1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-05 12:56:08 +00:00
freebsd/sys/contrib/octeon-sdk/cvmx-tim-defs.h
Juli Mallett dc4ee6ca91 Merge the Cavium Octeon SDK 2.3.0 Simple Executive code and update FreeBSD to
make use of it where possible.

This primarily brings in support for newer hardware, and FreeBSD is not yet
able to support the abundance of IRQs on new hardware and many features in the
Ethernet driver.

Because of the changes to IRQs in the Simple Executive, we have to maintain our
own list of Octeon IRQs now, which probably can be pared-down and be specific
to the CIU interrupt unit soon, and when other interrupt mechanisms are added
they can maintain their own definitions.

Remove unmasking of interrupts from within the UART device now that the
function used is no longer present in the Simple Executive.  The unmasking
seems to have been gratuitous as this is more properly handled by the buses
above the UART device, and seems to work on that basis.
2012-03-11 06:17:49 +00:00

1375 lines
58 KiB
C

/***********************license start***************
* Copyright (c) 2003-2012 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* cvmx-tim-defs.h
*
* Configuration and status register (CSR) type definitions for
* Octeon tim.
*
* This file is auto generated. Do not edit.
*
* <hr>$Revision$<hr>
*
*/
#ifndef __CVMX_TIM_DEFS_H__
#define __CVMX_TIM_DEFS_H__
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_BIST_RESULT CVMX_TIM_BIST_RESULT_FUNC()
static inline uint64_t CVMX_TIM_BIST_RESULT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_TIM_BIST_RESULT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000020ull);
}
#else
#define CVMX_TIM_BIST_RESULT (CVMX_ADD_IO_SEG(0x0001180058000020ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_DBG2 CVMX_TIM_DBG2_FUNC()
static inline uint64_t CVMX_TIM_DBG2_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_TIM_DBG2 not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00011800580000A0ull);
}
#else
#define CVMX_TIM_DBG2 (CVMX_ADD_IO_SEG(0x00011800580000A0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_DBG3 CVMX_TIM_DBG3_FUNC()
static inline uint64_t CVMX_TIM_DBG3_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_TIM_DBG3 not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00011800580000A8ull);
}
#else
#define CVMX_TIM_DBG3 (CVMX_ADD_IO_SEG(0x00011800580000A8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_ECC_CFG CVMX_TIM_ECC_CFG_FUNC()
static inline uint64_t CVMX_TIM_ECC_CFG_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_TIM_ECC_CFG not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000018ull);
}
#else
#define CVMX_TIM_ECC_CFG (CVMX_ADD_IO_SEG(0x0001180058000018ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_FR_RN_TT CVMX_TIM_FR_RN_TT_FUNC()
static inline uint64_t CVMX_TIM_FR_RN_TT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_TIM_FR_RN_TT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000010ull);
}
#else
#define CVMX_TIM_FR_RN_TT (CVMX_ADD_IO_SEG(0x0001180058000010ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_GPIO_EN CVMX_TIM_GPIO_EN_FUNC()
static inline uint64_t CVMX_TIM_GPIO_EN_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_TIM_GPIO_EN not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000080ull);
}
#else
#define CVMX_TIM_GPIO_EN (CVMX_ADD_IO_SEG(0x0001180058000080ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_INT0 CVMX_TIM_INT0_FUNC()
static inline uint64_t CVMX_TIM_INT0_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_TIM_INT0 not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000030ull);
}
#else
#define CVMX_TIM_INT0 (CVMX_ADD_IO_SEG(0x0001180058000030ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_INT0_EN CVMX_TIM_INT0_EN_FUNC()
static inline uint64_t CVMX_TIM_INT0_EN_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_TIM_INT0_EN not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000038ull);
}
#else
#define CVMX_TIM_INT0_EN (CVMX_ADD_IO_SEG(0x0001180058000038ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_INT0_EVENT CVMX_TIM_INT0_EVENT_FUNC()
static inline uint64_t CVMX_TIM_INT0_EVENT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_TIM_INT0_EVENT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000040ull);
}
#else
#define CVMX_TIM_INT0_EVENT (CVMX_ADD_IO_SEG(0x0001180058000040ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_INT_ECCERR CVMX_TIM_INT_ECCERR_FUNC()
static inline uint64_t CVMX_TIM_INT_ECCERR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_TIM_INT_ECCERR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000060ull);
}
#else
#define CVMX_TIM_INT_ECCERR (CVMX_ADD_IO_SEG(0x0001180058000060ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_INT_ECCERR_EN CVMX_TIM_INT_ECCERR_EN_FUNC()
static inline uint64_t CVMX_TIM_INT_ECCERR_EN_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_TIM_INT_ECCERR_EN not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000068ull);
}
#else
#define CVMX_TIM_INT_ECCERR_EN (CVMX_ADD_IO_SEG(0x0001180058000068ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_INT_ECCERR_EVENT0 CVMX_TIM_INT_ECCERR_EVENT0_FUNC()
static inline uint64_t CVMX_TIM_INT_ECCERR_EVENT0_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_TIM_INT_ECCERR_EVENT0 not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000070ull);
}
#else
#define CVMX_TIM_INT_ECCERR_EVENT0 (CVMX_ADD_IO_SEG(0x0001180058000070ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_INT_ECCERR_EVENT1 CVMX_TIM_INT_ECCERR_EVENT1_FUNC()
static inline uint64_t CVMX_TIM_INT_ECCERR_EVENT1_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN68XX)))
cvmx_warn("CVMX_TIM_INT_ECCERR_EVENT1 not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000078ull);
}
#else
#define CVMX_TIM_INT_ECCERR_EVENT1 (CVMX_ADD_IO_SEG(0x0001180058000078ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_MEM_DEBUG0 CVMX_TIM_MEM_DEBUG0_FUNC()
static inline uint64_t CVMX_TIM_MEM_DEBUG0_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_TIM_MEM_DEBUG0 not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058001100ull);
}
#else
#define CVMX_TIM_MEM_DEBUG0 (CVMX_ADD_IO_SEG(0x0001180058001100ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_MEM_DEBUG1 CVMX_TIM_MEM_DEBUG1_FUNC()
static inline uint64_t CVMX_TIM_MEM_DEBUG1_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_TIM_MEM_DEBUG1 not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058001108ull);
}
#else
#define CVMX_TIM_MEM_DEBUG1 (CVMX_ADD_IO_SEG(0x0001180058001108ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_MEM_DEBUG2 CVMX_TIM_MEM_DEBUG2_FUNC()
static inline uint64_t CVMX_TIM_MEM_DEBUG2_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_TIM_MEM_DEBUG2 not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058001110ull);
}
#else
#define CVMX_TIM_MEM_DEBUG2 (CVMX_ADD_IO_SEG(0x0001180058001110ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_MEM_RING0 CVMX_TIM_MEM_RING0_FUNC()
static inline uint64_t CVMX_TIM_MEM_RING0_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_TIM_MEM_RING0 not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058001000ull);
}
#else
#define CVMX_TIM_MEM_RING0 (CVMX_ADD_IO_SEG(0x0001180058001000ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_MEM_RING1 CVMX_TIM_MEM_RING1_FUNC()
static inline uint64_t CVMX_TIM_MEM_RING1_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_TIM_MEM_RING1 not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058001008ull);
}
#else
#define CVMX_TIM_MEM_RING1 (CVMX_ADD_IO_SEG(0x0001180058001008ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_REG_BIST_RESULT CVMX_TIM_REG_BIST_RESULT_FUNC()
static inline uint64_t CVMX_TIM_REG_BIST_RESULT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_TIM_REG_BIST_RESULT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000080ull);
}
#else
#define CVMX_TIM_REG_BIST_RESULT (CVMX_ADD_IO_SEG(0x0001180058000080ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_REG_ERROR CVMX_TIM_REG_ERROR_FUNC()
static inline uint64_t CVMX_TIM_REG_ERROR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_TIM_REG_ERROR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000088ull);
}
#else
#define CVMX_TIM_REG_ERROR (CVMX_ADD_IO_SEG(0x0001180058000088ull))
#endif
#define CVMX_TIM_REG_FLAGS (CVMX_ADD_IO_SEG(0x0001180058000000ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_REG_INT_MASK CVMX_TIM_REG_INT_MASK_FUNC()
static inline uint64_t CVMX_TIM_REG_INT_MASK_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_TIM_REG_INT_MASK not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000090ull);
}
#else
#define CVMX_TIM_REG_INT_MASK (CVMX_ADD_IO_SEG(0x0001180058000090ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_TIM_REG_READ_IDX CVMX_TIM_REG_READ_IDX_FUNC()
static inline uint64_t CVMX_TIM_REG_READ_IDX_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_TIM_REG_READ_IDX not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180058000008ull);
}
#else
#define CVMX_TIM_REG_READ_IDX (CVMX_ADD_IO_SEG(0x0001180058000008ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_TIM_RINGX_CTL0(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 63)))))
cvmx_warn("CVMX_TIM_RINGX_CTL0(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180058002000ull) + ((offset) & 63) * 8;
}
#else
#define CVMX_TIM_RINGX_CTL0(offset) (CVMX_ADD_IO_SEG(0x0001180058002000ull) + ((offset) & 63) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_TIM_RINGX_CTL1(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 63)))))
cvmx_warn("CVMX_TIM_RINGX_CTL1(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180058002400ull) + ((offset) & 63) * 8;
}
#else
#define CVMX_TIM_RINGX_CTL1(offset) (CVMX_ADD_IO_SEG(0x0001180058002400ull) + ((offset) & 63) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_TIM_RINGX_CTL2(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 63)))))
cvmx_warn("CVMX_TIM_RINGX_CTL2(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180058002800ull) + ((offset) & 63) * 8;
}
#else
#define CVMX_TIM_RINGX_CTL2(offset) (CVMX_ADD_IO_SEG(0x0001180058002800ull) + ((offset) & 63) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_TIM_RINGX_DBG0(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 63)))))
cvmx_warn("CVMX_TIM_RINGX_DBG0(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180058003000ull) + ((offset) & 63) * 8;
}
#else
#define CVMX_TIM_RINGX_DBG0(offset) (CVMX_ADD_IO_SEG(0x0001180058003000ull) + ((offset) & 63) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_TIM_RINGX_DBG1(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 63)))))
cvmx_warn("CVMX_TIM_RINGX_DBG1(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180058001200ull) + ((offset) & 63) * 8;
}
#else
#define CVMX_TIM_RINGX_DBG1(offset) (CVMX_ADD_IO_SEG(0x0001180058001200ull) + ((offset) & 63) * 8)
#endif
/**
* cvmx_tim_bist_result
*
* Notes:
* Access to the internal BiST results
* Each bit is the BiST result of an individual memory (per bit, 0=pass and 1=fail).
*/
union cvmx_tim_bist_result {
uint64_t u64;
struct cvmx_tim_bist_result_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_3_63 : 61;
uint64_t wqe_fifo : 1; /**< BIST result of the NCB_WQE FIFO (0=pass, !0=fail) */
uint64_t lslr_fifo : 1; /**< BIST result of the NCB_LSLR FIFO (0=pass, !0=fail) */
uint64_t rds_mem : 1; /**< BIST result of the RDS memory (0=pass, !0=fail) */
#else
uint64_t rds_mem : 1;
uint64_t lslr_fifo : 1;
uint64_t wqe_fifo : 1;
uint64_t reserved_3_63 : 61;
#endif
} s;
struct cvmx_tim_bist_result_s cn68xx;
struct cvmx_tim_bist_result_s cn68xxp1;
};
typedef union cvmx_tim_bist_result cvmx_tim_bist_result_t;
/**
* cvmx_tim_dbg2
*/
union cvmx_tim_dbg2 {
uint64_t u64;
struct cvmx_tim_dbg2_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t mem_alloc_reg : 8; /**< NCB Load Memory Allocation status */
uint64_t reserved_51_55 : 5;
uint64_t gnt_fifo_level : 3; /**< NCB GRANT FIFO level */
uint64_t reserved_45_47 : 3;
uint64_t rwf_fifo_level : 5; /**< NCB requests FIFO level */
uint64_t wqe_fifo_level : 8; /**< NCB WQE LD FIFO level */
uint64_t reserved_16_31 : 16;
uint64_t fsm3_state : 4; /**< FSM 3 current state */
uint64_t fsm2_state : 4; /**< FSM 2 current state */
uint64_t fsm1_state : 4; /**< FSM 1 current state */
uint64_t fsm0_state : 4; /**< FSM 0 current state */
#else
uint64_t fsm0_state : 4;
uint64_t fsm1_state : 4;
uint64_t fsm2_state : 4;
uint64_t fsm3_state : 4;
uint64_t reserved_16_31 : 16;
uint64_t wqe_fifo_level : 8;
uint64_t rwf_fifo_level : 5;
uint64_t reserved_45_47 : 3;
uint64_t gnt_fifo_level : 3;
uint64_t reserved_51_55 : 5;
uint64_t mem_alloc_reg : 8;
#endif
} s;
struct cvmx_tim_dbg2_s cn68xx;
struct cvmx_tim_dbg2_s cn68xxp1;
};
typedef union cvmx_tim_dbg2 cvmx_tim_dbg2_t;
/**
* cvmx_tim_dbg3
*/
union cvmx_tim_dbg3 {
uint64_t u64;
struct cvmx_tim_dbg3_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t rings_pending_vec : 64; /**< Pending rings vector. Indicates which ring in TIM are
pending traversal. Bit 0 represents ring 0 while bit 63
represents ring 63. */
#else
uint64_t rings_pending_vec : 64;
#endif
} s;
struct cvmx_tim_dbg3_s cn68xx;
struct cvmx_tim_dbg3_s cn68xxp1;
};
typedef union cvmx_tim_dbg3 cvmx_tim_dbg3_t;
/**
* cvmx_tim_ecc_cfg
*/
union cvmx_tim_ecc_cfg {
uint64_t u64;
struct cvmx_tim_ecc_cfg_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_3_63 : 61;
uint64_t ecc_flp_syn : 2; /**< ECC Flip Syndrome. Flip the ECC's syndrome for testing
purposes, to test SBE and DBE ECC interrupts. */
uint64_t ecc_en : 1; /**< Enable ECC correction of the Ring Data Structre memory.
ECC is enabled by default. */
#else
uint64_t ecc_en : 1;
uint64_t ecc_flp_syn : 2;
uint64_t reserved_3_63 : 61;
#endif
} s;
struct cvmx_tim_ecc_cfg_s cn68xx;
struct cvmx_tim_ecc_cfg_s cn68xxp1;
};
typedef union cvmx_tim_ecc_cfg cvmx_tim_ecc_cfg_t;
/**
* cvmx_tim_fr_rn_tt
*
* Notes:
* For every 64 entries in a bucket interval should be at
* least 1us.
* Minimal recommended value for Threshold register is 1us
*/
union cvmx_tim_fr_rn_tt {
uint64_t u64;
struct cvmx_tim_fr_rn_tt_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_54_63 : 10;
uint64_t thld_gp : 22; /**< Free Running Timer Threshold. Defines the reset value
for the free running timer when it reaches zero during
it's count down. This threshold only applies to the
timer that is driven by GPIO edge as defined at
TIM_REG_FLAGS.GPIO_EDGE
***NOTE: Added in pass 2.0 */
uint64_t reserved_22_31 : 10;
uint64_t fr_rn_tt : 22; /**< Free Running Timer Threshold. Defines the reset value
for the free running timer when it reaches zero during
it's count down.
FR_RN_TT will be used in both cases where free running
clock is driven externally or internally.
Interval programming guidelines:
For every 64 entries in a bucket interval should be at
least 1us.
Minimal recommended value for FR_RN_TT is 1us. */
#else
uint64_t fr_rn_tt : 22;
uint64_t reserved_22_31 : 10;
uint64_t thld_gp : 22;
uint64_t reserved_54_63 : 10;
#endif
} s;
struct cvmx_tim_fr_rn_tt_s cn68xx;
struct cvmx_tim_fr_rn_tt_cn68xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_22_63 : 42;
uint64_t fr_rn_tt : 22; /**< Free Running Timer Threshold. Defines the reset value
for the free running timer when it reaches zero during
it's count down.
FR_RN_TT will be used in both cases where free running
clock is driven externally or internally.
Interval programming guidelines:
For every 64 entries in a bucket interval should be at
least 1us.
Minimal recommended value for FR_RN_TT is 1us. */
#else
uint64_t fr_rn_tt : 22;
uint64_t reserved_22_63 : 42;
#endif
} cn68xxp1;
};
typedef union cvmx_tim_fr_rn_tt cvmx_tim_fr_rn_tt_t;
/**
* cvmx_tim_gpio_en
*/
union cvmx_tim_gpio_en {
uint64_t u64;
struct cvmx_tim_gpio_en_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t gpio_en : 64; /**< Each bit correspond to rings [63:0] respectively.
This register reflects the values written to
TIM_RING63..0_CTL1.ENA_GPIO
***NOTE: Added in pass 2.0 for debug only. RESERVED */
#else
uint64_t gpio_en : 64;
#endif
} s;
struct cvmx_tim_gpio_en_s cn68xx;
};
typedef union cvmx_tim_gpio_en cvmx_tim_gpio_en_t;
/**
* cvmx_tim_int0
*
* Notes:
* A ring is in error if its interval has elapsed more than once without having been serviced. This is
* usually a programming error where number of entries in the bucket is too large for the interval
* specified for the ring.
* Any bit in the INT field should be cleared by writing '1' to it.
*/
union cvmx_tim_int0 {
uint64_t u64;
struct cvmx_tim_int0_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t int0 : 64; /**< Interrupt bit per ring. Each bit indicates the
ring number in error. Each bit in this reg is set
regardless of TIM_INT0_EN value. */
#else
uint64_t int0 : 64;
#endif
} s;
struct cvmx_tim_int0_s cn68xx;
struct cvmx_tim_int0_s cn68xxp1;
};
typedef union cvmx_tim_int0 cvmx_tim_int0_t;
/**
* cvmx_tim_int0_en
*
* Notes:
* When bit at TIM_INT0_EN is set it enables the corresponding TIM_INTO's bit for interrupt generation
* If enable bit is cleared the corresponding bit at TIM_INT0 will still be set.
* Interrupt to the cores is generated by : |(TIM_INT0 & TIM_INT0_EN0)
*/
union cvmx_tim_int0_en {
uint64_t u64;
struct cvmx_tim_int0_en_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t int0_en : 64; /**< Bit enable corresponding to TIM_INT0. */
#else
uint64_t int0_en : 64;
#endif
} s;
struct cvmx_tim_int0_en_s cn68xx;
struct cvmx_tim_int0_en_s cn68xxp1;
};
typedef union cvmx_tim_int0_en cvmx_tim_int0_en_t;
/**
* cvmx_tim_int0_event
*/
union cvmx_tim_int0_event {
uint64_t u64;
struct cvmx_tim_int0_event_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_6_63 : 58;
uint64_t ring_id : 6; /**< The first Ring ID where an interrupt occurred. */
#else
uint64_t ring_id : 6;
uint64_t reserved_6_63 : 58;
#endif
} s;
struct cvmx_tim_int0_event_s cn68xx;
struct cvmx_tim_int0_event_s cn68xxp1;
};
typedef union cvmx_tim_int0_event cvmx_tim_int0_event_t;
/**
* cvmx_tim_int_eccerr
*
* Notes:
* Each bit in this reg is set regardless of TIM_INT_ECCERR_EN value.
*
*/
union cvmx_tim_int_eccerr {
uint64_t u64;
struct cvmx_tim_int_eccerr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t dbe : 1; /**< TIM RDS memory had a Double Bit Error */
uint64_t sbe : 1; /**< TIM RDS memory had a Single Bit Error */
#else
uint64_t sbe : 1;
uint64_t dbe : 1;
uint64_t reserved_2_63 : 62;
#endif
} s;
struct cvmx_tim_int_eccerr_s cn68xx;
struct cvmx_tim_int_eccerr_s cn68xxp1;
};
typedef union cvmx_tim_int_eccerr cvmx_tim_int_eccerr_t;
/**
* cvmx_tim_int_eccerr_en
*
* Notes:
* When mask bit is set, the corresponding bit in TIM_INT_ECCERR is enabled. If mask bit is cleared the
* corresponding bit in TIM_INT_ECCERR will still be set but interrupt will not be reported.
*/
union cvmx_tim_int_eccerr_en {
uint64_t u64;
struct cvmx_tim_int_eccerr_en_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t dbe_en : 1; /**< Bit mask corresponding to TIM_REG_ECCERR.DBE */
uint64_t sbe_en : 1; /**< Bit mask corresponding to TIM_REG_ECCERR.SBE */
#else
uint64_t sbe_en : 1;
uint64_t dbe_en : 1;
uint64_t reserved_2_63 : 62;
#endif
} s;
struct cvmx_tim_int_eccerr_en_s cn68xx;
struct cvmx_tim_int_eccerr_en_s cn68xxp1;
};
typedef union cvmx_tim_int_eccerr_en cvmx_tim_int_eccerr_en_t;
/**
* cvmx_tim_int_eccerr_event0
*/
union cvmx_tim_int_eccerr_event0 {
uint64_t u64;
struct cvmx_tim_int_eccerr_event0_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_15_63 : 49;
uint64_t synd : 7; /**< ECC Syndrome */
uint64_t add : 8; /**< Memory address where the Error occurred. */
#else
uint64_t add : 8;
uint64_t synd : 7;
uint64_t reserved_15_63 : 49;
#endif
} s;
struct cvmx_tim_int_eccerr_event0_s cn68xx;
struct cvmx_tim_int_eccerr_event0_s cn68xxp1;
};
typedef union cvmx_tim_int_eccerr_event0 cvmx_tim_int_eccerr_event0_t;
/**
* cvmx_tim_int_eccerr_event1
*/
union cvmx_tim_int_eccerr_event1 {
uint64_t u64;
struct cvmx_tim_int_eccerr_event1_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_55_63 : 9;
uint64_t org_ecc : 7; /**< Original ECC bits where the error occured. */
uint64_t org_rds_dat : 48; /**< Memory original data where the error occured. */
#else
uint64_t org_rds_dat : 48;
uint64_t org_ecc : 7;
uint64_t reserved_55_63 : 9;
#endif
} s;
struct cvmx_tim_int_eccerr_event1_s cn68xx;
struct cvmx_tim_int_eccerr_event1_s cn68xxp1;
};
typedef union cvmx_tim_int_eccerr_event1 cvmx_tim_int_eccerr_event1_t;
/**
* cvmx_tim_mem_debug0
*
* Notes:
* Internal per-ring state intended for debug use only - tim.ctl[47:0]
* This CSR is a memory of 16 entries, and thus, the TIM_REG_READ_IDX CSR must be written before any
* CSR read operations to this address can be performed.
*/
union cvmx_tim_mem_debug0 {
uint64_t u64;
struct cvmx_tim_mem_debug0_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_48_63 : 16;
uint64_t ena : 1; /**< Ring timer enable */
uint64_t reserved_46_46 : 1;
uint64_t count : 22; /**< Time offset for the ring
Set to INTERVAL and counts down by 1 every 1024
cycles when ENA==1. The HW forces a bucket
traversal (and resets COUNT to INTERVAL) whenever
the decrement would cause COUNT to go negative.
COUNT is unpredictable whenever ENA==0.
COUNT is reset to INTERVAL whenever TIM_MEM_RING1
is written for the ring. */
uint64_t reserved_22_23 : 2;
uint64_t interval : 22; /**< Timer interval - 1 */
#else
uint64_t interval : 22;
uint64_t reserved_22_23 : 2;
uint64_t count : 22;
uint64_t reserved_46_46 : 1;
uint64_t ena : 1;
uint64_t reserved_48_63 : 16;
#endif
} s;
struct cvmx_tim_mem_debug0_s cn30xx;
struct cvmx_tim_mem_debug0_s cn31xx;
struct cvmx_tim_mem_debug0_s cn38xx;
struct cvmx_tim_mem_debug0_s cn38xxp2;
struct cvmx_tim_mem_debug0_s cn50xx;
struct cvmx_tim_mem_debug0_s cn52xx;
struct cvmx_tim_mem_debug0_s cn52xxp1;
struct cvmx_tim_mem_debug0_s cn56xx;
struct cvmx_tim_mem_debug0_s cn56xxp1;
struct cvmx_tim_mem_debug0_s cn58xx;
struct cvmx_tim_mem_debug0_s cn58xxp1;
struct cvmx_tim_mem_debug0_s cn61xx;
struct cvmx_tim_mem_debug0_s cn63xx;
struct cvmx_tim_mem_debug0_s cn63xxp1;
struct cvmx_tim_mem_debug0_s cn66xx;
struct cvmx_tim_mem_debug0_s cnf71xx;
};
typedef union cvmx_tim_mem_debug0 cvmx_tim_mem_debug0_t;
/**
* cvmx_tim_mem_debug1
*
* Notes:
* Internal per-ring state intended for debug use only - tim.sta[63:0]
* This CSR is a memory of 16 entries, and thus, the TIM_REG_READ_IDX CSR must be written before any
* CSR read operations to this address can be performed.
*/
union cvmx_tim_mem_debug1 {
uint64_t u64;
struct cvmx_tim_mem_debug1_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t bucket : 13; /**< Current bucket[12:0]
Reset to 0 whenever TIM_MEM_RING0 is written for
the ring. Incremented (modulo BSIZE) once per
bucket traversal.
See TIM_MEM_DEBUG2[BUCKET]. */
uint64_t base : 31; /**< Pointer[35:5] to bucket[0] */
uint64_t bsize : 20; /**< Number of buckets - 1 */
#else
uint64_t bsize : 20;
uint64_t base : 31;
uint64_t bucket : 13;
#endif
} s;
struct cvmx_tim_mem_debug1_s cn30xx;
struct cvmx_tim_mem_debug1_s cn31xx;
struct cvmx_tim_mem_debug1_s cn38xx;
struct cvmx_tim_mem_debug1_s cn38xxp2;
struct cvmx_tim_mem_debug1_s cn50xx;
struct cvmx_tim_mem_debug1_s cn52xx;
struct cvmx_tim_mem_debug1_s cn52xxp1;
struct cvmx_tim_mem_debug1_s cn56xx;
struct cvmx_tim_mem_debug1_s cn56xxp1;
struct cvmx_tim_mem_debug1_s cn58xx;
struct cvmx_tim_mem_debug1_s cn58xxp1;
struct cvmx_tim_mem_debug1_s cn61xx;
struct cvmx_tim_mem_debug1_s cn63xx;
struct cvmx_tim_mem_debug1_s cn63xxp1;
struct cvmx_tim_mem_debug1_s cn66xx;
struct cvmx_tim_mem_debug1_s cnf71xx;
};
typedef union cvmx_tim_mem_debug1 cvmx_tim_mem_debug1_t;
/**
* cvmx_tim_mem_debug2
*
* Notes:
* Internal per-ring state intended for debug use only - tim.sta[95:64]
* This CSR is a memory of 16 entries, and thus, the TIM_REG_READ_IDX CSR must be written before any
* CSR read operations to this address can be performed.
*/
union cvmx_tim_mem_debug2 {
uint64_t u64;
struct cvmx_tim_mem_debug2_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_24_63 : 40;
uint64_t cpool : 3; /**< Free list used to free chunks */
uint64_t csize : 13; /**< Number of words per chunk */
uint64_t reserved_7_7 : 1;
uint64_t bucket : 7; /**< Current bucket[19:13]
See TIM_MEM_DEBUG1[BUCKET]. */
#else
uint64_t bucket : 7;
uint64_t reserved_7_7 : 1;
uint64_t csize : 13;
uint64_t cpool : 3;
uint64_t reserved_24_63 : 40;
#endif
} s;
struct cvmx_tim_mem_debug2_s cn30xx;
struct cvmx_tim_mem_debug2_s cn31xx;
struct cvmx_tim_mem_debug2_s cn38xx;
struct cvmx_tim_mem_debug2_s cn38xxp2;
struct cvmx_tim_mem_debug2_s cn50xx;
struct cvmx_tim_mem_debug2_s cn52xx;
struct cvmx_tim_mem_debug2_s cn52xxp1;
struct cvmx_tim_mem_debug2_s cn56xx;
struct cvmx_tim_mem_debug2_s cn56xxp1;
struct cvmx_tim_mem_debug2_s cn58xx;
struct cvmx_tim_mem_debug2_s cn58xxp1;
struct cvmx_tim_mem_debug2_s cn61xx;
struct cvmx_tim_mem_debug2_s cn63xx;
struct cvmx_tim_mem_debug2_s cn63xxp1;
struct cvmx_tim_mem_debug2_s cn66xx;
struct cvmx_tim_mem_debug2_s cnf71xx;
};
typedef union cvmx_tim_mem_debug2 cvmx_tim_mem_debug2_t;
/**
* cvmx_tim_mem_ring0
*
* Notes:
* TIM_MEM_RING0 must not be written for a ring when TIM_MEM_RING1[ENA] is set for the ring.
* Every write to TIM_MEM_RING0 clears the current bucket for the ring. (The current bucket is
* readable via TIM_MEM_DEBUG2[BUCKET],TIM_MEM_DEBUG1[BUCKET].)
* BASE is a 32-byte aligned pointer[35:0]. Only pointer[35:5] are stored because pointer[4:0] = 0.
* This CSR is a memory of 16 entries, and thus, the TIM_REG_READ_IDX CSR must be written before any
* CSR read operations to this address can be performed.
*/
union cvmx_tim_mem_ring0 {
uint64_t u64;
struct cvmx_tim_mem_ring0_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_55_63 : 9;
uint64_t first_bucket : 31; /**< Pointer[35:5] to bucket[0] */
uint64_t num_buckets : 20; /**< Number of buckets - 1 */
uint64_t ring : 4; /**< Ring ID */
#else
uint64_t ring : 4;
uint64_t num_buckets : 20;
uint64_t first_bucket : 31;
uint64_t reserved_55_63 : 9;
#endif
} s;
struct cvmx_tim_mem_ring0_s cn30xx;
struct cvmx_tim_mem_ring0_s cn31xx;
struct cvmx_tim_mem_ring0_s cn38xx;
struct cvmx_tim_mem_ring0_s cn38xxp2;
struct cvmx_tim_mem_ring0_s cn50xx;
struct cvmx_tim_mem_ring0_s cn52xx;
struct cvmx_tim_mem_ring0_s cn52xxp1;
struct cvmx_tim_mem_ring0_s cn56xx;
struct cvmx_tim_mem_ring0_s cn56xxp1;
struct cvmx_tim_mem_ring0_s cn58xx;
struct cvmx_tim_mem_ring0_s cn58xxp1;
struct cvmx_tim_mem_ring0_s cn61xx;
struct cvmx_tim_mem_ring0_s cn63xx;
struct cvmx_tim_mem_ring0_s cn63xxp1;
struct cvmx_tim_mem_ring0_s cn66xx;
struct cvmx_tim_mem_ring0_s cnf71xx;
};
typedef union cvmx_tim_mem_ring0 cvmx_tim_mem_ring0_t;
/**
* cvmx_tim_mem_ring1
*
* Notes:
* After a 1->0 transition on ENA, the HW will still complete a bucket traversal for the ring
* if it was pending or active prior to the transition. (SW must delay to ensure the completion
* of the traversal before reprogramming the ring.)
* Every write to TIM_MEM_RING1 resets the current time offset for the ring to the INTERVAL value.
* (The current time offset for the ring is readable via TIM_MEM_DEBUG0[COUNT].)
* CSIZE must be at least 16. It is illegal to program CSIZE to a value that is less than 16.
* This CSR is a memory of 16 entries, and thus, the TIM_REG_READ_IDX CSR must be written before any
* CSR read operations to this address can be performed.
*/
union cvmx_tim_mem_ring1 {
uint64_t u64;
struct cvmx_tim_mem_ring1_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_43_63 : 21;
uint64_t enable : 1; /**< Ring timer enable
When clear, the ring is disabled and TIM
will not traverse any new buckets for the ring. */
uint64_t pool : 3; /**< Free list used to free chunks */
uint64_t words_per_chunk : 13; /**< Number of words per chunk */
uint64_t interval : 22; /**< Timer interval - 1, measured in 1024 cycle ticks */
uint64_t ring : 4; /**< Ring ID */
#else
uint64_t ring : 4;
uint64_t interval : 22;
uint64_t words_per_chunk : 13;
uint64_t pool : 3;
uint64_t enable : 1;
uint64_t reserved_43_63 : 21;
#endif
} s;
struct cvmx_tim_mem_ring1_s cn30xx;
struct cvmx_tim_mem_ring1_s cn31xx;
struct cvmx_tim_mem_ring1_s cn38xx;
struct cvmx_tim_mem_ring1_s cn38xxp2;
struct cvmx_tim_mem_ring1_s cn50xx;
struct cvmx_tim_mem_ring1_s cn52xx;
struct cvmx_tim_mem_ring1_s cn52xxp1;
struct cvmx_tim_mem_ring1_s cn56xx;
struct cvmx_tim_mem_ring1_s cn56xxp1;
struct cvmx_tim_mem_ring1_s cn58xx;
struct cvmx_tim_mem_ring1_s cn58xxp1;
struct cvmx_tim_mem_ring1_s cn61xx;
struct cvmx_tim_mem_ring1_s cn63xx;
struct cvmx_tim_mem_ring1_s cn63xxp1;
struct cvmx_tim_mem_ring1_s cn66xx;
struct cvmx_tim_mem_ring1_s cnf71xx;
};
typedef union cvmx_tim_mem_ring1 cvmx_tim_mem_ring1_t;
/**
* cvmx_tim_reg_bist_result
*
* Notes:
* Access to the internal BiST results
* Each bit is the BiST result of an individual memory (per bit, 0=pass and 1=fail).
*/
union cvmx_tim_reg_bist_result {
uint64_t u64;
struct cvmx_tim_reg_bist_result_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_4_63 : 60;
uint64_t sta : 2; /**< BiST result of the STA memories (0=pass, !0=fail) */
uint64_t ncb : 1; /**< BiST result of the NCB memories (0=pass, !0=fail) */
uint64_t ctl : 1; /**< BiST result of the CTL memories (0=pass, !0=fail) */
#else
uint64_t ctl : 1;
uint64_t ncb : 1;
uint64_t sta : 2;
uint64_t reserved_4_63 : 60;
#endif
} s;
struct cvmx_tim_reg_bist_result_s cn30xx;
struct cvmx_tim_reg_bist_result_s cn31xx;
struct cvmx_tim_reg_bist_result_s cn38xx;
struct cvmx_tim_reg_bist_result_s cn38xxp2;
struct cvmx_tim_reg_bist_result_s cn50xx;
struct cvmx_tim_reg_bist_result_s cn52xx;
struct cvmx_tim_reg_bist_result_s cn52xxp1;
struct cvmx_tim_reg_bist_result_s cn56xx;
struct cvmx_tim_reg_bist_result_s cn56xxp1;
struct cvmx_tim_reg_bist_result_s cn58xx;
struct cvmx_tim_reg_bist_result_s cn58xxp1;
struct cvmx_tim_reg_bist_result_s cn61xx;
struct cvmx_tim_reg_bist_result_s cn63xx;
struct cvmx_tim_reg_bist_result_s cn63xxp1;
struct cvmx_tim_reg_bist_result_s cn66xx;
struct cvmx_tim_reg_bist_result_s cnf71xx;
};
typedef union cvmx_tim_reg_bist_result cvmx_tim_reg_bist_result_t;
/**
* cvmx_tim_reg_error
*
* Notes:
* A ring is in error if its interval has elapsed more than once without having been serviced.
* During a CSR write to this register, the write data is used as a mask to clear the selected mask
* bits (mask'[15:0] = mask[15:0] & ~write_data[15:0]).
*/
union cvmx_tim_reg_error {
uint64_t u64;
struct cvmx_tim_reg_error_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_16_63 : 48;
uint64_t mask : 16; /**< Bit mask indicating the rings in error */
#else
uint64_t mask : 16;
uint64_t reserved_16_63 : 48;
#endif
} s;
struct cvmx_tim_reg_error_s cn30xx;
struct cvmx_tim_reg_error_s cn31xx;
struct cvmx_tim_reg_error_s cn38xx;
struct cvmx_tim_reg_error_s cn38xxp2;
struct cvmx_tim_reg_error_s cn50xx;
struct cvmx_tim_reg_error_s cn52xx;
struct cvmx_tim_reg_error_s cn52xxp1;
struct cvmx_tim_reg_error_s cn56xx;
struct cvmx_tim_reg_error_s cn56xxp1;
struct cvmx_tim_reg_error_s cn58xx;
struct cvmx_tim_reg_error_s cn58xxp1;
struct cvmx_tim_reg_error_s cn61xx;
struct cvmx_tim_reg_error_s cn63xx;
struct cvmx_tim_reg_error_s cn63xxp1;
struct cvmx_tim_reg_error_s cn66xx;
struct cvmx_tim_reg_error_s cnf71xx;
};
typedef union cvmx_tim_reg_error cvmx_tim_reg_error_t;
/**
* cvmx_tim_reg_flags
*
* 13e20 reserved
*
*
* Notes:
* TIM has a counter that causes a periodic tick every 1024 cycles. This counter is shared by all
* rings. (Each tick causes the HW to decrement the time offset (i.e. COUNT) for all enabled rings.)
* When ENA_TIM==0, the HW stops this shared periodic counter, so there are no more ticks, and there
* are no more new bucket traversals (for any ring).
*
* If ENA_TIM transitions 1->0, TIM will no longer create new bucket traversals, but there may
* have been previous ones. If there are ring bucket traversals that were already pending but
* not currently active (i.e. bucket traversals that need to be done by the HW, but haven't been yet)
* during this ENA_TIM 1->0 transition, then these bucket traversals will remain pending until
* ENA_TIM is later set to one. Bucket traversals that were already in progress will complete
* after the 1->0 ENA_TIM transition, though.
*/
union cvmx_tim_reg_flags {
uint64_t u64;
struct cvmx_tim_reg_flags_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_7_63 : 57;
uint64_t gpio_edge : 2; /**< Edge used for GPIO timing
2'b10 - TIM counts high to low transitions
2'b01 - TIM counts low to high transitions
2'b11 - TIM counts Both low to high and high to low
transitions */
uint64_t ena_gpio : 1; /**< Enable the external control of GPIO over the free
running timer.
When set, free running timer will be driven by GPIO.
Free running timer will count posedge or negedge of the
GPIO pin based on GPIO_EDGE register. */
uint64_t ena_dfb : 1; /**< Enable Don't Free Buffer. When set chunk buffer
would not be released by the TIM back to FPA. */
uint64_t reset : 1; /**< Reset oneshot pulse for free-running structures */
uint64_t enable_dwb : 1; /**< Enables non-zero DonwWriteBacks when set
When set, enables the use of
DontWriteBacks during the buffer freeing
operations. */
uint64_t enable_timers : 1; /**< Enables the TIM section when set
When set, TIM is in normal operation.
When clear, time is effectively stopped for all
rings in TIM. */
#else
uint64_t enable_timers : 1;
uint64_t enable_dwb : 1;
uint64_t reset : 1;
uint64_t ena_dfb : 1;
uint64_t ena_gpio : 1;
uint64_t gpio_edge : 2;
uint64_t reserved_7_63 : 57;
#endif
} s;
struct cvmx_tim_reg_flags_cn30xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_3_63 : 61;
uint64_t reset : 1; /**< Reset oneshot pulse for free-running structures */
uint64_t enable_dwb : 1; /**< Enables non-zero DonwWriteBacks when set
When set, enables the use of
DontWriteBacks during the buffer freeing
operations. */
uint64_t enable_timers : 1; /**< Enables the TIM section when set
When set, TIM is in normal operation.
When clear, time is effectively stopped for all
rings in TIM. */
#else
uint64_t enable_timers : 1;
uint64_t enable_dwb : 1;
uint64_t reset : 1;
uint64_t reserved_3_63 : 61;
#endif
} cn30xx;
struct cvmx_tim_reg_flags_cn30xx cn31xx;
struct cvmx_tim_reg_flags_cn30xx cn38xx;
struct cvmx_tim_reg_flags_cn30xx cn38xxp2;
struct cvmx_tim_reg_flags_cn30xx cn50xx;
struct cvmx_tim_reg_flags_cn30xx cn52xx;
struct cvmx_tim_reg_flags_cn30xx cn52xxp1;
struct cvmx_tim_reg_flags_cn30xx cn56xx;
struct cvmx_tim_reg_flags_cn30xx cn56xxp1;
struct cvmx_tim_reg_flags_cn30xx cn58xx;
struct cvmx_tim_reg_flags_cn30xx cn58xxp1;
struct cvmx_tim_reg_flags_cn30xx cn61xx;
struct cvmx_tim_reg_flags_cn30xx cn63xx;
struct cvmx_tim_reg_flags_cn30xx cn63xxp1;
struct cvmx_tim_reg_flags_cn30xx cn66xx;
struct cvmx_tim_reg_flags_s cn68xx;
struct cvmx_tim_reg_flags_s cn68xxp1;
struct cvmx_tim_reg_flags_cn30xx cnf71xx;
};
typedef union cvmx_tim_reg_flags cvmx_tim_reg_flags_t;
/**
* cvmx_tim_reg_int_mask
*
* Notes:
* Note that this CSR is present only in chip revisions beginning with pass2.
* When mask bit is set, the interrupt is enabled.
*/
union cvmx_tim_reg_int_mask {
uint64_t u64;
struct cvmx_tim_reg_int_mask_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_16_63 : 48;
uint64_t mask : 16; /**< Bit mask corresponding to TIM_REG_ERROR.MASK above */
#else
uint64_t mask : 16;
uint64_t reserved_16_63 : 48;
#endif
} s;
struct cvmx_tim_reg_int_mask_s cn30xx;
struct cvmx_tim_reg_int_mask_s cn31xx;
struct cvmx_tim_reg_int_mask_s cn38xx;
struct cvmx_tim_reg_int_mask_s cn38xxp2;
struct cvmx_tim_reg_int_mask_s cn50xx;
struct cvmx_tim_reg_int_mask_s cn52xx;
struct cvmx_tim_reg_int_mask_s cn52xxp1;
struct cvmx_tim_reg_int_mask_s cn56xx;
struct cvmx_tim_reg_int_mask_s cn56xxp1;
struct cvmx_tim_reg_int_mask_s cn58xx;
struct cvmx_tim_reg_int_mask_s cn58xxp1;
struct cvmx_tim_reg_int_mask_s cn61xx;
struct cvmx_tim_reg_int_mask_s cn63xx;
struct cvmx_tim_reg_int_mask_s cn63xxp1;
struct cvmx_tim_reg_int_mask_s cn66xx;
struct cvmx_tim_reg_int_mask_s cnf71xx;
};
typedef union cvmx_tim_reg_int_mask cvmx_tim_reg_int_mask_t;
/**
* cvmx_tim_reg_read_idx
*
* Notes:
* Provides the read index during a CSR read operation to any of the CSRs that are physically stored
* as memories. The names of these CSRs begin with the prefix "TIM_MEM_".
* IDX[7:0] is the read index. INC[7:0] is an increment that is added to IDX[7:0] after any CSR read.
* The intended use is to initially write this CSR such that IDX=0 and INC=1. Then, the entire
* contents of a CSR memory can be read with consecutive CSR read commands.
*/
union cvmx_tim_reg_read_idx {
uint64_t u64;
struct cvmx_tim_reg_read_idx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_16_63 : 48;
uint64_t inc : 8; /**< Increment to add to current index for next index */
uint64_t index : 8; /**< Index to use for next memory CSR read */
#else
uint64_t index : 8;
uint64_t inc : 8;
uint64_t reserved_16_63 : 48;
#endif
} s;
struct cvmx_tim_reg_read_idx_s cn30xx;
struct cvmx_tim_reg_read_idx_s cn31xx;
struct cvmx_tim_reg_read_idx_s cn38xx;
struct cvmx_tim_reg_read_idx_s cn38xxp2;
struct cvmx_tim_reg_read_idx_s cn50xx;
struct cvmx_tim_reg_read_idx_s cn52xx;
struct cvmx_tim_reg_read_idx_s cn52xxp1;
struct cvmx_tim_reg_read_idx_s cn56xx;
struct cvmx_tim_reg_read_idx_s cn56xxp1;
struct cvmx_tim_reg_read_idx_s cn58xx;
struct cvmx_tim_reg_read_idx_s cn58xxp1;
struct cvmx_tim_reg_read_idx_s cn61xx;
struct cvmx_tim_reg_read_idx_s cn63xx;
struct cvmx_tim_reg_read_idx_s cn63xxp1;
struct cvmx_tim_reg_read_idx_s cn66xx;
struct cvmx_tim_reg_read_idx_s cnf71xx;
};
typedef union cvmx_tim_reg_read_idx cvmx_tim_reg_read_idx_t;
/**
* cvmx_tim_ring#_ctl0
*
* Notes:
* This CSR is a memory of 64 entries
* After a 1 to 0 transition on ENA, the HW will still complete a bucket traversal for the ring
* if it was pending or active prior to the transition. (SW must delay to ensure the completion
* of the traversal before reprogramming the ring.)
*/
union cvmx_tim_ringx_ctl0 {
uint64_t u64;
struct cvmx_tim_ringx_ctl0_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_47_63 : 17;
uint64_t ena : 1; /**< Ring timer enable */
uint64_t intc : 2; /**< Interval count for Error. Defines how many intervals
could elapse from bucket expiration till actual
bucket traversal before HW asserts an error.
Typical value is 0,1,2. */
uint64_t timercount : 22; /**< Timer Count represents the ring offset; how many timer
ticks have left till the interval expiration.
Typical initialization value should be Interval/Constant,
it is recommended that constant should be unique per ring
This will create an offset between the rings.
Once ENA is set,
TIMERCOUNT counts down timer ticks. When TIMERCOUNT
reaches zero, ring's interval expired and the HW forces
a bucket traversal (and resets TIMERCOUNT to INTERVAL)
TIMERCOUNT is unpredictable whenever ENA==0.
It is SW responsibility to set TIMERCOUNT before
TIM_RINGX_CTL0.ENA transitions from 0 to 1.
When the field is set to X it would take X+1 timer tick
for the interval to expire. */
uint64_t interval : 22; /**< Timer interval. Measured in Timer Ticks, where timer
ticks are defined by TIM_FR_RN_TT.FR_RN_TT. */
#else
uint64_t interval : 22;
uint64_t timercount : 22;
uint64_t intc : 2;
uint64_t ena : 1;
uint64_t reserved_47_63 : 17;
#endif
} s;
struct cvmx_tim_ringx_ctl0_s cn68xx;
struct cvmx_tim_ringx_ctl0_s cn68xxp1;
};
typedef union cvmx_tim_ringx_ctl0 cvmx_tim_ringx_ctl0_t;
/**
* cvmx_tim_ring#_ctl1
*
* Notes:
* This CSR is a memory of 64 entries
* ***NOTE: Added fields in pass 2.0
*/
union cvmx_tim_ringx_ctl1 {
uint64_t u64;
struct cvmx_tim_ringx_ctl1_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_47_63 : 17;
uint64_t ena_gpio : 1; /**< When set, ring's timer tick will be generated by the
GPIO Timer. GPIO edge is defined by
TIM_REG_FLAGS.GPIO_EDGE
Default value zero means that timer ticks will
be genearated from the Internal Timer */
uint64_t ena_prd : 1; /**< Enable Periodic Mode which would disable the memory
write of zeros to num_entries and chunk_remainder
when a bucket is traveresed. */
uint64_t ena_dwb : 1; /**< When set, enables the use of Dont Write Back during
FPA buffer freeing operations */
uint64_t ena_dfb : 1; /**< Enable Don't Free Buffer. When set chunk buffer
would not be released by the TIM back to FPA. */
uint64_t cpool : 3; /**< FPA Free list to free chunks to. */
uint64_t bucket : 20; /**< Current bucket. Should be set to zero by SW at
enable time.
Incremented once per bucket traversal. */
uint64_t bsize : 20; /**< Number of buckets minus one. If BSIZE==0 there is
only one bucket in the ring. */
#else
uint64_t bsize : 20;
uint64_t bucket : 20;
uint64_t cpool : 3;
uint64_t ena_dfb : 1;
uint64_t ena_dwb : 1;
uint64_t ena_prd : 1;
uint64_t ena_gpio : 1;
uint64_t reserved_47_63 : 17;
#endif
} s;
struct cvmx_tim_ringx_ctl1_s cn68xx;
struct cvmx_tim_ringx_ctl1_cn68xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_43_63 : 21;
uint64_t cpool : 3; /**< FPA Free list to free chunks to. */
uint64_t bucket : 20; /**< Current bucket. Should be set to zero by SW at
enable time.
Incremented once per bucket traversal. */
uint64_t bsize : 20; /**< Number of buckets minus one. If BSIZE==0 there is
only one bucket in the ring. */
#else
uint64_t bsize : 20;
uint64_t bucket : 20;
uint64_t cpool : 3;
uint64_t reserved_43_63 : 21;
#endif
} cn68xxp1;
};
typedef union cvmx_tim_ringx_ctl1 cvmx_tim_ringx_ctl1_t;
/**
* cvmx_tim_ring#_ctl2
*
* Notes:
* BASE is a 32-byte aligned pointer[35:0]. Only pointer[35:5] are stored because pointer[4:0] = 0.
* This CSR is a memory of 64 entries
*/
union cvmx_tim_ringx_ctl2 {
uint64_t u64;
struct cvmx_tim_ringx_ctl2_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_47_63 : 17;
uint64_t csize : 13; /**< Number of words per chunk. CSIZE mod(16) should be
zero. */
uint64_t reserved_31_33 : 3;
uint64_t base : 31; /**< Pointer[35:5] to bucket[0] */
#else
uint64_t base : 31;
uint64_t reserved_31_33 : 3;
uint64_t csize : 13;
uint64_t reserved_47_63 : 17;
#endif
} s;
struct cvmx_tim_ringx_ctl2_s cn68xx;
struct cvmx_tim_ringx_ctl2_s cn68xxp1;
};
typedef union cvmx_tim_ringx_ctl2 cvmx_tim_ringx_ctl2_t;
/**
* cvmx_tim_ring#_dbg0
*/
union cvmx_tim_ringx_dbg0 {
uint64_t u64;
struct cvmx_tim_ringx_dbg0_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t fr_rn_ht : 22; /**< Free Running Hardware Timer. Shared by all rings and is
used to generate the Timer Tick based on
FR_RN_TT. */
uint64_t timercount : 22; /**< Timer Count represents the ring's offset.
Refer to TIM_RINGX_CTL0. */
uint64_t cur_bucket : 20; /**< Current bucket. Indicates the ring's current bucket.
Refer to TIM_RINGX_CTL1.BUCKET. */
#else
uint64_t cur_bucket : 20;
uint64_t timercount : 22;
uint64_t fr_rn_ht : 22;
#endif
} s;
struct cvmx_tim_ringx_dbg0_s cn68xx;
struct cvmx_tim_ringx_dbg0_s cn68xxp1;
};
typedef union cvmx_tim_ringx_dbg0 cvmx_tim_ringx_dbg0_t;
/**
* cvmx_tim_ring#_dbg1
*/
union cvmx_tim_ringx_dbg1 {
uint64_t u64;
struct cvmx_tim_ringx_dbg1_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t ring_esr : 2; /**< Ring Expiration Status Register.
This register hold the expiration status of the ring.
2'b00 - Ring was recently traversed.
2'b01 - Interval expired. Ring is queued to be traversed.
2'b10 - 1st interval expiration while ring is queued to be
traversed.
2'b11 - 2nd interval expiration while ring is queued to be
traversed. */
#else
uint64_t ring_esr : 2;
uint64_t reserved_2_63 : 62;
#endif
} s;
struct cvmx_tim_ringx_dbg1_s cn68xx;
struct cvmx_tim_ringx_dbg1_s cn68xxp1;
};
typedef union cvmx_tim_ringx_dbg1 cvmx_tim_ringx_dbg1_t;
#endif