mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-29 12:03:03 +00:00
f4aa9b67eb
This will let ifconfig -v's SFF eeprom read functionality recognize more module types. Signed-off-by: Eric Joyner <erj@freebsd.org> Reviewed by: gallatin@ MFC after: 1 week Sponsored by: Intel Corporation Differential Revision: https://reviews.freebsd.org/D21041
987 lines
24 KiB
C
987 lines
24 KiB
C
/*-
|
||
* Copyright (c) 2014 Alexander V. Chernikov. All rights reserved.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
* 1. Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
* SUCH DAMAGE.
|
||
*/
|
||
|
||
#ifndef lint
|
||
static const char rcsid[] =
|
||
"$FreeBSD$";
|
||
#endif /* not lint */
|
||
|
||
#include <sys/types.h>
|
||
#include <sys/param.h>
|
||
#include <sys/ioctl.h>
|
||
#include <sys/socket.h>
|
||
|
||
#include <net/if.h>
|
||
#include <net/sff8436.h>
|
||
#include <net/sff8472.h>
|
||
|
||
#include <math.h>
|
||
#include <err.h>
|
||
#include <errno.h>
|
||
#include <fcntl.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <unistd.h>
|
||
|
||
#include "ifconfig.h"
|
||
|
||
struct i2c_info {
|
||
int fd; /* fd to issue SIOCGI2C */
|
||
int error; /* Store first error */
|
||
int qsfp; /* True if transceiver is QSFP */
|
||
int do_diag; /* True if we need to request DDM */
|
||
struct ifreq *ifr; /* Pointer to pre-filled ifreq */
|
||
};
|
||
|
||
static int read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off,
|
||
uint8_t len, uint8_t *buf);
|
||
static void dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off,
|
||
uint8_t len);
|
||
|
||
struct _nv {
|
||
int v;
|
||
const char *n;
|
||
};
|
||
|
||
const char *find_value(struct _nv *x, int value);
|
||
const char *find_zero_bit(struct _nv *x, int value, int sz);
|
||
|
||
/* SFF-8024 Rev. 4.6 Table 4-3: Connector Types */
|
||
static struct _nv conn[] = {
|
||
{ 0x00, "Unknown" },
|
||
{ 0x01, "SC" },
|
||
{ 0x02, "Fibre Channel Style 1 copper" },
|
||
{ 0x03, "Fibre Channel Style 2 copper" },
|
||
{ 0x04, "BNC/TNC" },
|
||
{ 0x05, "Fibre Channel coaxial" },
|
||
{ 0x06, "Fiber Jack" },
|
||
{ 0x07, "LC" },
|
||
{ 0x08, "MT-RJ" },
|
||
{ 0x09, "MU" },
|
||
{ 0x0A, "SG" },
|
||
{ 0x0B, "Optical pigtail" },
|
||
{ 0x0C, "MPO 1x12 Parallel Optic" },
|
||
{ 0x0D, "MPO 2x16 Parallel Optic" },
|
||
{ 0x20, "HSSDC II" },
|
||
{ 0x21, "Copper pigtail" },
|
||
{ 0x22, "RJ45" },
|
||
{ 0x23, "No separable connector" },
|
||
{ 0x24, "MXC 2x16" },
|
||
{ 0x25, "CS optical connector" },
|
||
{ 0x26, "Mini CS optical connector" },
|
||
{ 0x27, "MPO 2x12 Parallel Optic" },
|
||
{ 0x28, "MPO 1x16 Parallel Optic" },
|
||
{ 0, NULL }
|
||
};
|
||
|
||
/* SFF-8472 Rev. 11.4 table 3.5: Transceiver codes */
|
||
/* 10G Ethernet/IB compliance codes, byte 3 */
|
||
static struct _nv eth_10g[] = {
|
||
{ 0x80, "10G Base-ER" },
|
||
{ 0x40, "10G Base-LRM" },
|
||
{ 0x20, "10G Base-LR" },
|
||
{ 0x10, "10G Base-SR" },
|
||
{ 0x08, "1X SX" },
|
||
{ 0x04, "1X LX" },
|
||
{ 0x02, "1X Copper Active" },
|
||
{ 0x01, "1X Copper Passive" },
|
||
{ 0, NULL }
|
||
};
|
||
|
||
/* Ethernet compliance codes, byte 6 */
|
||
static struct _nv eth_compat[] = {
|
||
{ 0x80, "BASE-PX" },
|
||
{ 0x40, "BASE-BX10" },
|
||
{ 0x20, "100BASE-FX" },
|
||
{ 0x10, "100BASE-LX/LX10" },
|
||
{ 0x08, "1000BASE-T" },
|
||
{ 0x04, "1000BASE-CX" },
|
||
{ 0x02, "1000BASE-LX" },
|
||
{ 0x01, "1000BASE-SX" },
|
||
{ 0, NULL }
|
||
};
|
||
|
||
/* FC link length, byte 7 */
|
||
static struct _nv fc_len[] = {
|
||
{ 0x80, "very long distance" },
|
||
{ 0x40, "short distance" },
|
||
{ 0x20, "intermediate distance" },
|
||
{ 0x10, "long distance" },
|
||
{ 0x08, "medium distance" },
|
||
{ 0, NULL }
|
||
};
|
||
|
||
/* Channel/Cable technology, byte 7-8 */
|
||
static struct _nv cab_tech[] = {
|
||
{ 0x0400, "Shortwave laser (SA)" },
|
||
{ 0x0200, "Longwave laser (LC)" },
|
||
{ 0x0100, "Electrical inter-enclosure (EL)" },
|
||
{ 0x80, "Electrical intra-enclosure (EL)" },
|
||
{ 0x40, "Shortwave laser (SN)" },
|
||
{ 0x20, "Shortwave laser (SL)" },
|
||
{ 0x10, "Longwave laser (LL)" },
|
||
{ 0x08, "Active Cable" },
|
||
{ 0x04, "Passive Cable" },
|
||
{ 0, NULL }
|
||
};
|
||
|
||
/* FC Transmission media, byte 9 */
|
||
static struct _nv fc_media[] = {
|
||
{ 0x80, "Twin Axial Pair" },
|
||
{ 0x40, "Twisted Pair" },
|
||
{ 0x20, "Miniature Coax" },
|
||
{ 0x10, "Viao Coax" },
|
||
{ 0x08, "Miltimode, 62.5um" },
|
||
{ 0x04, "Multimode, 50um" },
|
||
{ 0x02, "" },
|
||
{ 0x01, "Single Mode" },
|
||
{ 0, NULL }
|
||
};
|
||
|
||
/* FC Speed, byte 10 */
|
||
static struct _nv fc_speed[] = {
|
||
{ 0x80, "1200 MBytes/sec" },
|
||
{ 0x40, "800 MBytes/sec" },
|
||
{ 0x20, "1600 MBytes/sec" },
|
||
{ 0x10, "400 MBytes/sec" },
|
||
{ 0x08, "3200 MBytes/sec" },
|
||
{ 0x04, "200 MBytes/sec" },
|
||
{ 0x01, "100 MBytes/sec" },
|
||
{ 0, NULL }
|
||
};
|
||
|
||
/* SFF-8436 Rev. 4.8 table 33: Specification compliance */
|
||
|
||
/* 10/40G Ethernet compliance codes, byte 128 + 3 */
|
||
static struct _nv eth_1040g[] = {
|
||
{ 0x80, "Extended" },
|
||
{ 0x40, "10GBASE-LRM" },
|
||
{ 0x20, "10GBASE-LR" },
|
||
{ 0x10, "10GBASE-SR" },
|
||
{ 0x08, "40GBASE-CR4" },
|
||
{ 0x04, "40GBASE-SR4" },
|
||
{ 0x02, "40GBASE-LR4" },
|
||
{ 0x01, "40G Active Cable" },
|
||
{ 0, NULL }
|
||
};
|
||
#define SFF_8636_EXT_COMPLIANCE 0x80
|
||
|
||
/* SFF-8024 Rev. 4.6 table 4-4: Extended Specification Compliance */
|
||
static struct _nv eth_extended_comp[] = {
|
||
{ 0xFF, "Reserved" },
|
||
{ 0x55, "128GFC LW" },
|
||
{ 0x54, "128GFC SW" },
|
||
{ 0x53, "128GFC EA" },
|
||
{ 0x52, "64GFC LW" },
|
||
{ 0x51, "64GFC SW" },
|
||
{ 0x50, "64GFC EA" },
|
||
{ 0x4F, "Reserved" },
|
||
{ 0x4E, "Reserved" },
|
||
{ 0x4D, "Reserved" },
|
||
{ 0x4C, "Reserved" },
|
||
{ 0x4B, "Reserved" },
|
||
{ 0x4A, "Reserved" },
|
||
{ 0x49, "Reserved" },
|
||
{ 0x48, "Reserved" },
|
||
{ 0x47, "Reserved" },
|
||
{ 0x46, "200GBASE-LR4" },
|
||
{ 0x45, "50GBASE-LR" },
|
||
{ 0x44, "200G 1550nm PSM4" },
|
||
{ 0x43, "200GBASE-FR4" },
|
||
{ 0x42, "50GBASE-FR or 200GBASE-DR4" },
|
||
{ 0x41, "50GBASE-SR/100GBASE-SR2/200GBASE-SR4" },
|
||
{ 0x40, "50GBASE-CR/100GBASE-CR2/200GBASE-CR4" },
|
||
{ 0x3F, "Reserved" },
|
||
{ 0x3E, "Reserved" },
|
||
{ 0x3D, "Reserved" },
|
||
{ 0x3C, "Reserved" },
|
||
{ 0x3B, "Reserved" },
|
||
{ 0x3A, "Reserved" },
|
||
{ 0x39, "Reserved" },
|
||
{ 0x38, "Reserved" },
|
||
{ 0x37, "Reserved" },
|
||
{ 0x36, "Reserved" },
|
||
{ 0x35, "Reserved" },
|
||
{ 0x34, "Reserved" },
|
||
{ 0x33, "50GAUI/100GAUI-2/200GAUI-4 AOC (BER <2.6e-4)" },
|
||
{ 0x32, "50GAUI/100GAUI-2/200GAUI-4 ACC (BER <2.6e-4)" },
|
||
{ 0x31, "50GAUI/100GAUI-2/200GAUI-4 AOC (BER <1e-6)" },
|
||
{ 0x30, "50GAUI/100GAUI-2/200GAUI-4 ACC (BER <1e-6)" },
|
||
{ 0x2F, "Reserved" },
|
||
{ 0x2E, "Reserved" },
|
||
{ 0x2D, "Reserved" },
|
||
{ 0x2C, "Reserved" },
|
||
{ 0x2B, "Reserved" },
|
||
{ 0x2A, "Reserved" },
|
||
{ 0x29, "Reserved" },
|
||
{ 0x28, "Reserved" },
|
||
{ 0x27, "100G-LR" },
|
||
{ 0x26, "100G-FR" },
|
||
{ 0x25, "100GBASE-DR" },
|
||
{ 0x24, "4WDM-40 MSA" },
|
||
{ 0x23, "4WDM-20 MSA" },
|
||
{ 0x22, "4WDM-10 MSA" },
|
||
{ 0x21, "100G PAM4 BiDi" },
|
||
{ 0x20, "100G SWDM4" },
|
||
{ 0x1F, "40G SWDM4" },
|
||
{ 0x1E, "2.5GBASE-T" },
|
||
{ 0x1D, "5GBASE-T" },
|
||
{ 0x1C, "10GBASE-T Short Reach" },
|
||
{ 0x1B, "100G 1550nm WDM" },
|
||
{ 0x1A, "100GE-DWDM2" },
|
||
{ 0x19, "100G ACC or 25GAUI C2M ACC" },
|
||
{ 0x18, "100G AOC or 25GAUI C2M AOC" },
|
||
{ 0x17, "100G CLR4" },
|
||
{ 0x16, "10GBASE-T with SFI electrical interface" },
|
||
{ 0x15, "G959.1 profile P1L1-2D2" },
|
||
{ 0x14, "G959.1 profile P1S1-2D2" },
|
||
{ 0x13, "G959.1 profile P1I1-2D1" },
|
||
{ 0x12, "40G PSM4 Parallel SMF" },
|
||
{ 0x11, "4 x 10GBASE-SR" },
|
||
{ 0x10, "40GBASE-ER4" },
|
||
{ 0x0F, "Reserved" },
|
||
{ 0x0E, "Reserved" },
|
||
{ 0x0D, "25GBASE-CR CA-25G-N" },
|
||
{ 0x0C, "25GBASE-CR CA-25G-S" },
|
||
{ 0x0B, "100GBASE-CR4 or 25GBASE-CR CA-L" },
|
||
{ 0x0A, "Reserved" },
|
||
{ 0x09, "Obsolete" },
|
||
{ 0x08, "100G ACC (Active Copper Cable) or 25GAUI C2M ACC" },
|
||
{ 0x07, "100G PSM4 Parallel SMF" },
|
||
{ 0x06, "100G CWDM4" },
|
||
{ 0x05, "100GBASE-SR10" },
|
||
{ 0x04, "100GBASE-ER4 or 25GBASE-ER" },
|
||
{ 0x03, "100GBASE-LR4 or 25GBASE-LR" },
|
||
{ 0x02, "100GBASE-SR4 or 25GBASE-SR" },
|
||
{ 0x01, "100G AOC (Active Optical Cable) or 25GAUI C2M AOC" },
|
||
{ 0x00, "Unspecified" }
|
||
};
|
||
|
||
/* SFF-8636 Rev. 2.9 table 6.3: Revision compliance */
|
||
static struct _nv rev_compl[] = {
|
||
{ 0x1, "SFF-8436 rev <=4.8" },
|
||
{ 0x2, "SFF-8436 rev <=4.8" },
|
||
{ 0x3, "SFF-8636 rev <=1.3" },
|
||
{ 0x4, "SFF-8636 rev <=1.4" },
|
||
{ 0x5, "SFF-8636 rev <=1.5" },
|
||
{ 0x6, "SFF-8636 rev <=2.0" },
|
||
{ 0x7, "SFF-8636 rev <=2.7" },
|
||
{ 0x8, "SFF-8636 rev >=2.8" },
|
||
{ 0x0, "Unspecified" }
|
||
};
|
||
|
||
const char *
|
||
find_value(struct _nv *x, int value)
|
||
{
|
||
for (; x->n != NULL; x++)
|
||
if (x->v == value)
|
||
return (x->n);
|
||
return (NULL);
|
||
}
|
||
|
||
const char *
|
||
find_zero_bit(struct _nv *x, int value, int sz)
|
||
{
|
||
int v, m;
|
||
const char *s;
|
||
|
||
v = 1;
|
||
for (v = 1, m = 1 << (8 * sz); v < m; v *= 2) {
|
||
if ((value & v) == 0)
|
||
continue;
|
||
if ((s = find_value(x, value & v)) != NULL) {
|
||
value &= ~v;
|
||
return (s);
|
||
}
|
||
}
|
||
|
||
return (NULL);
|
||
}
|
||
|
||
static void
|
||
convert_sff_identifier(char *buf, size_t size, uint8_t value)
|
||
{
|
||
const char *x;
|
||
|
||
x = NULL;
|
||
if (value <= SFF_8024_ID_LAST)
|
||
x = sff_8024_id[value];
|
||
else {
|
||
if (value > 0x80)
|
||
x = "Vendor specific";
|
||
else
|
||
x = "Reserved";
|
||
}
|
||
|
||
snprintf(buf, size, "%s", x);
|
||
}
|
||
|
||
static void
|
||
convert_sff_connector(char *buf, size_t size, uint8_t value)
|
||
{
|
||
const char *x;
|
||
|
||
if ((x = find_value(conn, value)) == NULL) {
|
||
if (value >= 0x0D && value <= 0x1F)
|
||
x = "Unallocated";
|
||
else if (value >= 0x24 && value <= 0x7F)
|
||
x = "Unallocated";
|
||
else
|
||
x = "Vendor specific";
|
||
}
|
||
|
||
snprintf(buf, size, "%s", x);
|
||
}
|
||
|
||
static void
|
||
convert_sff_rev_compliance(char *buf, size_t size, uint8_t value)
|
||
{
|
||
const char *x;
|
||
|
||
if (value > 0x07)
|
||
x = "Unallocated";
|
||
else
|
||
x = find_value(rev_compl, value);
|
||
|
||
snprintf(buf, size, "%s", x);
|
||
}
|
||
|
||
static void
|
||
get_sfp_identifier(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
uint8_t data;
|
||
|
||
read_i2c(ii, SFF_8472_BASE, SFF_8472_ID, 1, &data);
|
||
convert_sff_identifier(buf, size, data);
|
||
}
|
||
|
||
static void
|
||
get_sfp_connector(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
uint8_t data;
|
||
|
||
read_i2c(ii, SFF_8472_BASE, SFF_8472_CONNECTOR, 1, &data);
|
||
convert_sff_connector(buf, size, data);
|
||
}
|
||
|
||
static void
|
||
get_qsfp_identifier(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
uint8_t data;
|
||
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8436_ID, 1, &data);
|
||
convert_sff_identifier(buf, size, data);
|
||
}
|
||
|
||
static void
|
||
get_qsfp_connector(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
uint8_t data;
|
||
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8436_CONNECTOR, 1, &data);
|
||
convert_sff_connector(buf, size, data);
|
||
}
|
||
|
||
static void
|
||
printf_sfp_transceiver_descr(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
char xbuf[12];
|
||
const char *tech_class, *tech_len, *tech_tech, *tech_media, *tech_speed;
|
||
|
||
tech_class = NULL;
|
||
tech_len = NULL;
|
||
tech_tech = NULL;
|
||
tech_media = NULL;
|
||
tech_speed = NULL;
|
||
|
||
/* Read bytes 3-10 at once */
|
||
read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, &xbuf[3]);
|
||
|
||
/* Check 10G ethernet first */
|
||
tech_class = find_zero_bit(eth_10g, xbuf[3], 1);
|
||
if (tech_class == NULL) {
|
||
/* No match. Try 1G */
|
||
tech_class = find_zero_bit(eth_compat, xbuf[6], 1);
|
||
}
|
||
|
||
tech_len = find_zero_bit(fc_len, xbuf[7], 1);
|
||
tech_tech = find_zero_bit(cab_tech, xbuf[7] << 8 | xbuf[8], 2);
|
||
tech_media = find_zero_bit(fc_media, xbuf[9], 1);
|
||
tech_speed = find_zero_bit(fc_speed, xbuf[10], 1);
|
||
|
||
printf("Class: %s\n", tech_class);
|
||
printf("Length: %s\n", tech_len);
|
||
printf("Tech: %s\n", tech_tech);
|
||
printf("Media: %s\n", tech_media);
|
||
printf("Speed: %s\n", tech_speed);
|
||
}
|
||
|
||
static void
|
||
get_sfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
const char *tech_class;
|
||
uint8_t code;
|
||
|
||
/* Use extended compliance code if it's valid */
|
||
read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS, 1, &code);
|
||
if (code != 0)
|
||
tech_class = find_value(eth_extended_comp, code);
|
||
else {
|
||
/* Next, check 10G Ethernet/IB CCs */
|
||
read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 1, &code);
|
||
tech_class = find_zero_bit(eth_10g, code, 1);
|
||
if (tech_class == NULL) {
|
||
/* No match. Try Ethernet 1G */
|
||
read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START + 3,
|
||
1, (caddr_t)&code);
|
||
tech_class = find_zero_bit(eth_compat, code, 1);
|
||
}
|
||
}
|
||
|
||
if (tech_class == NULL)
|
||
tech_class = "Unknown";
|
||
|
||
snprintf(buf, size, "%s", tech_class);
|
||
}
|
||
|
||
static void
|
||
get_qsfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
const char *tech_class;
|
||
uint8_t code;
|
||
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8436_CODE_E1040100G, 1, &code);
|
||
|
||
/* Check for extended specification compliance */
|
||
if (code & SFF_8636_EXT_COMPLIANCE) {
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8436_OPTIONS_START, 1, &code);
|
||
tech_class = find_value(eth_extended_comp, code);
|
||
} else
|
||
/* Check 10/40G Ethernet class only */
|
||
tech_class = find_zero_bit(eth_1040g, code, 1);
|
||
|
||
if (tech_class == NULL)
|
||
tech_class = "Unknown";
|
||
|
||
snprintf(buf, size, "%s", tech_class);
|
||
}
|
||
|
||
/*
|
||
* Print SFF-8472/SFF-8436 string to supplied buffer.
|
||
* All (vendor-specific) strings are padded right with '0x20'.
|
||
*/
|
||
static void
|
||
convert_sff_name(char *buf, size_t size, char *xbuf)
|
||
{
|
||
char *p;
|
||
|
||
for (p = &xbuf[16]; *(p - 1) == 0x20; p--)
|
||
;
|
||
*p = '\0';
|
||
snprintf(buf, size, "%s", xbuf);
|
||
}
|
||
|
||
static void
|
||
convert_sff_date(char *buf, size_t size, char *xbuf)
|
||
{
|
||
|
||
snprintf(buf, size, "20%c%c-%c%c-%c%c", xbuf[0], xbuf[1],
|
||
xbuf[2], xbuf[3], xbuf[4], xbuf[5]);
|
||
}
|
||
|
||
static void
|
||
get_sfp_vendor_name(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
char xbuf[17];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8472_BASE, SFF_8472_VENDOR_START, 16, (uint8_t *)xbuf);
|
||
convert_sff_name(buf, size, xbuf);
|
||
}
|
||
|
||
static void
|
||
get_sfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
char xbuf[17];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8472_BASE, SFF_8472_PN_START, 16, (uint8_t *)xbuf);
|
||
convert_sff_name(buf, size, xbuf);
|
||
}
|
||
|
||
static void
|
||
get_sfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
char xbuf[17];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8472_BASE, SFF_8472_SN_START, 16, (uint8_t *)xbuf);
|
||
convert_sff_name(buf, size, xbuf);
|
||
}
|
||
|
||
static void
|
||
get_sfp_vendor_date(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
char xbuf[6];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
/* Date code, see Table 3.8 for description */
|
||
read_i2c(ii, SFF_8472_BASE, SFF_8472_DATE_START, 6, (uint8_t *)xbuf);
|
||
convert_sff_date(buf, size, xbuf);
|
||
}
|
||
|
||
static void
|
||
get_qsfp_vendor_name(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
char xbuf[17];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8436_VENDOR_START, 16, (uint8_t *)xbuf);
|
||
convert_sff_name(buf, size, xbuf);
|
||
}
|
||
|
||
static void
|
||
get_qsfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
char xbuf[17];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8436_PN_START, 16, (uint8_t *)xbuf);
|
||
convert_sff_name(buf, size, xbuf);
|
||
}
|
||
|
||
static void
|
||
get_qsfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
char xbuf[17];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8436_SN_START, 16, (uint8_t *)xbuf);
|
||
convert_sff_name(buf, size, xbuf);
|
||
}
|
||
|
||
static void
|
||
get_qsfp_vendor_date(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
char xbuf[6];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8436_DATE_START, 6, (uint8_t *)xbuf);
|
||
convert_sff_date(buf, size, xbuf);
|
||
}
|
||
|
||
static void
|
||
print_sfp_vendor(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
char xbuf[80];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
if (ii->qsfp != 0) {
|
||
get_qsfp_vendor_name(ii, xbuf, 20);
|
||
get_qsfp_vendor_pn(ii, &xbuf[20], 20);
|
||
get_qsfp_vendor_sn(ii, &xbuf[40], 20);
|
||
get_qsfp_vendor_date(ii, &xbuf[60], 20);
|
||
} else {
|
||
get_sfp_vendor_name(ii, xbuf, 20);
|
||
get_sfp_vendor_pn(ii, &xbuf[20], 20);
|
||
get_sfp_vendor_sn(ii, &xbuf[40], 20);
|
||
get_sfp_vendor_date(ii, &xbuf[60], 20);
|
||
}
|
||
|
||
snprintf(buf, size, "vendor: %s PN: %s SN: %s DATE: %s",
|
||
xbuf, &xbuf[20], &xbuf[40], &xbuf[60]);
|
||
}
|
||
|
||
/*
|
||
* Converts internal templerature (SFF-8472, SFF-8436)
|
||
* 16-bit unsigned value to human-readable representation:
|
||
*
|
||
* Internally measured Module temperature are represented
|
||
* as a 16-bit signed twos complement value in increments of
|
||
* 1/256 degrees Celsius, yielding a total range of –128C to +128C
|
||
* that is considered valid between –40 and +125C.
|
||
*
|
||
*/
|
||
static void
|
||
convert_sff_temp(char *buf, size_t size, uint8_t *xbuf)
|
||
{
|
||
double d;
|
||
|
||
d = (double)xbuf[0];
|
||
d += (double)xbuf[1] / 256;
|
||
|
||
snprintf(buf, size, "%.2f C", d);
|
||
}
|
||
|
||
/*
|
||
* Retrieves supplied voltage (SFF-8472, SFF-8436).
|
||
* 16-bit usigned value, treated as range 0..+6.55 Volts
|
||
*/
|
||
static void
|
||
convert_sff_voltage(char *buf, size_t size, uint8_t *xbuf)
|
||
{
|
||
double d;
|
||
|
||
d = (double)((xbuf[0] << 8) | xbuf[1]);
|
||
snprintf(buf, size, "%.2f Volts", d / 10000);
|
||
}
|
||
|
||
/*
|
||
* Converts value in @xbuf to both milliwats and dBm
|
||
* human representation.
|
||
*/
|
||
static void
|
||
convert_sff_power(struct i2c_info *ii, char *buf, size_t size, uint8_t *xbuf)
|
||
{
|
||
uint16_t mW;
|
||
double dbm;
|
||
|
||
mW = (xbuf[0] << 8) + xbuf[1];
|
||
|
||
/* Convert mw to dbm */
|
||
dbm = 10.0 * log10(1.0 * mW / 10000);
|
||
|
||
/*
|
||
* Assume internally-calibrated data.
|
||
* This is always true for SFF-8346, and explicitly
|
||
* checked for SFF-8472.
|
||
*/
|
||
|
||
/* Table 3.9, bit 5 is set, internally calibrated */
|
||
snprintf(buf, size, "%d.%02d mW (%.2f dBm)",
|
||
mW / 10000, (mW % 10000) / 100, dbm);
|
||
}
|
||
|
||
static void
|
||
get_sfp_temp(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
uint8_t xbuf[2];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8472_DIAG, SFF_8472_TEMP, 2, xbuf);
|
||
convert_sff_temp(buf, size, xbuf);
|
||
}
|
||
|
||
static void
|
||
get_sfp_voltage(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
uint8_t xbuf[2];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8472_DIAG, SFF_8472_VCC, 2, xbuf);
|
||
convert_sff_voltage(buf, size, xbuf);
|
||
}
|
||
|
||
static int
|
||
get_qsfp_temp(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
uint8_t xbuf[2];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8436_TEMP, 2, xbuf);
|
||
if ((xbuf[0] == 0xFF && xbuf[1] == 0xFF) || (xbuf[0] == 0 && xbuf[1] == 0))
|
||
return (-1);
|
||
convert_sff_temp(buf, size, xbuf);
|
||
return (0);
|
||
}
|
||
|
||
static void
|
||
get_qsfp_voltage(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
uint8_t xbuf[2];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8436_VCC, 2, xbuf);
|
||
convert_sff_voltage(buf, size, xbuf);
|
||
}
|
||
|
||
static void
|
||
get_sfp_rx_power(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
uint8_t xbuf[2];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8472_DIAG, SFF_8472_RX_POWER, 2, xbuf);
|
||
convert_sff_power(ii, buf, size, xbuf);
|
||
}
|
||
|
||
static void
|
||
get_sfp_tx_power(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
uint8_t xbuf[2];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8472_DIAG, SFF_8472_TX_POWER, 2, xbuf);
|
||
convert_sff_power(ii, buf, size, xbuf);
|
||
}
|
||
|
||
static void
|
||
get_qsfp_rx_power(struct i2c_info *ii, char *buf, size_t size, int chan)
|
||
{
|
||
uint8_t xbuf[2];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8436_RX_CH1_MSB + (chan-1)*2, 2, xbuf);
|
||
convert_sff_power(ii, buf, size, xbuf);
|
||
}
|
||
|
||
static void
|
||
get_qsfp_tx_power(struct i2c_info *ii, char *buf, size_t size, int chan)
|
||
{
|
||
uint8_t xbuf[2];
|
||
|
||
memset(xbuf, 0, sizeof(xbuf));
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8436_TX_CH1_MSB + (chan-1)*2, 2, xbuf);
|
||
convert_sff_power(ii, buf, size, xbuf);
|
||
}
|
||
|
||
static void
|
||
get_qsfp_rev_compliance(struct i2c_info *ii, char *buf, size_t size)
|
||
{
|
||
uint8_t xbuf;
|
||
|
||
xbuf = 0;
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8436_STATUS, 1, &xbuf);
|
||
convert_sff_rev_compliance(buf, size, xbuf);
|
||
}
|
||
|
||
static uint32_t
|
||
get_qsfp_br(struct i2c_info *ii)
|
||
{
|
||
uint8_t xbuf;
|
||
uint32_t rate;
|
||
|
||
xbuf = 0;
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8436_BITRATE, 1, &xbuf);
|
||
rate = xbuf * 100;
|
||
if (xbuf == 0xFF) {
|
||
read_i2c(ii, SFF_8436_BASE, SFF_8636_BITRATE, 1, &xbuf);
|
||
rate = xbuf * 250;
|
||
}
|
||
|
||
return (rate);
|
||
}
|
||
|
||
/*
|
||
* Reads i2c data from opened kernel socket.
|
||
*/
|
||
static int
|
||
read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len,
|
||
uint8_t *buf)
|
||
{
|
||
struct ifi2creq req;
|
||
int i, l;
|
||
|
||
if (ii->error != 0)
|
||
return (ii->error);
|
||
|
||
ii->ifr->ifr_data = (caddr_t)&req;
|
||
|
||
i = 0;
|
||
l = 0;
|
||
memset(&req, 0, sizeof(req));
|
||
req.dev_addr = addr;
|
||
req.offset = off;
|
||
req.len = len;
|
||
|
||
while (len > 0) {
|
||
l = MIN(sizeof(req.data), len);
|
||
req.len = l;
|
||
if (ioctl(ii->fd, SIOCGI2C, ii->ifr) != 0) {
|
||
ii->error = errno;
|
||
return (errno);
|
||
}
|
||
|
||
memcpy(&buf[i], req.data, l);
|
||
len -= l;
|
||
i += l;
|
||
req.offset += l;
|
||
}
|
||
|
||
return (0);
|
||
}
|
||
|
||
static void
|
||
dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len)
|
||
{
|
||
unsigned char buf[16];
|
||
int i, read;
|
||
|
||
while (len > 0) {
|
||
memset(buf, 0, sizeof(buf));
|
||
read = MIN(sizeof(buf), len);
|
||
read_i2c(ii, addr, off, read, buf);
|
||
if (ii->error != 0) {
|
||
fprintf(stderr, "Error reading i2c info\n");
|
||
return;
|
||
}
|
||
|
||
printf("\t");
|
||
for (i = 0; i < read; i++)
|
||
printf("%02X ", buf[i]);
|
||
printf("\n");
|
||
len -= read;
|
||
off += read;
|
||
}
|
||
}
|
||
|
||
static void
|
||
print_qsfp_status(struct i2c_info *ii, int verbose)
|
||
{
|
||
char buf[80], buf2[40], buf3[40];
|
||
uint32_t bitrate;
|
||
int i;
|
||
|
||
ii->qsfp = 1;
|
||
|
||
/* Transceiver type */
|
||
get_qsfp_identifier(ii, buf, sizeof(buf));
|
||
get_qsfp_transceiver_class(ii, buf2, sizeof(buf2));
|
||
get_qsfp_connector(ii, buf3, sizeof(buf3));
|
||
if (ii->error == 0)
|
||
printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3);
|
||
print_sfp_vendor(ii, buf, sizeof(buf));
|
||
if (ii->error == 0)
|
||
printf("\t%s\n", buf);
|
||
|
||
if (verbose > 1) {
|
||
get_qsfp_rev_compliance(ii, buf, sizeof(buf));
|
||
if (ii->error == 0)
|
||
printf("\tcompliance level: %s\n", buf);
|
||
|
||
bitrate = get_qsfp_br(ii);
|
||
if (ii->error == 0 && bitrate > 0)
|
||
printf("\tnominal bitrate: %u Mbps\n", bitrate);
|
||
}
|
||
|
||
/*
|
||
* The standards in this area are not clear when the
|
||
* additional measurements are present or not. Use a valid
|
||
* temperature reading as an indicator for the presence of
|
||
* voltage and TX/RX power measurements.
|
||
*/
|
||
if (get_qsfp_temp(ii, buf, sizeof(buf)) == 0) {
|
||
get_qsfp_voltage(ii, buf2, sizeof(buf2));
|
||
printf("\tmodule temperature: %s voltage: %s\n", buf, buf2);
|
||
for (i = 1; i <= 4; i++) {
|
||
get_qsfp_rx_power(ii, buf, sizeof(buf), i);
|
||
get_qsfp_tx_power(ii, buf2, sizeof(buf2), i);
|
||
printf("\tlane %d: RX: %s TX: %s\n", i, buf, buf2);
|
||
}
|
||
}
|
||
|
||
if (verbose > 2) {
|
||
printf("\n\tSFF8436 DUMP (0xA0 128..255 range):\n");
|
||
dump_i2c_data(ii, SFF_8436_BASE, 128, 128);
|
||
printf("\n\tSFF8436 DUMP (0xA0 0..81 range):\n");
|
||
dump_i2c_data(ii, SFF_8436_BASE, 0, 82);
|
||
}
|
||
}
|
||
|
||
static void
|
||
print_sfp_status(struct i2c_info *ii, int verbose)
|
||
{
|
||
char buf[80], buf2[40], buf3[40];
|
||
uint8_t diag_type, flags;
|
||
|
||
/* Read diagnostic monitoring type */
|
||
read_i2c(ii, SFF_8472_BASE, SFF_8472_DIAG_TYPE, 1, (caddr_t)&diag_type);
|
||
if (ii->error != 0)
|
||
return;
|
||
|
||
/*
|
||
* Read monitoring data IFF it is supplied AND is
|
||
* internally calibrated
|
||
*/
|
||
flags = SFF_8472_DDM_DONE | SFF_8472_DDM_INTERNAL;
|
||
if ((diag_type & flags) == flags)
|
||
ii->do_diag = 1;
|
||
|
||
/* Transceiver type */
|
||
get_sfp_identifier(ii, buf, sizeof(buf));
|
||
get_sfp_transceiver_class(ii, buf2, sizeof(buf2));
|
||
get_sfp_connector(ii, buf3, sizeof(buf3));
|
||
if (ii->error == 0)
|
||
printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3);
|
||
print_sfp_vendor(ii, buf, sizeof(buf));
|
||
if (ii->error == 0)
|
||
printf("\t%s\n", buf);
|
||
|
||
if (verbose > 5)
|
||
printf_sfp_transceiver_descr(ii, buf, sizeof(buf));
|
||
/*
|
||
* Request current measurements iff they are provided:
|
||
*/
|
||
if (ii->do_diag != 0) {
|
||
get_sfp_temp(ii, buf, sizeof(buf));
|
||
get_sfp_voltage(ii, buf2, sizeof(buf2));
|
||
printf("\tmodule temperature: %s Voltage: %s\n", buf, buf2);
|
||
get_sfp_rx_power(ii, buf, sizeof(buf));
|
||
get_sfp_tx_power(ii, buf2, sizeof(buf2));
|
||
printf("\tRX: %s TX: %s\n", buf, buf2);
|
||
}
|
||
|
||
if (verbose > 2) {
|
||
printf("\n\tSFF8472 DUMP (0xA0 0..127 range):\n");
|
||
dump_i2c_data(ii, SFF_8472_BASE, 0, 128);
|
||
}
|
||
}
|
||
|
||
void
|
||
sfp_status(int s, struct ifreq *ifr, int verbose)
|
||
{
|
||
struct i2c_info ii;
|
||
uint8_t id_byte;
|
||
|
||
/* Prepare necessary into pass to i2c reader */
|
||
memset(&ii, 0, sizeof(ii));
|
||
ii.fd = s;
|
||
ii.ifr = ifr;
|
||
|
||
/*
|
||
* Try to read byte 0 from i2c:
|
||
* Both SFF-8472 and SFF-8436 use it as
|
||
* 'identification byte'.
|
||
* Stop reading status on zero as value -
|
||
* this might happen in case of empty transceiver slot.
|
||
*/
|
||
id_byte = 0;
|
||
read_i2c(&ii, SFF_8472_BASE, SFF_8472_ID, 1, (caddr_t)&id_byte);
|
||
if (ii.error != 0 || id_byte == 0)
|
||
return;
|
||
|
||
switch (id_byte) {
|
||
case SFF_8024_ID_QSFP:
|
||
case SFF_8024_ID_QSFPPLUS:
|
||
case SFF_8024_ID_QSFP28:
|
||
print_qsfp_status(&ii, verbose);
|
||
break;
|
||
default:
|
||
print_sfp_status(&ii, verbose);
|
||
}
|
||
}
|
||
|