1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-11 14:10:34 +00:00
freebsd/contrib/tcpdump/print-802_11.c
Xin LI d03c0883ad MFV: tcpdump 4.4.0.
MFC after:	4 weeks
2013-05-30 20:51:22 +00:00

2388 lines
61 KiB
C

/*
* Copyright (c) 2001
* Fortress Technologies, Inc. All rights reserved.
* Charlie Lenahan (clenahan@fortresstech.com)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that: (1) source code distributions
* retain the above copyright notice and this paragraph in its entirety, (2)
* distributions including binary code include the above copyright notice and
* this paragraph in its entirety in the documentation or other materials
* provided with the distribution, and (3) all advertising materials mentioning
* features or use of this software display the following acknowledgement:
* ``This product includes software developed by the University of California,
* Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
* the University nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior
* written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef lint
static const char rcsid[] _U_ =
"@(#) $Header: /tcpdump/master/tcpdump/print-802_11.c,v 1.49 2007-12-29 23:25:02 guy Exp $ (LBL)";
#endif
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <tcpdump-stdinc.h>
#include <stdio.h>
#include <pcap.h>
#include <string.h>
#include "interface.h"
#include "addrtoname.h"
#include "ethertype.h"
#include "extract.h"
#include "cpack.h"
#include "ieee802_11.h"
#include "ieee802_11_radio.h"
/* Radiotap state */
/* This is used to save state when parsing/processing parameters */
struct radiotap_state
{
u_int32_t present;
u_int8_t rate;
};
#define PRINT_SSID(p) \
if (p.ssid_present) { \
printf(" ("); \
fn_print(p.ssid.ssid, NULL); \
printf(")"); \
}
#define PRINT_RATE(_sep, _r, _suf) \
printf("%s%2.1f%s", _sep, (.5 * ((_r) & 0x7f)), _suf)
#define PRINT_RATES(p) \
if (p.rates_present) { \
int z; \
const char *sep = " ["; \
for (z = 0; z < p.rates.length ; z++) { \
PRINT_RATE(sep, p.rates.rate[z], \
(p.rates.rate[z] & 0x80 ? "*" : "")); \
sep = " "; \
} \
if (p.rates.length != 0) \
printf(" Mbit]"); \
}
#define PRINT_DS_CHANNEL(p) \
if (p.ds_present) \
printf(" CH: %u", p.ds.channel); \
printf("%s", \
CAPABILITY_PRIVACY(p.capability_info) ? ", PRIVACY" : "" );
#define MAX_MCS_INDEX 76
/*
* Indices are:
*
* the MCS index (0-76);
*
* 0 for 20 MHz, 1 for 40 MHz;
*
* 0 for a long guard interval, 1 for a short guard interval.
*/
static const float ieee80211_float_htrates[MAX_MCS_INDEX+1][2][2] = {
/* MCS 0 */
{ /* 20 Mhz */ { 6.5, /* SGI */ 7.2, },
/* 40 Mhz */ { 13.5, /* SGI */ 15.0, },
},
/* MCS 1 */
{ /* 20 Mhz */ { 13.0, /* SGI */ 14.4, },
/* 40 Mhz */ { 27.0, /* SGI */ 30.0, },
},
/* MCS 2 */
{ /* 20 Mhz */ { 19.5, /* SGI */ 21.7, },
/* 40 Mhz */ { 40.5, /* SGI */ 45.0, },
},
/* MCS 3 */
{ /* 20 Mhz */ { 26.0, /* SGI */ 28.9, },
/* 40 Mhz */ { 54.0, /* SGI */ 60.0, },
},
/* MCS 4 */
{ /* 20 Mhz */ { 39.0, /* SGI */ 43.3, },
/* 40 Mhz */ { 81.0, /* SGI */ 90.0, },
},
/* MCS 5 */
{ /* 20 Mhz */ { 52.0, /* SGI */ 57.8, },
/* 40 Mhz */ { 108.0, /* SGI */ 120.0, },
},
/* MCS 6 */
{ /* 20 Mhz */ { 58.5, /* SGI */ 65.0, },
/* 40 Mhz */ { 121.5, /* SGI */ 135.0, },
},
/* MCS 7 */
{ /* 20 Mhz */ { 65.0, /* SGI */ 72.2, },
/* 40 Mhz */ { 135.0, /* SGI */ 150.0, },
},
/* MCS 8 */
{ /* 20 Mhz */ { 13.0, /* SGI */ 14.4, },
/* 40 Mhz */ { 27.0, /* SGI */ 30.0, },
},
/* MCS 9 */
{ /* 20 Mhz */ { 26.0, /* SGI */ 28.9, },
/* 40 Mhz */ { 54.0, /* SGI */ 60.0, },
},
/* MCS 10 */
{ /* 20 Mhz */ { 39.0, /* SGI */ 43.3, },
/* 40 Mhz */ { 81.0, /* SGI */ 90.0, },
},
/* MCS 11 */
{ /* 20 Mhz */ { 52.0, /* SGI */ 57.8, },
/* 40 Mhz */ { 108.0, /* SGI */ 120.0, },
},
/* MCS 12 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 13 */
{ /* 20 Mhz */ { 104.0, /* SGI */ 115.6, },
/* 40 Mhz */ { 216.0, /* SGI */ 240.0, },
},
/* MCS 14 */
{ /* 20 Mhz */ { 117.0, /* SGI */ 130.0, },
/* 40 Mhz */ { 243.0, /* SGI */ 270.0, },
},
/* MCS 15 */
{ /* 20 Mhz */ { 130.0, /* SGI */ 144.4, },
/* 40 Mhz */ { 270.0, /* SGI */ 300.0, },
},
/* MCS 16 */
{ /* 20 Mhz */ { 19.5, /* SGI */ 21.7, },
/* 40 Mhz */ { 40.5, /* SGI */ 45.0, },
},
/* MCS 17 */
{ /* 20 Mhz */ { 39.0, /* SGI */ 43.3, },
/* 40 Mhz */ { 81.0, /* SGI */ 90.0, },
},
/* MCS 18 */
{ /* 20 Mhz */ { 58.5, /* SGI */ 65.0, },
/* 40 Mhz */ { 121.5, /* SGI */ 135.0, },
},
/* MCS 19 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 20 */
{ /* 20 Mhz */ { 117.0, /* SGI */ 130.0, },
/* 40 Mhz */ { 243.0, /* SGI */ 270.0, },
},
/* MCS 21 */
{ /* 20 Mhz */ { 156.0, /* SGI */ 173.3, },
/* 40 Mhz */ { 324.0, /* SGI */ 360.0, },
},
/* MCS 22 */
{ /* 20 Mhz */ { 175.5, /* SGI */ 195.0, },
/* 40 Mhz */ { 364.5, /* SGI */ 405.0, },
},
/* MCS 23 */
{ /* 20 Mhz */ { 195.0, /* SGI */ 216.7, },
/* 40 Mhz */ { 405.0, /* SGI */ 450.0, },
},
/* MCS 24 */
{ /* 20 Mhz */ { 26.0, /* SGI */ 28.9, },
/* 40 Mhz */ { 54.0, /* SGI */ 60.0, },
},
/* MCS 25 */
{ /* 20 Mhz */ { 52.0, /* SGI */ 57.8, },
/* 40 Mhz */ { 108.0, /* SGI */ 120.0, },
},
/* MCS 26 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 27 */
{ /* 20 Mhz */ { 104.0, /* SGI */ 115.6, },
/* 40 Mhz */ { 216.0, /* SGI */ 240.0, },
},
/* MCS 28 */
{ /* 20 Mhz */ { 156.0, /* SGI */ 173.3, },
/* 40 Mhz */ { 324.0, /* SGI */ 360.0, },
},
/* MCS 29 */
{ /* 20 Mhz */ { 208.0, /* SGI */ 231.1, },
/* 40 Mhz */ { 432.0, /* SGI */ 480.0, },
},
/* MCS 30 */
{ /* 20 Mhz */ { 234.0, /* SGI */ 260.0, },
/* 40 Mhz */ { 486.0, /* SGI */ 540.0, },
},
/* MCS 31 */
{ /* 20 Mhz */ { 260.0, /* SGI */ 288.9, },
/* 40 Mhz */ { 540.0, /* SGI */ 600.0, },
},
/* MCS 32 */
{ /* 20 Mhz */ { 0.0, /* SGI */ 0.0, }, /* not valid */
/* 40 Mhz */ { 6.0, /* SGI */ 6.7, },
},
/* MCS 33 */
{ /* 20 Mhz */ { 39.0, /* SGI */ 43.3, },
/* 40 Mhz */ { 81.0, /* SGI */ 90.0, },
},
/* MCS 34 */
{ /* 20 Mhz */ { 52.0, /* SGI */ 57.8, },
/* 40 Mhz */ { 108.0, /* SGI */ 120.0, },
},
/* MCS 35 */
{ /* 20 Mhz */ { 65.0, /* SGI */ 72.2, },
/* 40 Mhz */ { 135.0, /* SGI */ 150.0, },
},
/* MCS 36 */
{ /* 20 Mhz */ { 58.5, /* SGI */ 65.0, },
/* 40 Mhz */ { 121.5, /* SGI */ 135.0, },
},
/* MCS 37 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 38 */
{ /* 20 Mhz */ { 97.5, /* SGI */ 108.3, },
/* 40 Mhz */ { 202.5, /* SGI */ 225.0, },
},
/* MCS 39 */
{ /* 20 Mhz */ { 52.0, /* SGI */ 57.8, },
/* 40 Mhz */ { 108.0, /* SGI */ 120.0, },
},
/* MCS 40 */
{ /* 20 Mhz */ { 65.0, /* SGI */ 72.2, },
/* 40 Mhz */ { 135.0, /* SGI */ 150.0, },
},
/* MCS 41 */
{ /* 20 Mhz */ { 65.0, /* SGI */ 72.2, },
/* 40 Mhz */ { 135.0, /* SGI */ 150.0, },
},
/* MCS 42 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 43 */
{ /* 20 Mhz */ { 91.0, /* SGI */ 101.1, },
/* 40 Mhz */ { 189.0, /* SGI */ 210.0, },
},
/* MCS 44 */
{ /* 20 Mhz */ { 91.0, /* SGI */ 101.1, },
/* 40 Mhz */ { 189.0, /* SGI */ 210.0, },
},
/* MCS 45 */
{ /* 20 Mhz */ { 104.0, /* SGI */ 115.6, },
/* 40 Mhz */ { 216.0, /* SGI */ 240.0, },
},
/* MCS 46 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 47 */
{ /* 20 Mhz */ { 97.5, /* SGI */ 108.3, },
/* 40 Mhz */ { 202.5, /* SGI */ 225.0, },
},
/* MCS 48 */
{ /* 20 Mhz */ { 97.5, /* SGI */ 108.3, },
/* 40 Mhz */ { 202.5, /* SGI */ 225.0, },
},
/* MCS 49 */
{ /* 20 Mhz */ { 117.0, /* SGI */ 130.0, },
/* 40 Mhz */ { 243.0, /* SGI */ 270.0, },
},
/* MCS 50 */
{ /* 20 Mhz */ { 136.5, /* SGI */ 151.7, },
/* 40 Mhz */ { 283.5, /* SGI */ 315.0, },
},
/* MCS 51 */
{ /* 20 Mhz */ { 136.5, /* SGI */ 151.7, },
/* 40 Mhz */ { 283.5, /* SGI */ 315.0, },
},
/* MCS 52 */
{ /* 20 Mhz */ { 156.0, /* SGI */ 173.3, },
/* 40 Mhz */ { 324.0, /* SGI */ 360.0, },
},
/* MCS 53 */
{ /* 20 Mhz */ { 65.0, /* SGI */ 72.2, },
/* 40 Mhz */ { 135.0, /* SGI */ 150.0, },
},
/* MCS 54 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 55 */
{ /* 20 Mhz */ { 91.0, /* SGI */ 101.1, },
/* 40 Mhz */ { 189.0, /* SGI */ 210.0, },
},
/* MCS 56 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 57 */
{ /* 20 Mhz */ { 91.0, /* SGI */ 101.1, },
/* 40 Mhz */ { 189.0, /* SGI */ 210.0, },
},
/* MCS 58 */
{ /* 20 Mhz */ { 104.0, /* SGI */ 115.6, },
/* 40 Mhz */ { 216.0, /* SGI */ 240.0, },
},
/* MCS 59 */
{ /* 20 Mhz */ { 117.0, /* SGI */ 130.0, },
/* 40 Mhz */ { 243.0, /* SGI */ 270.0, },
},
/* MCS 60 */
{ /* 20 Mhz */ { 104.0, /* SGI */ 115.6, },
/* 40 Mhz */ { 216.0, /* SGI */ 240.0, },
},
/* MCS 61 */
{ /* 20 Mhz */ { 117.0, /* SGI */ 130.0, },
/* 40 Mhz */ { 243.0, /* SGI */ 270.0, },
},
/* MCS 62 */
{ /* 20 Mhz */ { 130.0, /* SGI */ 144.4, },
/* 40 Mhz */ { 270.0, /* SGI */ 300.0, },
},
/* MCS 63 */
{ /* 20 Mhz */ { 130.0, /* SGI */ 144.4, },
/* 40 Mhz */ { 270.0, /* SGI */ 300.0, },
},
/* MCS 64 */
{ /* 20 Mhz */ { 143.0, /* SGI */ 158.9, },
/* 40 Mhz */ { 297.0, /* SGI */ 330.0, },
},
/* MCS 65 */
{ /* 20 Mhz */ { 97.5, /* SGI */ 108.3, },
/* 40 Mhz */ { 202.5, /* SGI */ 225.0, },
},
/* MCS 66 */
{ /* 20 Mhz */ { 117.0, /* SGI */ 130.0, },
/* 40 Mhz */ { 243.0, /* SGI */ 270.0, },
},
/* MCS 67 */
{ /* 20 Mhz */ { 136.5, /* SGI */ 151.7, },
/* 40 Mhz */ { 283.5, /* SGI */ 315.0, },
},
/* MCS 68 */
{ /* 20 Mhz */ { 117.0, /* SGI */ 130.0, },
/* 40 Mhz */ { 243.0, /* SGI */ 270.0, },
},
/* MCS 69 */
{ /* 20 Mhz */ { 136.5, /* SGI */ 151.7, },
/* 40 Mhz */ { 283.5, /* SGI */ 315.0, },
},
/* MCS 70 */
{ /* 20 Mhz */ { 156.0, /* SGI */ 173.3, },
/* 40 Mhz */ { 324.0, /* SGI */ 360.0, },
},
/* MCS 71 */
{ /* 20 Mhz */ { 175.5, /* SGI */ 195.0, },
/* 40 Mhz */ { 364.5, /* SGI */ 405.0, },
},
/* MCS 72 */
{ /* 20 Mhz */ { 156.0, /* SGI */ 173.3, },
/* 40 Mhz */ { 324.0, /* SGI */ 360.0, },
},
/* MCS 73 */
{ /* 20 Mhz */ { 175.5, /* SGI */ 195.0, },
/* 40 Mhz */ { 364.5, /* SGI */ 405.0, },
},
/* MCS 74 */
{ /* 20 Mhz */ { 195.0, /* SGI */ 216.7, },
/* 40 Mhz */ { 405.0, /* SGI */ 450.0, },
},
/* MCS 75 */
{ /* 20 Mhz */ { 195.0, /* SGI */ 216.7, },
/* 40 Mhz */ { 405.0, /* SGI */ 450.0, },
},
/* MCS 76 */
{ /* 20 Mhz */ { 214.5, /* SGI */ 238.3, },
/* 40 Mhz */ { 445.5, /* SGI */ 495.0, },
},
};
static const char *auth_alg_text[]={"Open System","Shared Key","EAP"};
#define NUM_AUTH_ALGS (sizeof auth_alg_text / sizeof auth_alg_text[0])
static const char *status_text[] = {
"Successful", /* 0 */
"Unspecified failure", /* 1 */
"Reserved", /* 2 */
"Reserved", /* 3 */
"Reserved", /* 4 */
"Reserved", /* 5 */
"Reserved", /* 6 */
"Reserved", /* 7 */
"Reserved", /* 8 */
"Reserved", /* 9 */
"Cannot Support all requested capabilities in the Capability "
"Information field", /* 10 */
"Reassociation denied due to inability to confirm that association "
"exists", /* 11 */
"Association denied due to reason outside the scope of the "
"standard", /* 12 */
"Responding station does not support the specified authentication "
"algorithm ", /* 13 */
"Received an Authentication frame with authentication transaction "
"sequence number out of expected sequence", /* 14 */
"Authentication rejected because of challenge failure", /* 15 */
"Authentication rejected due to timeout waiting for next frame in "
"sequence", /* 16 */
"Association denied because AP is unable to handle additional"
"associated stations", /* 17 */
"Association denied due to requesting station not supporting all of "
"the data rates in BSSBasicRateSet parameter", /* 18 */
"Association denied due to requesting station not supporting "
"short preamble operation", /* 19 */
"Association denied due to requesting station not supporting "
"PBCC encoding", /* 20 */
"Association denied due to requesting station not supporting "
"channel agility", /* 21 */
"Association request rejected because Spectrum Management "
"capability is required", /* 22 */
"Association request rejected because the information in the "
"Power Capability element is unacceptable", /* 23 */
"Association request rejected because the information in the "
"Supported Channels element is unacceptable", /* 24 */
"Association denied due to requesting station not supporting "
"short slot operation", /* 25 */
"Association denied due to requesting station not supporting "
"DSSS-OFDM operation", /* 26 */
"Association denied because the requested STA does not support HT "
"features", /* 27 */
"Reserved", /* 28 */
"Association denied because the requested STA does not support "
"the PCO transition time required by the AP", /* 29 */
"Reserved", /* 30 */
"Reserved", /* 31 */
"Unspecified, QoS-related failure", /* 32 */
"Association denied due to QAP having insufficient bandwidth "
"to handle another QSTA", /* 33 */
"Association denied due to excessive frame loss rates and/or "
"poor conditions on current operating channel", /* 34 */
"Association (with QBSS) denied due to requesting station not "
"supporting the QoS facility", /* 35 */
"Association denied due to requesting station not supporting "
"Block Ack", /* 36 */
"The request has been declined", /* 37 */
"The request has not been successful as one or more parameters "
"have invalid values", /* 38 */
"The TS has not been created because the request cannot be honored. "
"However, a suggested TSPEC is provided so that the initiating QSTA"
"may attempt to set another TS with the suggested changes to the "
"TSPEC", /* 39 */
"Invalid Information Element", /* 40 */
"Group Cipher is not valid", /* 41 */
"Pairwise Cipher is not valid", /* 42 */
"AKMP is not valid", /* 43 */
"Unsupported RSN IE version", /* 44 */
"Invalid RSN IE Capabilities", /* 45 */
"Cipher suite is rejected per security policy", /* 46 */
"The TS has not been created. However, the HC may be capable of "
"creating a TS, in response to a request, after the time indicated "
"in the TS Delay element", /* 47 */
"Direct Link is not allowed in the BSS by policy", /* 48 */
"Destination STA is not present within this QBSS.", /* 49 */
"The Destination STA is not a QSTA.", /* 50 */
};
#define NUM_STATUSES (sizeof status_text / sizeof status_text[0])
static const char *reason_text[] = {
"Reserved", /* 0 */
"Unspecified reason", /* 1 */
"Previous authentication no longer valid", /* 2 */
"Deauthenticated because sending station is leaving (or has left) "
"IBSS or ESS", /* 3 */
"Disassociated due to inactivity", /* 4 */
"Disassociated because AP is unable to handle all currently "
" associated stations", /* 5 */
"Class 2 frame received from nonauthenticated station", /* 6 */
"Class 3 frame received from nonassociated station", /* 7 */
"Disassociated because sending station is leaving "
"(or has left) BSS", /* 8 */
"Station requesting (re)association is not authenticated with "
"responding station", /* 9 */
"Disassociated because the information in the Power Capability "
"element is unacceptable", /* 10 */
"Disassociated because the information in the SupportedChannels "
"element is unacceptable", /* 11 */
"Invalid Information Element", /* 12 */
"Reserved", /* 13 */
"Michael MIC failure", /* 14 */
"4-Way Handshake timeout", /* 15 */
"Group key update timeout", /* 16 */
"Information element in 4-Way Handshake different from (Re)Association"
"Request/Probe Response/Beacon", /* 17 */
"Group Cipher is not valid", /* 18 */
"AKMP is not valid", /* 20 */
"Unsupported RSN IE version", /* 21 */
"Invalid RSN IE Capabilities", /* 22 */
"IEEE 802.1X Authentication failed", /* 23 */
"Cipher suite is rejected per security policy", /* 24 */
"Reserved", /* 25 */
"Reserved", /* 26 */
"Reserved", /* 27 */
"Reserved", /* 28 */
"Reserved", /* 29 */
"Reserved", /* 30 */
"TS deleted because QoS AP lacks sufficient bandwidth for this "
"QoS STA due to a change in BSS service characteristics or "
"operational mode (e.g. an HT BSS change from 40 MHz channel "
"to 20 MHz channel)", /* 31 */
"Disassociated for unspecified, QoS-related reason", /* 32 */
"Disassociated because QoS AP lacks sufficient bandwidth for this "
"QoS STA", /* 33 */
"Disassociated because of excessive number of frames that need to be "
"acknowledged, but are not acknowledged for AP transmissions "
"and/or poor channel conditions", /* 34 */
"Disassociated because STA is transmitting outside the limits "
"of its TXOPs", /* 35 */
"Requested from peer STA as the STA is leaving the BSS "
"(or resetting)", /* 36 */
"Requested from peer STA as it does not want to use the "
"mechanism", /* 37 */
"Requested from peer STA as the STA received frames using the "
"mechanism for which a set up is required", /* 38 */
"Requested from peer STA due to time out", /* 39 */
"Reserved", /* 40 */
"Reserved", /* 41 */
"Reserved", /* 42 */
"Reserved", /* 43 */
"Reserved", /* 44 */
"Peer STA does not support the requested cipher suite", /* 45 */
"Association denied due to requesting STA not supporting HT "
"features", /* 46 */
};
#define NUM_REASONS (sizeof reason_text / sizeof reason_text[0])
static int
wep_print(const u_char *p)
{
u_int32_t iv;
if (!TTEST2(*p, IEEE802_11_IV_LEN + IEEE802_11_KID_LEN))
return 0;
iv = EXTRACT_LE_32BITS(p);
printf("Data IV:%3x Pad %x KeyID %x", IV_IV(iv), IV_PAD(iv),
IV_KEYID(iv));
return 1;
}
static int
parse_elements(struct mgmt_body_t *pbody, const u_char *p, int offset,
u_int length)
{
u_int elementlen;
struct ssid_t ssid;
struct challenge_t challenge;
struct rates_t rates;
struct ds_t ds;
struct cf_t cf;
struct tim_t tim;
/*
* We haven't seen any elements yet.
*/
pbody->challenge_present = 0;
pbody->ssid_present = 0;
pbody->rates_present = 0;
pbody->ds_present = 0;
pbody->cf_present = 0;
pbody->tim_present = 0;
while (length != 0) {
if (!TTEST2(*(p + offset), 1))
return 0;
if (length < 1)
return 0;
switch (*(p + offset)) {
case E_SSID:
if (!TTEST2(*(p + offset), 2))
return 0;
if (length < 2)
return 0;
memcpy(&ssid, p + offset, 2);
offset += 2;
length -= 2;
if (ssid.length != 0) {
if (ssid.length > sizeof(ssid.ssid) - 1)
return 0;
if (!TTEST2(*(p + offset), ssid.length))
return 0;
if (length < ssid.length)
return 0;
memcpy(&ssid.ssid, p + offset, ssid.length);
offset += ssid.length;
length -= ssid.length;
}
ssid.ssid[ssid.length] = '\0';
/*
* Present and not truncated.
*
* If we haven't already seen an SSID IE,
* copy this one, otherwise ignore this one,
* so we later report the first one we saw.
*/
if (!pbody->ssid_present) {
pbody->ssid = ssid;
pbody->ssid_present = 1;
}
break;
case E_CHALLENGE:
if (!TTEST2(*(p + offset), 2))
return 0;
if (length < 2)
return 0;
memcpy(&challenge, p + offset, 2);
offset += 2;
length -= 2;
if (challenge.length != 0) {
if (challenge.length >
sizeof(challenge.text) - 1)
return 0;
if (!TTEST2(*(p + offset), challenge.length))
return 0;
if (length < challenge.length)
return 0;
memcpy(&challenge.text, p + offset,
challenge.length);
offset += challenge.length;
length -= challenge.length;
}
challenge.text[challenge.length] = '\0';
/*
* Present and not truncated.
*
* If we haven't already seen a challenge IE,
* copy this one, otherwise ignore this one,
* so we later report the first one we saw.
*/
if (!pbody->challenge_present) {
pbody->challenge = challenge;
pbody->challenge_present = 1;
}
break;
case E_RATES:
if (!TTEST2(*(p + offset), 2))
return 0;
if (length < 2)
return 0;
memcpy(&rates, p + offset, 2);
offset += 2;
length -= 2;
if (rates.length != 0) {
if (rates.length > sizeof rates.rate)
return 0;
if (!TTEST2(*(p + offset), rates.length))
return 0;
if (length < rates.length)
return 0;
memcpy(&rates.rate, p + offset, rates.length);
offset += rates.length;
length -= rates.length;
}
/*
* Present and not truncated.
*
* If we haven't already seen a rates IE,
* copy this one if it's not zero-length,
* otherwise ignore this one, so we later
* report the first one we saw.
*
* We ignore zero-length rates IEs as some
* devices seem to put a zero-length rates
* IE, followed by an SSID IE, followed by
* a non-zero-length rates IE into frames,
* even though IEEE Std 802.11-2007 doesn't
* seem to indicate that a zero-length rates
* IE is valid.
*/
if (!pbody->rates_present && rates.length != 0) {
pbody->rates = rates;
pbody->rates_present = 1;
}
break;
case E_DS:
if (!TTEST2(*(p + offset), 3))
return 0;
if (length < 3)
return 0;
memcpy(&ds, p + offset, 3);
offset += 3;
length -= 3;
/*
* Present and not truncated.
*
* If we haven't already seen a DS IE,
* copy this one, otherwise ignore this one,
* so we later report the first one we saw.
*/
if (!pbody->ds_present) {
pbody->ds = ds;
pbody->ds_present = 1;
}
break;
case E_CF:
if (!TTEST2(*(p + offset), 8))
return 0;
if (length < 8)
return 0;
memcpy(&cf, p + offset, 8);
offset += 8;
length -= 8;
/*
* Present and not truncated.
*
* If we haven't already seen a CF IE,
* copy this one, otherwise ignore this one,
* so we later report the first one we saw.
*/
if (!pbody->cf_present) {
pbody->cf = cf;
pbody->cf_present = 1;
}
break;
case E_TIM:
if (!TTEST2(*(p + offset), 2))
return 0;
if (length < 2)
return 0;
memcpy(&tim, p + offset, 2);
offset += 2;
length -= 2;
if (!TTEST2(*(p + offset), 3))
return 0;
if (length < 3)
return 0;
memcpy(&tim.count, p + offset, 3);
offset += 3;
length -= 3;
if (tim.length <= 3)
break;
if (tim.length - 3 > (int)sizeof tim.bitmap)
return 0;
if (!TTEST2(*(p + offset), tim.length - 3))
return 0;
if (length < (u_int)(tim.length - 3))
return 0;
memcpy(tim.bitmap, p + (tim.length - 3),
(tim.length - 3));
offset += tim.length - 3;
length -= tim.length - 3;
/*
* Present and not truncated.
*
* If we haven't already seen a TIM IE,
* copy this one, otherwise ignore this one,
* so we later report the first one we saw.
*/
if (!pbody->tim_present) {
pbody->tim = tim;
pbody->tim_present = 1;
}
break;
default:
#if 0
printf("(1) unhandled element_id (%d) ",
*(p + offset));
#endif
if (!TTEST2(*(p + offset), 2))
return 0;
if (length < 2)
return 0;
elementlen = *(p + offset + 1);
if (!TTEST2(*(p + offset + 2), elementlen))
return 0;
if (length < elementlen + 2)
return 0;
offset += elementlen + 2;
length -= elementlen + 2;
break;
}
}
/* No problems found. */
return 1;
}
/*********************************************************************************
* Print Handle functions for the management frame types
*********************************************************************************/
static int
handle_beacon(const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
int ret;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
IEEE802_11_CAPINFO_LEN))
return 0;
if (length < IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
IEEE802_11_CAPINFO_LEN)
return 0;
memcpy(&pbody.timestamp, p, IEEE802_11_TSTAMP_LEN);
offset += IEEE802_11_TSTAMP_LEN;
length -= IEEE802_11_TSTAMP_LEN;
pbody.beacon_interval = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_BCNINT_LEN;
length -= IEEE802_11_BCNINT_LEN;
pbody.capability_info = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_CAPINFO_LEN;
length -= IEEE802_11_CAPINFO_LEN;
ret = parse_elements(&pbody, p, offset, length);
PRINT_SSID(pbody);
PRINT_RATES(pbody);
printf(" %s",
CAPABILITY_ESS(pbody.capability_info) ? "ESS" : "IBSS");
PRINT_DS_CHANNEL(pbody);
return ret;
}
static int
handle_assoc_request(const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
int ret;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN))
return 0;
if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN)
return 0;
pbody.capability_info = EXTRACT_LE_16BITS(p);
offset += IEEE802_11_CAPINFO_LEN;
length -= IEEE802_11_CAPINFO_LEN;
pbody.listen_interval = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_LISTENINT_LEN;
length -= IEEE802_11_LISTENINT_LEN;
ret = parse_elements(&pbody, p, offset, length);
PRINT_SSID(pbody);
PRINT_RATES(pbody);
return ret;
}
static int
handle_assoc_response(const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
int ret;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_STATUS_LEN +
IEEE802_11_AID_LEN))
return 0;
if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_STATUS_LEN +
IEEE802_11_AID_LEN)
return 0;
pbody.capability_info = EXTRACT_LE_16BITS(p);
offset += IEEE802_11_CAPINFO_LEN;
length -= IEEE802_11_CAPINFO_LEN;
pbody.status_code = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_STATUS_LEN;
length -= IEEE802_11_STATUS_LEN;
pbody.aid = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_AID_LEN;
length -= IEEE802_11_AID_LEN;
ret = parse_elements(&pbody, p, offset, length);
printf(" AID(%x) :%s: %s", ((u_int16_t)(pbody.aid << 2 )) >> 2 ,
CAPABILITY_PRIVACY(pbody.capability_info) ? " PRIVACY " : "",
(pbody.status_code < NUM_STATUSES
? status_text[pbody.status_code]
: "n/a"));
return ret;
}
static int
handle_reassoc_request(const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
int ret;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN +
IEEE802_11_AP_LEN))
return 0;
if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN +
IEEE802_11_AP_LEN)
return 0;
pbody.capability_info = EXTRACT_LE_16BITS(p);
offset += IEEE802_11_CAPINFO_LEN;
length -= IEEE802_11_CAPINFO_LEN;
pbody.listen_interval = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_LISTENINT_LEN;
length -= IEEE802_11_LISTENINT_LEN;
memcpy(&pbody.ap, p+offset, IEEE802_11_AP_LEN);
offset += IEEE802_11_AP_LEN;
length -= IEEE802_11_AP_LEN;
ret = parse_elements(&pbody, p, offset, length);
PRINT_SSID(pbody);
printf(" AP : %s", etheraddr_string( pbody.ap ));
return ret;
}
static int
handle_reassoc_response(const u_char *p, u_int length)
{
/* Same as a Association Reponse */
return handle_assoc_response(p, length);
}
static int
handle_probe_request(const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
int ret;
memset(&pbody, 0, sizeof(pbody));
ret = parse_elements(&pbody, p, offset, length);
PRINT_SSID(pbody);
PRINT_RATES(pbody);
return ret;
}
static int
handle_probe_response(const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
int ret;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
IEEE802_11_CAPINFO_LEN))
return 0;
if (length < IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
IEEE802_11_CAPINFO_LEN)
return 0;
memcpy(&pbody.timestamp, p, IEEE802_11_TSTAMP_LEN);
offset += IEEE802_11_TSTAMP_LEN;
length -= IEEE802_11_TSTAMP_LEN;
pbody.beacon_interval = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_BCNINT_LEN;
length -= IEEE802_11_BCNINT_LEN;
pbody.capability_info = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_CAPINFO_LEN;
length -= IEEE802_11_CAPINFO_LEN;
ret = parse_elements(&pbody, p, offset, length);
PRINT_SSID(pbody);
PRINT_RATES(pbody);
PRINT_DS_CHANNEL(pbody);
return ret;
}
static int
handle_atim(void)
{
/* the frame body for ATIM is null. */
return 1;
}
static int
handle_disassoc(const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, IEEE802_11_REASON_LEN))
return 0;
if (length < IEEE802_11_REASON_LEN)
return 0;
pbody.reason_code = EXTRACT_LE_16BITS(p);
printf(": %s",
(pbody.reason_code < NUM_REASONS)
? reason_text[pbody.reason_code]
: "Reserved" );
return 1;
}
static int
handle_auth(const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
int ret;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, 6))
return 0;
if (length < 6)
return 0;
pbody.auth_alg = EXTRACT_LE_16BITS(p);
offset += 2;
length -= 2;
pbody.auth_trans_seq_num = EXTRACT_LE_16BITS(p + offset);
offset += 2;
length -= 2;
pbody.status_code = EXTRACT_LE_16BITS(p + offset);
offset += 2;
length -= 2;
ret = parse_elements(&pbody, p, offset, length);
if ((pbody.auth_alg == 1) &&
((pbody.auth_trans_seq_num == 2) ||
(pbody.auth_trans_seq_num == 3))) {
printf(" (%s)-%x [Challenge Text] %s",
(pbody.auth_alg < NUM_AUTH_ALGS)
? auth_alg_text[pbody.auth_alg]
: "Reserved",
pbody.auth_trans_seq_num,
((pbody.auth_trans_seq_num % 2)
? ((pbody.status_code < NUM_STATUSES)
? status_text[pbody.status_code]
: "n/a") : ""));
return ret;
}
printf(" (%s)-%x: %s",
(pbody.auth_alg < NUM_AUTH_ALGS)
? auth_alg_text[pbody.auth_alg]
: "Reserved",
pbody.auth_trans_seq_num,
(pbody.auth_trans_seq_num % 2)
? ((pbody.status_code < NUM_STATUSES)
? status_text[pbody.status_code]
: "n/a")
: "");
return ret;
}
static int
handle_deauth(const struct mgmt_header_t *pmh, const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
const char *reason = NULL;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, IEEE802_11_REASON_LEN))
return 0;
if (length < IEEE802_11_REASON_LEN)
return 0;
pbody.reason_code = EXTRACT_LE_16BITS(p);
offset += IEEE802_11_REASON_LEN;
length -= IEEE802_11_REASON_LEN;
reason = (pbody.reason_code < NUM_REASONS)
? reason_text[pbody.reason_code]
: "Reserved";
if (eflag) {
printf(": %s", reason);
} else {
printf(" (%s): %s", etheraddr_string(pmh->sa), reason);
}
return 1;
}
#define PRINT_HT_ACTION(v) (\
(v) == 0 ? printf("TxChWidth") : \
(v) == 1 ? printf("MIMOPwrSave") : \
printf("Act#%d", (v)) \
)
#define PRINT_BA_ACTION(v) (\
(v) == 0 ? printf("ADDBA Request") : \
(v) == 1 ? printf("ADDBA Response") : \
(v) == 2 ? printf("DELBA") : \
printf("Act#%d", (v)) \
)
#define PRINT_MESHLINK_ACTION(v) (\
(v) == 0 ? printf("Request") : \
(v) == 1 ? printf("Report") : \
printf("Act#%d", (v)) \
)
#define PRINT_MESHPEERING_ACTION(v) (\
(v) == 0 ? printf("Open") : \
(v) == 1 ? printf("Confirm") : \
(v) == 2 ? printf("Close") : \
printf("Act#%d", (v)) \
)
#define PRINT_MESHPATH_ACTION(v) (\
(v) == 0 ? printf("Request") : \
(v) == 1 ? printf("Report") : \
(v) == 2 ? printf("Error") : \
(v) == 3 ? printf("RootAnnouncement") : \
printf("Act#%d", (v)) \
)
#define PRINT_MESH_ACTION(v) (\
(v) == 0 ? printf("MeshLink") : \
(v) == 1 ? printf("HWMP") : \
(v) == 2 ? printf("Gate Announcement") : \
(v) == 3 ? printf("Congestion Control") : \
(v) == 4 ? printf("MCCA Setup Request") : \
(v) == 5 ? printf("MCCA Setup Reply") : \
(v) == 6 ? printf("MCCA Advertisement Request") : \
(v) == 7 ? printf("MCCA Advertisement") : \
(v) == 8 ? printf("MCCA Teardown") : \
(v) == 9 ? printf("TBTT Adjustment Request") : \
(v) == 10 ? printf("TBTT Adjustment Response") : \
printf("Act#%d", (v)) \
)
#define PRINT_MULTIHOP_ACTION(v) (\
(v) == 0 ? printf("Proxy Update") : \
(v) == 1 ? printf("Proxy Update Confirmation") : \
printf("Act#%d", (v)) \
)
#define PRINT_SELFPROT_ACTION(v) (\
(v) == 1 ? printf("Peering Open") : \
(v) == 2 ? printf("Peering Confirm") : \
(v) == 3 ? printf("Peering Close") : \
(v) == 4 ? printf("Group Key Inform") : \
(v) == 5 ? printf("Group Key Acknowledge") : \
printf("Act#%d", (v)) \
)
static int
handle_action(const struct mgmt_header_t *pmh, const u_char *p, u_int length)
{
if (!TTEST2(*p, 2))
return 0;
if (length < 2)
return 0;
if (eflag) {
printf(": ");
} else {
printf(" (%s): ", etheraddr_string(pmh->sa));
}
switch (p[0]) {
case 0: printf("Spectrum Management Act#%d", p[1]); break;
case 1: printf("QoS Act#%d", p[1]); break;
case 2: printf("DLS Act#%d", p[1]); break;
case 3: printf("BA "); PRINT_BA_ACTION(p[1]); break;
case 7: printf("HT "); PRINT_HT_ACTION(p[1]); break;
case 13: printf("MeshAction "); PRINT_MESH_ACTION(p[1]); break;
case 14:
printf("MultiohopAction ");
PRINT_MULTIHOP_ACTION(p[1]); break;
case 15:
printf("SelfprotectAction ");
PRINT_SELFPROT_ACTION(p[1]); break;
case 127: printf("Vendor Act#%d", p[1]); break;
default:
printf("Reserved(%d) Act#%d", p[0], p[1]);
break;
}
return 1;
}
/*********************************************************************************
* Print Body funcs
*********************************************************************************/
static int
mgmt_body_print(u_int16_t fc, const struct mgmt_header_t *pmh,
const u_char *p, u_int length)
{
switch (FC_SUBTYPE(fc)) {
case ST_ASSOC_REQUEST:
printf("Assoc Request");
return handle_assoc_request(p, length);
case ST_ASSOC_RESPONSE:
printf("Assoc Response");
return handle_assoc_response(p, length);
case ST_REASSOC_REQUEST:
printf("ReAssoc Request");
return handle_reassoc_request(p, length);
case ST_REASSOC_RESPONSE:
printf("ReAssoc Response");
return handle_reassoc_response(p, length);
case ST_PROBE_REQUEST:
printf("Probe Request");
return handle_probe_request(p, length);
case ST_PROBE_RESPONSE:
printf("Probe Response");
return handle_probe_response(p, length);
case ST_BEACON:
printf("Beacon");
return handle_beacon(p, length);
case ST_ATIM:
printf("ATIM");
return handle_atim();
case ST_DISASSOC:
printf("Disassociation");
return handle_disassoc(p, length);
case ST_AUTH:
printf("Authentication");
if (!TTEST2(*p, 3))
return 0;
if ((p[0] == 0 ) && (p[1] == 0) && (p[2] == 0)) {
printf("Authentication (Shared-Key)-3 ");
return wep_print(p);
}
return handle_auth(p, length);
case ST_DEAUTH:
printf("DeAuthentication");
return handle_deauth(pmh, p, length);
break;
case ST_ACTION:
printf("Action");
return handle_action(pmh, p, length);
break;
default:
printf("Unhandled Management subtype(%x)",
FC_SUBTYPE(fc));
return 1;
}
}
/*********************************************************************************
* Handles printing all the control frame types
*********************************************************************************/
static int
ctrl_body_print(u_int16_t fc, const u_char *p)
{
switch (FC_SUBTYPE(fc)) {
case CTRL_CONTROL_WRAPPER:
printf("Control Wrapper");
/* XXX - requires special handling */
break;
case CTRL_BAR:
printf("BAR");
if (!TTEST2(*p, CTRL_BAR_HDRLEN))
return 0;
if (!eflag)
printf(" RA:%s TA:%s CTL(%x) SEQ(%u) ",
etheraddr_string(((const struct ctrl_bar_t *)p)->ra),
etheraddr_string(((const struct ctrl_bar_t *)p)->ta),
EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->ctl)),
EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->seq)));
break;
case CTRL_BA:
printf("BA");
if (!TTEST2(*p, CTRL_BA_HDRLEN))
return 0;
if (!eflag)
printf(" RA:%s ",
etheraddr_string(((const struct ctrl_ba_t *)p)->ra));
break;
case CTRL_PS_POLL:
printf("Power Save-Poll");
if (!TTEST2(*p, CTRL_PS_POLL_HDRLEN))
return 0;
printf(" AID(%x)",
EXTRACT_LE_16BITS(&(((const struct ctrl_ps_poll_t *)p)->aid)));
break;
case CTRL_RTS:
printf("Request-To-Send");
if (!TTEST2(*p, CTRL_RTS_HDRLEN))
return 0;
if (!eflag)
printf(" TA:%s ",
etheraddr_string(((const struct ctrl_rts_t *)p)->ta));
break;
case CTRL_CTS:
printf("Clear-To-Send");
if (!TTEST2(*p, CTRL_CTS_HDRLEN))
return 0;
if (!eflag)
printf(" RA:%s ",
etheraddr_string(((const struct ctrl_cts_t *)p)->ra));
break;
case CTRL_ACK:
printf("Acknowledgment");
if (!TTEST2(*p, CTRL_ACK_HDRLEN))
return 0;
if (!eflag)
printf(" RA:%s ",
etheraddr_string(((const struct ctrl_ack_t *)p)->ra));
break;
case CTRL_CF_END:
printf("CF-End");
if (!TTEST2(*p, CTRL_END_HDRLEN))
return 0;
if (!eflag)
printf(" RA:%s ",
etheraddr_string(((const struct ctrl_end_t *)p)->ra));
break;
case CTRL_END_ACK:
printf("CF-End+CF-Ack");
if (!TTEST2(*p, CTRL_END_ACK_HDRLEN))
return 0;
if (!eflag)
printf(" RA:%s ",
etheraddr_string(((const struct ctrl_end_ack_t *)p)->ra));
break;
default:
printf("Unknown Ctrl Subtype");
}
return 1;
}
/*
* Print Header funcs
*/
/*
* Data Frame - Address field contents
*
* To Ds | From DS | Addr 1 | Addr 2 | Addr 3 | Addr 4
* 0 | 0 | DA | SA | BSSID | n/a
* 0 | 1 | DA | BSSID | SA | n/a
* 1 | 0 | BSSID | SA | DA | n/a
* 1 | 1 | RA | TA | DA | SA
*/
static void
data_header_print(u_int16_t fc, const u_char *p, const u_int8_t **srcp,
const u_int8_t **dstp)
{
u_int subtype = FC_SUBTYPE(fc);
if (DATA_FRAME_IS_CF_ACK(subtype) || DATA_FRAME_IS_CF_POLL(subtype) ||
DATA_FRAME_IS_QOS(subtype)) {
printf("CF ");
if (DATA_FRAME_IS_CF_ACK(subtype)) {
if (DATA_FRAME_IS_CF_POLL(subtype))
printf("Ack/Poll");
else
printf("Ack");
} else {
if (DATA_FRAME_IS_CF_POLL(subtype))
printf("Poll");
}
if (DATA_FRAME_IS_QOS(subtype))
printf("+QoS");
printf(" ");
}
#define ADDR1 (p + 4)
#define ADDR2 (p + 10)
#define ADDR3 (p + 16)
#define ADDR4 (p + 24)
if (!FC_TO_DS(fc) && !FC_FROM_DS(fc)) {
if (srcp != NULL)
*srcp = ADDR2;
if (dstp != NULL)
*dstp = ADDR1;
if (!eflag)
return;
printf("DA:%s SA:%s BSSID:%s ",
etheraddr_string(ADDR1), etheraddr_string(ADDR2),
etheraddr_string(ADDR3));
} else if (!FC_TO_DS(fc) && FC_FROM_DS(fc)) {
if (srcp != NULL)
*srcp = ADDR3;
if (dstp != NULL)
*dstp = ADDR1;
if (!eflag)
return;
printf("DA:%s BSSID:%s SA:%s ",
etheraddr_string(ADDR1), etheraddr_string(ADDR2),
etheraddr_string(ADDR3));
} else if (FC_TO_DS(fc) && !FC_FROM_DS(fc)) {
if (srcp != NULL)
*srcp = ADDR2;
if (dstp != NULL)
*dstp = ADDR3;
if (!eflag)
return;
printf("BSSID:%s SA:%s DA:%s ",
etheraddr_string(ADDR1), etheraddr_string(ADDR2),
etheraddr_string(ADDR3));
} else if (FC_TO_DS(fc) && FC_FROM_DS(fc)) {
if (srcp != NULL)
*srcp = ADDR4;
if (dstp != NULL)
*dstp = ADDR3;
if (!eflag)
return;
printf("RA:%s TA:%s DA:%s SA:%s ",
etheraddr_string(ADDR1), etheraddr_string(ADDR2),
etheraddr_string(ADDR3), etheraddr_string(ADDR4));
}
#undef ADDR1
#undef ADDR2
#undef ADDR3
#undef ADDR4
}
static void
mgmt_header_print(const u_char *p, const u_int8_t **srcp,
const u_int8_t **dstp)
{
const struct mgmt_header_t *hp = (const struct mgmt_header_t *) p;
if (srcp != NULL)
*srcp = hp->sa;
if (dstp != NULL)
*dstp = hp->da;
if (!eflag)
return;
printf("BSSID:%s DA:%s SA:%s ",
etheraddr_string((hp)->bssid), etheraddr_string((hp)->da),
etheraddr_string((hp)->sa));
}
static void
ctrl_header_print(u_int16_t fc, const u_char *p, const u_int8_t **srcp,
const u_int8_t **dstp)
{
if (srcp != NULL)
*srcp = NULL;
if (dstp != NULL)
*dstp = NULL;
if (!eflag)
return;
switch (FC_SUBTYPE(fc)) {
case CTRL_BAR:
printf(" RA:%s TA:%s CTL(%x) SEQ(%u) ",
etheraddr_string(((const struct ctrl_bar_t *)p)->ra),
etheraddr_string(((const struct ctrl_bar_t *)p)->ta),
EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->ctl)),
EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->seq)));
break;
case CTRL_BA:
printf("RA:%s ",
etheraddr_string(((const struct ctrl_ba_t *)p)->ra));
break;
case CTRL_PS_POLL:
printf("BSSID:%s TA:%s ",
etheraddr_string(((const struct ctrl_ps_poll_t *)p)->bssid),
etheraddr_string(((const struct ctrl_ps_poll_t *)p)->ta));
break;
case CTRL_RTS:
printf("RA:%s TA:%s ",
etheraddr_string(((const struct ctrl_rts_t *)p)->ra),
etheraddr_string(((const struct ctrl_rts_t *)p)->ta));
break;
case CTRL_CTS:
printf("RA:%s ",
etheraddr_string(((const struct ctrl_cts_t *)p)->ra));
break;
case CTRL_ACK:
printf("RA:%s ",
etheraddr_string(((const struct ctrl_ack_t *)p)->ra));
break;
case CTRL_CF_END:
printf("RA:%s BSSID:%s ",
etheraddr_string(((const struct ctrl_end_t *)p)->ra),
etheraddr_string(((const struct ctrl_end_t *)p)->bssid));
break;
case CTRL_END_ACK:
printf("RA:%s BSSID:%s ",
etheraddr_string(((const struct ctrl_end_ack_t *)p)->ra),
etheraddr_string(((const struct ctrl_end_ack_t *)p)->bssid));
break;
default:
printf("(H) Unknown Ctrl Subtype");
break;
}
}
static int
extract_header_length(u_int16_t fc)
{
int len;
switch (FC_TYPE(fc)) {
case T_MGMT:
return MGMT_HDRLEN;
case T_CTRL:
switch (FC_SUBTYPE(fc)) {
case CTRL_BAR:
return CTRL_BAR_HDRLEN;
case CTRL_PS_POLL:
return CTRL_PS_POLL_HDRLEN;
case CTRL_RTS:
return CTRL_RTS_HDRLEN;
case CTRL_CTS:
return CTRL_CTS_HDRLEN;
case CTRL_ACK:
return CTRL_ACK_HDRLEN;
case CTRL_CF_END:
return CTRL_END_HDRLEN;
case CTRL_END_ACK:
return CTRL_END_ACK_HDRLEN;
default:
return 0;
}
case T_DATA:
len = (FC_TO_DS(fc) && FC_FROM_DS(fc)) ? 30 : 24;
if (DATA_FRAME_IS_QOS(FC_SUBTYPE(fc)))
len += 2;
return len;
default:
printf("unknown IEEE802.11 frame type (%d)", FC_TYPE(fc));
return 0;
}
}
static int
extract_mesh_header_length(const u_char *p)
{
return (p[0] &~ 3) ? 0 : 6*(1 + (p[0] & 3));
}
/*
* Print the 802.11 MAC header if eflag is set, and set "*srcp" and "*dstp"
* to point to the source and destination MAC addresses in any case if
* "srcp" and "dstp" aren't null.
*/
static void
ieee_802_11_hdr_print(u_int16_t fc, const u_char *p, u_int hdrlen,
u_int meshdrlen, const u_int8_t **srcp, const u_int8_t **dstp)
{
if (vflag) {
if (FC_MORE_DATA(fc))
printf("More Data ");
if (FC_MORE_FLAG(fc))
printf("More Fragments ");
if (FC_POWER_MGMT(fc))
printf("Pwr Mgmt ");
if (FC_RETRY(fc))
printf("Retry ");
if (FC_ORDER(fc))
printf("Strictly Ordered ");
if (FC_WEP(fc))
printf("WEP Encrypted ");
if (FC_TYPE(fc) != T_CTRL || FC_SUBTYPE(fc) != CTRL_PS_POLL)
printf("%dus ",
EXTRACT_LE_16BITS(
&((const struct mgmt_header_t *)p)->duration));
}
if (meshdrlen != 0) {
const struct meshcntl_t *mc =
(const struct meshcntl_t *)&p[hdrlen - meshdrlen];
int ae = mc->flags & 3;
printf("MeshData (AE %d TTL %u seq %u", ae, mc->ttl,
EXTRACT_LE_32BITS(mc->seq));
if (ae > 0)
printf(" A4:%s", etheraddr_string(mc->addr4));
if (ae > 1)
printf(" A5:%s", etheraddr_string(mc->addr5));
if (ae > 2)
printf(" A6:%s", etheraddr_string(mc->addr6));
printf(") ");
}
switch (FC_TYPE(fc)) {
case T_MGMT:
mgmt_header_print(p, srcp, dstp);
break;
case T_CTRL:
ctrl_header_print(fc, p, srcp, dstp);
break;
case T_DATA:
data_header_print(fc, p, srcp, dstp);
break;
default:
printf("(header) unknown IEEE802.11 frame type (%d)",
FC_TYPE(fc));
*srcp = NULL;
*dstp = NULL;
break;
}
}
#ifndef roundup2
#define roundup2(x, y) (((x)+((y)-1))&(~((y)-1))) /* if y is powers of two */
#endif
static u_int
ieee802_11_print(const u_char *p, u_int length, u_int orig_caplen, int pad,
u_int fcslen)
{
u_int16_t fc;
u_int caplen, hdrlen, meshdrlen;
const u_int8_t *src, *dst;
u_short extracted_ethertype;
caplen = orig_caplen;
/* Remove FCS, if present */
if (length < fcslen) {
printf("[|802.11]");
return caplen;
}
length -= fcslen;
if (caplen > length) {
/* Amount of FCS in actual packet data, if any */
fcslen = caplen - length;
caplen -= fcslen;
snapend -= fcslen;
}
if (caplen < IEEE802_11_FC_LEN) {
printf("[|802.11]");
return orig_caplen;
}
fc = EXTRACT_LE_16BITS(p);
hdrlen = extract_header_length(fc);
if (pad)
hdrlen = roundup2(hdrlen, 4);
if (Hflag && FC_TYPE(fc) == T_DATA &&
DATA_FRAME_IS_QOS(FC_SUBTYPE(fc))) {
meshdrlen = extract_mesh_header_length(p+hdrlen);
hdrlen += meshdrlen;
} else
meshdrlen = 0;
if (caplen < hdrlen) {
printf("[|802.11]");
return hdrlen;
}
ieee_802_11_hdr_print(fc, p, hdrlen, meshdrlen, &src, &dst);
/*
* Go past the 802.11 header.
*/
length -= hdrlen;
caplen -= hdrlen;
p += hdrlen;
switch (FC_TYPE(fc)) {
case T_MGMT:
if (!mgmt_body_print(fc,
(const struct mgmt_header_t *)(p - hdrlen), p, length)) {
printf("[|802.11]");
return hdrlen;
}
break;
case T_CTRL:
if (!ctrl_body_print(fc, p - hdrlen)) {
printf("[|802.11]");
return hdrlen;
}
break;
case T_DATA:
if (DATA_FRAME_IS_NULL(FC_SUBTYPE(fc)))
return hdrlen; /* no-data frame */
/* There may be a problem w/ AP not having this bit set */
if (FC_WEP(fc)) {
if (!wep_print(p)) {
printf("[|802.11]");
return hdrlen;
}
} else if (llc_print(p, length, caplen, dst, src,
&extracted_ethertype) == 0) {
/*
* Some kinds of LLC packet we cannot
* handle intelligently
*/
if (!eflag)
ieee_802_11_hdr_print(fc, p - hdrlen, hdrlen,
meshdrlen, NULL, NULL);
if (extracted_ethertype)
printf("(LLC %s) ",
etherproto_string(
htons(extracted_ethertype)));
if (!suppress_default_print)
default_print(p, caplen);
}
break;
default:
printf("unknown 802.11 frame type (%d)", FC_TYPE(fc));
break;
}
return hdrlen;
}
/*
* This is the top level routine of the printer. 'p' points
* to the 802.11 header of the packet, 'h->ts' is the timestamp,
* 'h->len' is the length of the packet off the wire, and 'h->caplen'
* is the number of bytes actually captured.
*/
u_int
ieee802_11_if_print(const struct pcap_pkthdr *h, const u_char *p)
{
return ieee802_11_print(p, h->len, h->caplen, 0, 0);
}
#define IEEE80211_CHAN_FHSS \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_GFSK)
#define IEEE80211_CHAN_A \
(IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
#define IEEE80211_CHAN_B \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
#define IEEE80211_CHAN_PUREG \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_OFDM)
#define IEEE80211_CHAN_G \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)
#define IS_CHAN_FHSS(flags) \
((flags & IEEE80211_CHAN_FHSS) == IEEE80211_CHAN_FHSS)
#define IS_CHAN_A(flags) \
((flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A)
#define IS_CHAN_B(flags) \
((flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B)
#define IS_CHAN_PUREG(flags) \
((flags & IEEE80211_CHAN_PUREG) == IEEE80211_CHAN_PUREG)
#define IS_CHAN_G(flags) \
((flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G)
#define IS_CHAN_ANYG(flags) \
(IS_CHAN_PUREG(flags) || IS_CHAN_G(flags))
static void
print_chaninfo(int freq, int flags)
{
printf("%u MHz", freq);
if (IS_CHAN_FHSS(flags))
printf(" FHSS");
if (IS_CHAN_A(flags)) {
if (flags & IEEE80211_CHAN_HALF)
printf(" 11a/10Mhz");
else if (flags & IEEE80211_CHAN_QUARTER)
printf(" 11a/5Mhz");
else
printf(" 11a");
}
if (IS_CHAN_ANYG(flags)) {
if (flags & IEEE80211_CHAN_HALF)
printf(" 11g/10Mhz");
else if (flags & IEEE80211_CHAN_QUARTER)
printf(" 11g/5Mhz");
else
printf(" 11g");
} else if (IS_CHAN_B(flags))
printf(" 11b");
if (flags & IEEE80211_CHAN_TURBO)
printf(" Turbo");
if (flags & IEEE80211_CHAN_HT20)
printf(" ht/20");
else if (flags & IEEE80211_CHAN_HT40D)
printf(" ht/40-");
else if (flags & IEEE80211_CHAN_HT40U)
printf(" ht/40+");
printf(" ");
}
static int
print_radiotap_field(struct cpack_state *s, u_int32_t bit, u_int8_t *flags,
struct radiotap_state *state, u_int32_t presentflags)
{
union {
int8_t i8;
u_int8_t u8;
int16_t i16;
u_int16_t u16;
u_int32_t u32;
u_int64_t u64;
} u, u2, u3, u4;
int rc;
switch (bit) {
case IEEE80211_RADIOTAP_FLAGS:
rc = cpack_uint8(s, &u.u8);
if (rc != 0)
break;
*flags = u.u8;
break;
case IEEE80211_RADIOTAP_RATE:
rc = cpack_uint8(s, &u.u8);
if (rc != 0)
break;
/* Save state rate */
state->rate = u.u8;
break;
case IEEE80211_RADIOTAP_DB_ANTSIGNAL:
case IEEE80211_RADIOTAP_DB_ANTNOISE:
case IEEE80211_RADIOTAP_ANTENNA:
rc = cpack_uint8(s, &u.u8);
break;
case IEEE80211_RADIOTAP_DBM_ANTSIGNAL:
case IEEE80211_RADIOTAP_DBM_ANTNOISE:
rc = cpack_int8(s, &u.i8);
break;
case IEEE80211_RADIOTAP_CHANNEL:
rc = cpack_uint16(s, &u.u16);
if (rc != 0)
break;
rc = cpack_uint16(s, &u2.u16);
break;
case IEEE80211_RADIOTAP_FHSS:
case IEEE80211_RADIOTAP_LOCK_QUALITY:
case IEEE80211_RADIOTAP_TX_ATTENUATION:
case IEEE80211_RADIOTAP_RX_FLAGS:
rc = cpack_uint16(s, &u.u16);
break;
case IEEE80211_RADIOTAP_DB_TX_ATTENUATION:
rc = cpack_uint8(s, &u.u8);
break;
case IEEE80211_RADIOTAP_DBM_TX_POWER:
rc = cpack_int8(s, &u.i8);
break;
case IEEE80211_RADIOTAP_TSFT:
rc = cpack_uint64(s, &u.u64);
break;
case IEEE80211_RADIOTAP_XCHANNEL:
rc = cpack_uint32(s, &u.u32);
if (rc != 0)
break;
rc = cpack_uint16(s, &u2.u16);
if (rc != 0)
break;
rc = cpack_uint8(s, &u3.u8);
if (rc != 0)
break;
rc = cpack_uint8(s, &u4.u8);
break;
case IEEE80211_RADIOTAP_MCS:
rc = cpack_uint8(s, &u.u8);
if (rc != 0)
break;
rc = cpack_uint8(s, &u2.u8);
if (rc != 0)
break;
rc = cpack_uint8(s, &u3.u8);
break;
case IEEE80211_RADIOTAP_VENDOR_NAMESPACE: {
u_int8_t vns[3];
u_int16_t length;
u_int8_t subspace;
if ((cpack_align_and_reserve(s, 2)) == NULL) {
rc = -1;
break;
}
rc = cpack_uint8(s, &vns[0]);
if (rc != 0)
break;
rc = cpack_uint8(s, &vns[1]);
if (rc != 0)
break;
rc = cpack_uint8(s, &vns[2]);
if (rc != 0)
break;
rc = cpack_uint8(s, &subspace);
if (rc != 0)
break;
rc = cpack_uint16(s, &length);
if (rc != 0)
break;
/* Skip up to length */
s->c_next += length;
break;
}
default:
/* this bit indicates a field whose
* size we do not know, so we cannot
* proceed. Just print the bit number.
*/
printf("[bit %u] ", bit);
return -1;
}
if (rc != 0) {
printf("[|802.11]");
return rc;
}
/* Preserve the state present flags */
state->present = presentflags;
switch (bit) {
case IEEE80211_RADIOTAP_CHANNEL:
/*
* If CHANNEL and XCHANNEL are both present, skip
* CHANNEL.
*/
if (presentflags & (1 << IEEE80211_RADIOTAP_XCHANNEL))
break;
print_chaninfo(u.u16, u2.u16);
break;
case IEEE80211_RADIOTAP_FHSS:
printf("fhset %d fhpat %d ", u.u16 & 0xff, (u.u16 >> 8) & 0xff);
break;
case IEEE80211_RADIOTAP_RATE:
/*
* XXX On FreeBSD rate & 0x80 means we have an MCS. On
* Linux and AirPcap it does not. (What about
* Mac OS X, NetBSD, OpenBSD, and DragonFly BSD?)
*
* This is an issue either for proprietary extensions
* to 11a or 11g, which do exist, or for 11n
* implementations that stuff a rate value into
* this field, which also appear to exist.
*
* We currently handle that by assuming that
* if the 0x80 bit is set *and* the remaining
* bits have a value between 0 and 15 it's
* an MCS value, otherwise it's a rate. If
* there are cases where systems that use
* "0x80 + MCS index" for MCS indices > 15,
* or stuff a rate value here between 64 and
* 71.5 Mb/s in here, we'll need a preference
* setting. Such rates do exist, e.g. 11n
* MCS 7 at 20 MHz with a long guard interval.
*/
if (u.u8 >= 0x80 && u.u8 <= 0x8f) {
/*
* XXX - we don't know the channel width
* or guard interval length, so we can't
* convert this to a data rate.
*
* If you want us to show a data rate,
* use the MCS field, not the Rate field;
* the MCS field includes not only the
* MCS index, it also includes bandwidth
* and guard interval information.
*
* XXX - can we get the channel width
* from XChannel and the guard interval
* information from Flags, at least on
* FreeBSD?
*/
printf("MCS %u ", u.u8 & 0x7f);
} else
printf("%2.1f Mb/s ", .5*u.u8);
break;
case IEEE80211_RADIOTAP_DBM_ANTSIGNAL:
printf("%ddB signal ", u.i8);
break;
case IEEE80211_RADIOTAP_DBM_ANTNOISE:
printf("%ddB noise ", u.i8);
break;
case IEEE80211_RADIOTAP_DB_ANTSIGNAL:
printf("%ddB signal ", u.u8);
break;
case IEEE80211_RADIOTAP_DB_ANTNOISE:
printf("%ddB noise ", u.u8);
break;
case IEEE80211_RADIOTAP_LOCK_QUALITY:
printf("%u sq ", u.u16);
break;
case IEEE80211_RADIOTAP_TX_ATTENUATION:
printf("%d tx power ", -(int)u.u16);
break;
case IEEE80211_RADIOTAP_DB_TX_ATTENUATION:
printf("%ddB tx power ", -(int)u.u8);
break;
case IEEE80211_RADIOTAP_DBM_TX_POWER:
printf("%ddBm tx power ", u.i8);
break;
case IEEE80211_RADIOTAP_FLAGS:
if (u.u8 & IEEE80211_RADIOTAP_F_CFP)
printf("cfp ");
if (u.u8 & IEEE80211_RADIOTAP_F_SHORTPRE)
printf("short preamble ");
if (u.u8 & IEEE80211_RADIOTAP_F_WEP)
printf("wep ");
if (u.u8 & IEEE80211_RADIOTAP_F_FRAG)
printf("fragmented ");
if (u.u8 & IEEE80211_RADIOTAP_F_BADFCS)
printf("bad-fcs ");
break;
case IEEE80211_RADIOTAP_ANTENNA:
printf("antenna %d ", u.u8);
break;
case IEEE80211_RADIOTAP_TSFT:
printf("%" PRIu64 "us tsft ", u.u64);
break;
case IEEE80211_RADIOTAP_RX_FLAGS:
/* Do nothing for now */
break;
case IEEE80211_RADIOTAP_XCHANNEL:
print_chaninfo(u2.u16, u.u32);
break;
case IEEE80211_RADIOTAP_MCS: {
static const char *bandwidth[4] = {
"20 MHz",
"40 MHz",
"20 MHz (L)",
"20 MHz (U)"
};
float htrate;
if (u.u8 & IEEE80211_RADIOTAP_MCS_MCS_INDEX_KNOWN) {
/*
* We know the MCS index.
*/
if (u3.u8 <= MAX_MCS_INDEX) {
/*
* And it's in-range.
*/
if (u.u8 & (IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN|IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN)) {
/*
* And we know both the bandwidth and
* the guard interval, so we can look
* up the rate.
*/
htrate =
ieee80211_float_htrates \
[u3.u8] \
[((u2.u8 & IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK) == IEEE80211_RADIOTAP_MCS_BANDWIDTH_40 ? 1 : 0)] \
[((u2.u8 & IEEE80211_RADIOTAP_MCS_SHORT_GI) ? 1 : 0)];
} else {
/*
* We don't know both the bandwidth
* and the guard interval, so we can
* only report the MCS index.
*/
htrate = 0.0;
}
} else {
/*
* The MCS value is out of range.
*/
htrate = 0.0;
}
if (htrate != 0.0) {
/*
* We have the rate.
* Print it.
*/
printf("%.1f Mb/s MCS %u ", htrate, u3.u8);
} else {
/*
* We at least have the MCS index.
* Print it.
*/
printf("MCS %u ", u3.u8);
}
}
if (u.u8 & IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN) {
printf("%s ",
bandwidth[u2.u8 & IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK]);
}
if (u.u8 & IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN) {
printf("%s GI ",
(u2.u8 & IEEE80211_RADIOTAP_MCS_SHORT_GI) ?
"short" : "lon");
}
if (u.u8 & IEEE80211_RADIOTAP_MCS_HT_FORMAT_KNOWN) {
printf("%s ",
(u2.u8 & IEEE80211_RADIOTAP_MCS_HT_GREENFIELD) ?
"greenfield" : "mixed");
}
if (u.u8 & IEEE80211_RADIOTAP_MCS_FEC_TYPE_KNOWN) {
printf("%s FEC ",
(u2.u8 & IEEE80211_RADIOTAP_MCS_FEC_LDPC) ?
"LDPC" : "BCC");
}
break;
}
}
return 0;
}
static u_int
ieee802_11_radio_print(const u_char *p, u_int length, u_int caplen)
{
#define BITNO_32(x) (((x) >> 16) ? 16 + BITNO_16((x) >> 16) : BITNO_16((x)))
#define BITNO_16(x) (((x) >> 8) ? 8 + BITNO_8((x) >> 8) : BITNO_8((x)))
#define BITNO_8(x) (((x) >> 4) ? 4 + BITNO_4((x) >> 4) : BITNO_4((x)))
#define BITNO_4(x) (((x) >> 2) ? 2 + BITNO_2((x) >> 2) : BITNO_2((x)))
#define BITNO_2(x) (((x) & 2) ? 1 : 0)
#define BIT(n) (1U << n)
#define IS_EXTENDED(__p) \
(EXTRACT_LE_32BITS(__p) & BIT(IEEE80211_RADIOTAP_EXT)) != 0
struct cpack_state cpacker;
struct ieee80211_radiotap_header *hdr;
u_int32_t present, next_present;
u_int32_t presentflags = 0;
u_int32_t *presentp, *last_presentp;
enum ieee80211_radiotap_type bit;
int bit0;
const u_char *iter;
u_int len;
u_int8_t flags;
int pad;
u_int fcslen;
struct radiotap_state state;
if (caplen < sizeof(*hdr)) {
printf("[|802.11]");
return caplen;
}
hdr = (struct ieee80211_radiotap_header *)p;
len = EXTRACT_LE_16BITS(&hdr->it_len);
if (caplen < len) {
printf("[|802.11]");
return caplen;
}
for (last_presentp = &hdr->it_present;
IS_EXTENDED(last_presentp) &&
(u_char*)(last_presentp + 1) <= p + len;
last_presentp++);
/* are there more bitmap extensions than bytes in header? */
if (IS_EXTENDED(last_presentp)) {
printf("[|802.11]");
return caplen;
}
iter = (u_char*)(last_presentp + 1);
if (cpack_init(&cpacker, (u_int8_t*)iter, len - (iter - p)) != 0) {
/* XXX */
printf("[|802.11]");
return caplen;
}
/* Assume no flags */
flags = 0;
/* Assume no Atheros padding between 802.11 header and body */
pad = 0;
/* Assume no FCS at end of frame */
fcslen = 0;
for (bit0 = 0, presentp = &hdr->it_present; presentp <= last_presentp;
presentp++, bit0 += 32) {
presentflags = EXTRACT_LE_32BITS(presentp);
/* Clear state. */
memset(&state, 0, sizeof(state));
for (present = EXTRACT_LE_32BITS(presentp); present;
present = next_present) {
/* clear the least significant bit that is set */
next_present = present & (present - 1);
/* extract the least significant bit that is set */
bit = (enum ieee80211_radiotap_type)
(bit0 + BITNO_32(present ^ next_present));
if (print_radiotap_field(&cpacker, bit, &flags, &state, presentflags) != 0)
goto out;
}
}
out:
if (flags & IEEE80211_RADIOTAP_F_DATAPAD)
pad = 1; /* Atheros padding */
if (flags & IEEE80211_RADIOTAP_F_FCS)
fcslen = 4; /* FCS at end of packet */
return len + ieee802_11_print(p + len, length - len, caplen - len, pad,
fcslen);
#undef BITNO_32
#undef BITNO_16
#undef BITNO_8
#undef BITNO_4
#undef BITNO_2
#undef BIT
}
static u_int
ieee802_11_avs_radio_print(const u_char *p, u_int length, u_int caplen)
{
u_int32_t caphdr_len;
if (caplen < 8) {
printf("[|802.11]");
return caplen;
}
caphdr_len = EXTRACT_32BITS(p + 4);
if (caphdr_len < 8) {
/*
* Yow! The capture header length is claimed not
* to be large enough to include even the version
* cookie or capture header length!
*/
printf("[|802.11]");
return caplen;
}
if (caplen < caphdr_len) {
printf("[|802.11]");
return caplen;
}
return caphdr_len + ieee802_11_print(p + caphdr_len,
length - caphdr_len, caplen - caphdr_len, 0, 0);
}
#define PRISM_HDR_LEN 144
#define WLANCAP_MAGIC_COOKIE_BASE 0x80211000
#define WLANCAP_MAGIC_COOKIE_V1 0x80211001
#define WLANCAP_MAGIC_COOKIE_V2 0x80211002
/*
* For DLT_PRISM_HEADER; like DLT_IEEE802_11, but with an extra header,
* containing information such as radio information, which we
* currently ignore.
*
* If, however, the packet begins with WLANCAP_MAGIC_COOKIE_V1 or
* WLANCAP_MAGIC_COOKIE_V2, it's really DLT_IEEE802_11_RADIO_AVS
* (currently, on Linux, there's no ARPHRD_ type for
* DLT_IEEE802_11_RADIO_AVS, as there is a ARPHRD_IEEE80211_PRISM
* for DLT_PRISM_HEADER, so ARPHRD_IEEE80211_PRISM is used for
* the AVS header, and the first 4 bytes of the header are used to
* indicate whether it's a Prism header or an AVS header).
*/
u_int
prism_if_print(const struct pcap_pkthdr *h, const u_char *p)
{
u_int caplen = h->caplen;
u_int length = h->len;
u_int32_t msgcode;
if (caplen < 4) {
printf("[|802.11]");
return caplen;
}
msgcode = EXTRACT_32BITS(p);
if (msgcode == WLANCAP_MAGIC_COOKIE_V1 ||
msgcode == WLANCAP_MAGIC_COOKIE_V2)
return ieee802_11_avs_radio_print(p, length, caplen);
if (caplen < PRISM_HDR_LEN) {
printf("[|802.11]");
return caplen;
}
return PRISM_HDR_LEN + ieee802_11_print(p + PRISM_HDR_LEN,
length - PRISM_HDR_LEN, caplen - PRISM_HDR_LEN, 0, 0);
}
/*
* For DLT_IEEE802_11_RADIO; like DLT_IEEE802_11, but with an extra
* header, containing information such as radio information.
*/
u_int
ieee802_11_radio_if_print(const struct pcap_pkthdr *h, const u_char *p)
{
return ieee802_11_radio_print(p, h->len, h->caplen);
}
/*
* For DLT_IEEE802_11_RADIO_AVS; like DLT_IEEE802_11, but with an
* extra header, containing information such as radio information,
* which we currently ignore.
*/
u_int
ieee802_11_radio_avs_if_print(const struct pcap_pkthdr *h, const u_char *p)
{
return ieee802_11_avs_radio_print(p, h->len, h->caplen);
}