_INTRNG);
}
/*
* Clone mapping entry.
*/
u_int
intr_map_clone_irq(u_int old_res_id)
{
device_t map_dev;
intptr_t map_xref;
struct intr_map_data *data;
intr_map_copy_map_data(old_res_id, &map_dev, &map_xref, &data);
return (intr_map_irq(map_dev, map_xref, data));
}
static void
intr_map_init(void *dummy __unused)
{
mtx_init(&irq_map_lock, "intr map table", NULL, MTX_DEF);
}
SYSINIT(intr_map_init, SI_SUB_INTR, SI_ORDER_FIRST, intr_map_init, NULL);