mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-22 11:17:19 +00:00
add58488d2
point. Coverity ID: CID 1211937
1470 lines
41 KiB
C
1470 lines
41 KiB
C
/*-
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
* redistribution must be conditioned upon including a substantially
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Driver for the Atheros Wireless LAN controller.
|
|
*
|
|
* This software is derived from work of Atsushi Onoe; his contribution
|
|
* is greatly appreciated.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ath.h"
|
|
/*
|
|
* This is needed for register operations which are performed
|
|
* by the driver - eg, calls to ath_hal_gettsf32().
|
|
*
|
|
* It's also required for any AH_DEBUG checks in here, eg the
|
|
* module dependencies.
|
|
*/
|
|
#include "opt_ah.h"
|
|
#include "opt_wlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/module.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/smp.h> /* for mp_ncpus */
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_llc.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_regdomain.h>
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
#include <net80211/ieee80211_superg.h>
|
|
#endif
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
#include <net80211/ieee80211_tdma.h>
|
|
#endif
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_athvar.h>
|
|
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
|
|
#include <dev/ath/ath_hal/ah_diagcodes.h>
|
|
|
|
#include <dev/ath/if_ath_debug.h>
|
|
#include <dev/ath/if_ath_misc.h>
|
|
#include <dev/ath/if_ath_tsf.h>
|
|
#include <dev/ath/if_ath_tx.h>
|
|
#include <dev/ath/if_ath_sysctl.h>
|
|
#include <dev/ath/if_ath_led.h>
|
|
#include <dev/ath/if_ath_keycache.h>
|
|
#include <dev/ath/if_ath_rx.h>
|
|
#include <dev/ath/if_ath_beacon.h>
|
|
#include <dev/ath/if_athdfs.h>
|
|
|
|
#ifdef ATH_TX99_DIAG
|
|
#include <dev/ath/ath_tx99/ath_tx99.h>
|
|
#endif
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
#include <dev/ath/if_ath_alq.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_ath_lna_div.h>
|
|
|
|
/*
|
|
* Calculate the receive filter according to the
|
|
* operating mode and state:
|
|
*
|
|
* o always accept unicast, broadcast, and multicast traffic
|
|
* o accept PHY error frames when hardware doesn't have MIB support
|
|
* to count and we need them for ANI (sta mode only until recently)
|
|
* and we are not scanning (ANI is disabled)
|
|
* NB: older hal's add rx filter bits out of sight and we need to
|
|
* blindly preserve them
|
|
* o probe request frames are accepted only when operating in
|
|
* hostap, adhoc, mesh, or monitor modes
|
|
* o enable promiscuous mode
|
|
* - when in monitor mode
|
|
* - if interface marked PROMISC (assumes bridge setting is filtered)
|
|
* o accept beacons:
|
|
* - when operating in station mode for collecting rssi data when
|
|
* the station is otherwise quiet, or
|
|
* - when operating in adhoc mode so the 802.11 layer creates
|
|
* node table entries for peers,
|
|
* - when scanning
|
|
* - when doing s/w beacon miss (e.g. for ap+sta)
|
|
* - when operating in ap mode in 11g to detect overlapping bss that
|
|
* require protection
|
|
* - when operating in mesh mode to detect neighbors
|
|
* o accept control frames:
|
|
* - when in monitor mode
|
|
* XXX HT protection for 11n
|
|
*/
|
|
u_int32_t
|
|
ath_calcrxfilter(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
u_int32_t rfilt;
|
|
|
|
rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
|
|
if (!sc->sc_needmib && !sc->sc_scanning)
|
|
rfilt |= HAL_RX_FILTER_PHYERR;
|
|
if (ic->ic_opmode != IEEE80211_M_STA)
|
|
rfilt |= HAL_RX_FILTER_PROBEREQ;
|
|
/* XXX ic->ic_monvaps != 0? */
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
|
|
rfilt |= HAL_RX_FILTER_PROM;
|
|
|
|
/*
|
|
* Only listen to all beacons if we're scanning.
|
|
*
|
|
* Otherwise we only really need to hear beacons from
|
|
* our own BSSID.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_STA ||
|
|
ic->ic_opmode == IEEE80211_M_IBSS || sc->sc_swbmiss) {
|
|
if (sc->sc_do_mybeacon && ! sc->sc_scanning) {
|
|
rfilt |= HAL_RX_FILTER_MYBEACON;
|
|
} else { /* scanning, non-mybeacon chips */
|
|
rfilt |= HAL_RX_FILTER_BEACON;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* NB: We don't recalculate the rx filter when
|
|
* ic_protmode changes; otherwise we could do
|
|
* this only when ic_protmode != NONE.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
|
|
IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
|
|
rfilt |= HAL_RX_FILTER_BEACON;
|
|
|
|
/*
|
|
* Enable hardware PS-POLL RX only for hostap mode;
|
|
* STA mode sends PS-POLL frames but never
|
|
* receives them.
|
|
*/
|
|
if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
|
|
0, NULL) == HAL_OK &&
|
|
ic->ic_opmode == IEEE80211_M_HOSTAP)
|
|
rfilt |= HAL_RX_FILTER_PSPOLL;
|
|
|
|
if (sc->sc_nmeshvaps) {
|
|
rfilt |= HAL_RX_FILTER_BEACON;
|
|
if (sc->sc_hasbmatch)
|
|
rfilt |= HAL_RX_FILTER_BSSID;
|
|
else
|
|
rfilt |= HAL_RX_FILTER_PROM;
|
|
}
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
rfilt |= HAL_RX_FILTER_CONTROL;
|
|
|
|
/*
|
|
* Enable RX of compressed BAR frames only when doing
|
|
* 802.11n. Required for A-MPDU.
|
|
*/
|
|
if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
|
|
rfilt |= HAL_RX_FILTER_COMPBAR;
|
|
|
|
/*
|
|
* Enable radar PHY errors if requested by the
|
|
* DFS module.
|
|
*/
|
|
if (sc->sc_dodfs)
|
|
rfilt |= HAL_RX_FILTER_PHYRADAR;
|
|
|
|
/*
|
|
* Enable spectral PHY errors if requested by the
|
|
* spectral module.
|
|
*/
|
|
if (sc->sc_dospectral)
|
|
rfilt |= HAL_RX_FILTER_PHYRADAR;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
|
|
__func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
|
|
return rfilt;
|
|
}
|
|
|
|
static int
|
|
ath_legacy_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int error;
|
|
struct mbuf *m;
|
|
struct ath_desc *ds;
|
|
|
|
/* XXX TODO: ATH_RX_LOCK_ASSERT(sc); */
|
|
|
|
m = bf->bf_m;
|
|
if (m == NULL) {
|
|
/*
|
|
* NB: by assigning a page to the rx dma buffer we
|
|
* implicitly satisfy the Atheros requirement that
|
|
* this buffer be cache-line-aligned and sized to be
|
|
* multiple of the cache line size. Not doing this
|
|
* causes weird stuff to happen (for the 5210 at least).
|
|
*/
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: no mbuf/cluster\n", __func__);
|
|
sc->sc_stats.ast_rx_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
|
|
bf->bf_dmamap, m,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
|
|
__func__, error);
|
|
sc->sc_stats.ast_rx_busdma++;
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
KASSERT(bf->bf_nseg == 1,
|
|
("multi-segment packet; nseg %u", bf->bf_nseg));
|
|
bf->bf_m = m;
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
|
|
|
|
/*
|
|
* Setup descriptors. For receive we always terminate
|
|
* the descriptor list with a self-linked entry so we'll
|
|
* not get overrun under high load (as can happen with a
|
|
* 5212 when ANI processing enables PHY error frames).
|
|
*
|
|
* To insure the last descriptor is self-linked we create
|
|
* each descriptor as self-linked and add it to the end. As
|
|
* each additional descriptor is added the previous self-linked
|
|
* entry is ``fixed'' naturally. This should be safe even
|
|
* if DMA is happening. When processing RX interrupts we
|
|
* never remove/process the last, self-linked, entry on the
|
|
* descriptor list. This insures the hardware always has
|
|
* someplace to write a new frame.
|
|
*/
|
|
/*
|
|
* 11N: we can no longer afford to self link the last descriptor.
|
|
* MAC acknowledges BA status as long as it copies frames to host
|
|
* buffer (or rx fifo). This can incorrectly acknowledge packets
|
|
* to a sender if last desc is self-linked.
|
|
*/
|
|
ds = bf->bf_desc;
|
|
if (sc->sc_rxslink)
|
|
ds->ds_link = bf->bf_daddr; /* link to self */
|
|
else
|
|
ds->ds_link = 0; /* terminate the list */
|
|
ds->ds_data = bf->bf_segs[0].ds_addr;
|
|
ath_hal_setuprxdesc(ah, ds
|
|
, m->m_len /* buffer size */
|
|
, 0
|
|
);
|
|
|
|
if (sc->sc_rxlink != NULL)
|
|
*sc->sc_rxlink = bf->bf_daddr;
|
|
sc->sc_rxlink = &ds->ds_link;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Intercept management frames to collect beacon rssi data
|
|
* and to do ibss merges.
|
|
*/
|
|
void
|
|
ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
|
|
int subtype, int rssi, int nf)
|
|
{
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
|
|
uint64_t tsf_beacon_old, tsf_beacon;
|
|
uint64_t nexttbtt;
|
|
int64_t tsf_delta;
|
|
int32_t tsf_delta_bmiss;
|
|
int32_t tsf_remainder;
|
|
uint64_t tsf_beacon_target;
|
|
int tsf_intval;
|
|
|
|
tsf_beacon_old = ((uint64_t) LE_READ_4(ni->ni_tstamp.data + 4)) << 32;
|
|
tsf_beacon_old |= LE_READ_4(ni->ni_tstamp.data);
|
|
|
|
#define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10)
|
|
tsf_intval = 1;
|
|
if (ni->ni_intval > 0) {
|
|
tsf_intval = TU_TO_TSF(ni->ni_intval);
|
|
}
|
|
#undef TU_TO_TSF
|
|
|
|
/*
|
|
* Call up first so subsequent work can use information
|
|
* potentially stored in the node (e.g. for ibss merge).
|
|
*/
|
|
ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
|
|
switch (subtype) {
|
|
case IEEE80211_FC0_SUBTYPE_BEACON:
|
|
/* update rssi statistics for use by the hal */
|
|
/* XXX unlocked check against vap->iv_bss? */
|
|
ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
|
|
|
|
tsf_beacon = ((uint64_t) LE_READ_4(ni->ni_tstamp.data + 4)) << 32;
|
|
tsf_beacon |= LE_READ_4(ni->ni_tstamp.data);
|
|
|
|
nexttbtt = ath_hal_getnexttbtt(sc->sc_ah);
|
|
|
|
/*
|
|
* Let's calculate the delta and remainder, so we can see
|
|
* if the beacon timer from the AP is varying by more than
|
|
* a few TU. (Which would be a huge, huge problem.)
|
|
*/
|
|
tsf_delta = (long long) tsf_beacon - (long long) tsf_beacon_old;
|
|
|
|
tsf_delta_bmiss = tsf_delta / tsf_intval;
|
|
|
|
/*
|
|
* If our delta is greater than half the beacon interval,
|
|
* let's round the bmiss value up to the next beacon
|
|
* interval. Ie, we're running really, really early
|
|
* on the next beacon.
|
|
*/
|
|
if (tsf_delta % tsf_intval > (tsf_intval / 2))
|
|
tsf_delta_bmiss ++;
|
|
|
|
tsf_beacon_target = tsf_beacon_old +
|
|
(((unsigned long long) tsf_delta_bmiss) * (long long) tsf_intval);
|
|
|
|
/*
|
|
* The remainder using '%' is between 0 .. intval-1.
|
|
* If we're actually running too fast, then the remainder
|
|
* will be some large number just under intval-1.
|
|
* So we need to look at whether we're running
|
|
* before or after the target beacon interval
|
|
* and if we are, modify how we do the remainder
|
|
* calculation.
|
|
*/
|
|
if (tsf_beacon < tsf_beacon_target) {
|
|
tsf_remainder =
|
|
-(tsf_intval - ((tsf_beacon - tsf_beacon_old) % tsf_intval));
|
|
} else {
|
|
tsf_remainder = (tsf_beacon - tsf_beacon_old) % tsf_intval;
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: old_tsf=%llu, new_tsf=%llu, target_tsf=%llu, delta=%lld, bmiss=%d, remainder=%d\n",
|
|
__func__,
|
|
(unsigned long long) tsf_beacon_old,
|
|
(unsigned long long) tsf_beacon,
|
|
(unsigned long long) tsf_beacon_target,
|
|
(long long) tsf_delta,
|
|
tsf_delta_bmiss,
|
|
tsf_remainder);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: tsf=%llu, nexttbtt=%llu, delta=%d\n",
|
|
__func__,
|
|
(unsigned long long) tsf_beacon,
|
|
(unsigned long long) nexttbtt,
|
|
(int32_t) tsf_beacon - (int32_t) nexttbtt + tsf_intval);
|
|
|
|
if (sc->sc_syncbeacon &&
|
|
ni == vap->iv_bss &&
|
|
(vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) {
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: syncbeacon=1; syncing\n",
|
|
__func__);
|
|
/*
|
|
* Resync beacon timers using the tsf of the beacon
|
|
* frame we just received.
|
|
*/
|
|
ath_beacon_config(sc, vap);
|
|
sc->sc_syncbeacon = 0;
|
|
}
|
|
|
|
|
|
/* fall thru... */
|
|
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
|
|
if (vap->iv_opmode == IEEE80211_M_IBSS &&
|
|
vap->iv_state == IEEE80211_S_RUN) {
|
|
uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
|
|
uint64_t tsf = ath_extend_tsf(sc, rstamp,
|
|
ath_hal_gettsf64(sc->sc_ah));
|
|
/*
|
|
* Handle ibss merge as needed; check the tsf on the
|
|
* frame before attempting the merge. The 802.11 spec
|
|
* says the station should change it's bssid to match
|
|
* the oldest station with the same ssid, where oldest
|
|
* is determined by the tsf. Note that hardware
|
|
* reconfiguration happens through callback to
|
|
* ath_newstate as the state machine will go from
|
|
* RUN -> RUN when this happens.
|
|
*/
|
|
if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
|
|
DPRINTF(sc, ATH_DEBUG_STATE,
|
|
"ibss merge, rstamp %u tsf %ju "
|
|
"tstamp %ju\n", rstamp, (uintmax_t)tsf,
|
|
(uintmax_t)ni->ni_tstamp.tsf);
|
|
(void) ieee80211_ibss_merge(ni);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
|
|
static void
|
|
ath_rx_tap_vendor(struct ifnet *ifp, struct mbuf *m,
|
|
const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
|
|
/* Fill in the extension bitmap */
|
|
sc->sc_rx_th.wr_ext_bitmap = htole32(1 << ATH_RADIOTAP_VENDOR_HEADER);
|
|
|
|
/* Fill in the vendor header */
|
|
sc->sc_rx_th.wr_vh.vh_oui[0] = 0x7f;
|
|
sc->sc_rx_th.wr_vh.vh_oui[1] = 0x03;
|
|
sc->sc_rx_th.wr_vh.vh_oui[2] = 0x00;
|
|
|
|
/* XXX what should this be? */
|
|
sc->sc_rx_th.wr_vh.vh_sub_ns = 0;
|
|
sc->sc_rx_th.wr_vh.vh_skip_len =
|
|
htole16(sizeof(struct ath_radiotap_vendor_hdr));
|
|
|
|
/* General version info */
|
|
sc->sc_rx_th.wr_v.vh_version = 1;
|
|
|
|
sc->sc_rx_th.wr_v.vh_rx_chainmask = sc->sc_rxchainmask;
|
|
|
|
/* rssi */
|
|
sc->sc_rx_th.wr_v.rssi_ctl[0] = rs->rs_rssi_ctl[0];
|
|
sc->sc_rx_th.wr_v.rssi_ctl[1] = rs->rs_rssi_ctl[1];
|
|
sc->sc_rx_th.wr_v.rssi_ctl[2] = rs->rs_rssi_ctl[2];
|
|
sc->sc_rx_th.wr_v.rssi_ext[0] = rs->rs_rssi_ext[0];
|
|
sc->sc_rx_th.wr_v.rssi_ext[1] = rs->rs_rssi_ext[1];
|
|
sc->sc_rx_th.wr_v.rssi_ext[2] = rs->rs_rssi_ext[2];
|
|
|
|
/* evm */
|
|
sc->sc_rx_th.wr_v.evm[0] = rs->rs_evm0;
|
|
sc->sc_rx_th.wr_v.evm[1] = rs->rs_evm1;
|
|
sc->sc_rx_th.wr_v.evm[2] = rs->rs_evm2;
|
|
/* These are only populated from the AR9300 or later */
|
|
sc->sc_rx_th.wr_v.evm[3] = rs->rs_evm3;
|
|
sc->sc_rx_th.wr_v.evm[4] = rs->rs_evm4;
|
|
|
|
/* direction */
|
|
sc->sc_rx_th.wr_v.vh_flags = ATH_VENDOR_PKT_RX;
|
|
|
|
/* RX rate */
|
|
sc->sc_rx_th.wr_v.vh_rx_hwrate = rs->rs_rate;
|
|
|
|
/* RX flags */
|
|
sc->sc_rx_th.wr_v.vh_rs_flags = rs->rs_flags;
|
|
|
|
if (rs->rs_isaggr)
|
|
sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_ISAGGR;
|
|
if (rs->rs_moreaggr)
|
|
sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_MOREAGGR;
|
|
|
|
/* phyerr info */
|
|
if (rs->rs_status & HAL_RXERR_PHY) {
|
|
sc->sc_rx_th.wr_v.vh_phyerr_code = rs->rs_phyerr;
|
|
sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_RXPHYERR;
|
|
} else {
|
|
sc->sc_rx_th.wr_v.vh_phyerr_code = 0xff;
|
|
}
|
|
sc->sc_rx_th.wr_v.vh_rs_status = rs->rs_status;
|
|
sc->sc_rx_th.wr_v.vh_rssi = rs->rs_rssi;
|
|
}
|
|
#endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
|
|
|
|
static void
|
|
ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
|
|
const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
|
|
{
|
|
#define CHAN_HT20 htole32(IEEE80211_CHAN_HT20)
|
|
#define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U)
|
|
#define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D)
|
|
#define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
const HAL_RATE_TABLE *rt;
|
|
uint8_t rix;
|
|
|
|
rt = sc->sc_currates;
|
|
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
|
|
rix = rt->rateCodeToIndex[rs->rs_rate];
|
|
sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
|
|
sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
|
|
#ifdef AH_SUPPORT_AR5416
|
|
sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
|
|
if (rs->rs_status & HAL_RXERR_PHY) {
|
|
/*
|
|
* PHY error - make sure the channel flags
|
|
* reflect the actual channel configuration,
|
|
* not the received frame.
|
|
*/
|
|
if (IEEE80211_IS_CHAN_HT40U(sc->sc_curchan))
|
|
sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
|
|
else if (IEEE80211_IS_CHAN_HT40D(sc->sc_curchan))
|
|
sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
|
|
else if (IEEE80211_IS_CHAN_HT20(sc->sc_curchan))
|
|
sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
|
|
} else if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
|
|
if ((rs->rs_flags & HAL_RX_2040) == 0)
|
|
sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
|
|
else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
|
|
sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
|
|
else
|
|
sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
|
|
if ((rs->rs_flags & HAL_RX_GI) == 0)
|
|
sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
|
|
}
|
|
|
|
#endif
|
|
sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
|
|
if (rs->rs_status & HAL_RXERR_CRC)
|
|
sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
|
|
/* XXX propagate other error flags from descriptor */
|
|
sc->sc_rx_th.wr_antnoise = nf;
|
|
sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
|
|
sc->sc_rx_th.wr_antenna = rs->rs_antenna;
|
|
#undef CHAN_HT
|
|
#undef CHAN_HT20
|
|
#undef CHAN_HT40U
|
|
#undef CHAN_HT40D
|
|
}
|
|
|
|
static void
|
|
ath_handle_micerror(struct ieee80211com *ic,
|
|
struct ieee80211_frame *wh, int keyix)
|
|
{
|
|
struct ieee80211_node *ni;
|
|
|
|
/* XXX recheck MIC to deal w/ chips that lie */
|
|
/* XXX discard MIC errors on !data frames */
|
|
ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
|
|
if (ni != NULL) {
|
|
ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
|
|
ieee80211_free_node(ni);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process a single packet.
|
|
*
|
|
* The mbuf must already be synced, unmapped and removed from bf->bf_m
|
|
* by this stage.
|
|
*
|
|
* The mbuf must be consumed by this routine - either passed up the
|
|
* net80211 stack, put on the holding queue, or freed.
|
|
*/
|
|
int
|
|
ath_rx_pkt(struct ath_softc *sc, struct ath_rx_status *rs, HAL_STATUS status,
|
|
uint64_t tsf, int nf, HAL_RX_QUEUE qtype, struct ath_buf *bf,
|
|
struct mbuf *m)
|
|
{
|
|
uint64_t rstamp;
|
|
int len, type;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ieee80211_node *ni;
|
|
int is_good = 0;
|
|
struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
|
|
|
|
/*
|
|
* Calculate the correct 64 bit TSF given
|
|
* the TSF64 register value and rs_tstamp.
|
|
*/
|
|
rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
|
|
|
|
/* These aren't specifically errors */
|
|
#ifdef AH_SUPPORT_AR5416
|
|
if (rs->rs_flags & HAL_RX_GI)
|
|
sc->sc_stats.ast_rx_halfgi++;
|
|
if (rs->rs_flags & HAL_RX_2040)
|
|
sc->sc_stats.ast_rx_2040++;
|
|
if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
|
|
sc->sc_stats.ast_rx_pre_crc_err++;
|
|
if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
|
|
sc->sc_stats.ast_rx_post_crc_err++;
|
|
if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
|
|
sc->sc_stats.ast_rx_decrypt_busy_err++;
|
|
if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
|
|
sc->sc_stats.ast_rx_hi_rx_chain++;
|
|
if (rs->rs_flags & HAL_RX_STBC)
|
|
sc->sc_stats.ast_rx_stbc++;
|
|
#endif /* AH_SUPPORT_AR5416 */
|
|
|
|
if (rs->rs_status != 0) {
|
|
if (rs->rs_status & HAL_RXERR_CRC)
|
|
sc->sc_stats.ast_rx_crcerr++;
|
|
if (rs->rs_status & HAL_RXERR_FIFO)
|
|
sc->sc_stats.ast_rx_fifoerr++;
|
|
if (rs->rs_status & HAL_RXERR_PHY) {
|
|
sc->sc_stats.ast_rx_phyerr++;
|
|
/* Process DFS radar events */
|
|
if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
|
|
(rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
|
|
/* Now pass it to the radar processing code */
|
|
ath_dfs_process_phy_err(sc, m, rstamp, rs);
|
|
}
|
|
|
|
/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
|
|
if (rs->rs_phyerr < 64)
|
|
sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
|
|
goto rx_error; /* NB: don't count in ierrors */
|
|
}
|
|
if (rs->rs_status & HAL_RXERR_DECRYPT) {
|
|
/*
|
|
* Decrypt error. If the error occurred
|
|
* because there was no hardware key, then
|
|
* let the frame through so the upper layers
|
|
* can process it. This is necessary for 5210
|
|
* parts which have no way to setup a ``clear''
|
|
* key cache entry.
|
|
*
|
|
* XXX do key cache faulting
|
|
*/
|
|
if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
|
|
goto rx_accept;
|
|
sc->sc_stats.ast_rx_badcrypt++;
|
|
}
|
|
/*
|
|
* Similar as above - if the failure was a keymiss
|
|
* just punt it up to the upper layers for now.
|
|
*/
|
|
if (rs->rs_status & HAL_RXERR_KEYMISS) {
|
|
sc->sc_stats.ast_rx_keymiss++;
|
|
goto rx_accept;
|
|
}
|
|
if (rs->rs_status & HAL_RXERR_MIC) {
|
|
sc->sc_stats.ast_rx_badmic++;
|
|
/*
|
|
* Do minimal work required to hand off
|
|
* the 802.11 header for notification.
|
|
*/
|
|
/* XXX frag's and qos frames */
|
|
len = rs->rs_datalen;
|
|
if (len >= sizeof (struct ieee80211_frame)) {
|
|
ath_handle_micerror(ic,
|
|
mtod(m, struct ieee80211_frame *),
|
|
sc->sc_splitmic ?
|
|
rs->rs_keyix-32 : rs->rs_keyix);
|
|
}
|
|
}
|
|
ifp->if_ierrors++;
|
|
rx_error:
|
|
/*
|
|
* Cleanup any pending partial frame.
|
|
*/
|
|
if (re->m_rxpending != NULL) {
|
|
m_freem(re->m_rxpending);
|
|
re->m_rxpending = NULL;
|
|
}
|
|
/*
|
|
* When a tap is present pass error frames
|
|
* that have been requested. By default we
|
|
* pass decrypt+mic errors but others may be
|
|
* interesting (e.g. crc).
|
|
*/
|
|
if (ieee80211_radiotap_active(ic) &&
|
|
(rs->rs_status & sc->sc_monpass)) {
|
|
/* NB: bpf needs the mbuf length setup */
|
|
len = rs->rs_datalen;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
ath_rx_tap(ifp, m, rs, rstamp, nf);
|
|
#ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
|
|
ath_rx_tap_vendor(ifp, m, rs, rstamp, nf);
|
|
#endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
|
|
ieee80211_radiotap_rx_all(ic, m);
|
|
}
|
|
/* XXX pass MIC errors up for s/w reclaculation */
|
|
m_freem(m); m = NULL;
|
|
goto rx_next;
|
|
}
|
|
rx_accept:
|
|
len = rs->rs_datalen;
|
|
m->m_len = len;
|
|
|
|
if (rs->rs_more) {
|
|
/*
|
|
* Frame spans multiple descriptors; save
|
|
* it for the next completed descriptor, it
|
|
* will be used to construct a jumbogram.
|
|
*/
|
|
if (re->m_rxpending != NULL) {
|
|
/* NB: max frame size is currently 2 clusters */
|
|
sc->sc_stats.ast_rx_toobig++;
|
|
m_freem(re->m_rxpending);
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = len;
|
|
re->m_rxpending = m;
|
|
m = NULL;
|
|
goto rx_next;
|
|
} else if (re->m_rxpending != NULL) {
|
|
/*
|
|
* This is the second part of a jumbogram,
|
|
* chain it to the first mbuf, adjust the
|
|
* frame length, and clear the rxpending state.
|
|
*/
|
|
re->m_rxpending->m_next = m;
|
|
re->m_rxpending->m_pkthdr.len += len;
|
|
m = re->m_rxpending;
|
|
re->m_rxpending = NULL;
|
|
} else {
|
|
/*
|
|
* Normal single-descriptor receive; setup
|
|
* the rcvif and packet length.
|
|
*/
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = len;
|
|
}
|
|
|
|
/*
|
|
* Validate rs->rs_antenna.
|
|
*
|
|
* Some users w/ AR9285 NICs have reported crashes
|
|
* here because rs_antenna field is bogusly large.
|
|
* Let's enforce the maximum antenna limit of 8
|
|
* (and it shouldn't be hard coded, but that's a
|
|
* separate problem) and if there's an issue, print
|
|
* out an error and adjust rs_antenna to something
|
|
* sensible.
|
|
*
|
|
* This code should be removed once the actual
|
|
* root cause of the issue has been identified.
|
|
* For example, it may be that the rs_antenna
|
|
* field is only valid for the lsat frame of
|
|
* an aggregate and it just happens that it is
|
|
* "mostly" right. (This is a general statement -
|
|
* the majority of the statistics are only valid
|
|
* for the last frame in an aggregate.
|
|
*/
|
|
if (rs->rs_antenna > 7) {
|
|
device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
|
|
__func__, rs->rs_antenna);
|
|
#ifdef ATH_DEBUG
|
|
ath_printrxbuf(sc, bf, 0, status == HAL_OK);
|
|
#endif /* ATH_DEBUG */
|
|
rs->rs_antenna = 0; /* XXX better than nothing */
|
|
}
|
|
|
|
/*
|
|
* If this is an AR9285/AR9485, then the receive and LNA
|
|
* configuration is stored in RSSI[2] / EXTRSSI[2].
|
|
* We can extract this out to build a much better
|
|
* receive antenna profile.
|
|
*
|
|
* Yes, this just blurts over the above RX antenna field
|
|
* for now. It's fine, the AR9285 doesn't really use
|
|
* that.
|
|
*
|
|
* Later on we should store away the fine grained LNA
|
|
* information and keep separate counters just for
|
|
* that. It'll help when debugging the AR9285/AR9485
|
|
* combined diversity code.
|
|
*/
|
|
if (sc->sc_rx_lnamixer) {
|
|
rs->rs_antenna = 0;
|
|
|
|
/* Bits 0:1 - the LNA configuration used */
|
|
rs->rs_antenna |=
|
|
((rs->rs_rssi_ctl[2] & HAL_RX_LNA_CFG_USED)
|
|
>> HAL_RX_LNA_CFG_USED_S);
|
|
|
|
/* Bit 2 - the external RX antenna switch */
|
|
if (rs->rs_rssi_ctl[2] & HAL_RX_LNA_EXTCFG)
|
|
rs->rs_antenna |= 0x4;
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
|
|
|
|
/*
|
|
* Populate the rx status block. When there are bpf
|
|
* listeners we do the additional work to provide
|
|
* complete status. Otherwise we fill in only the
|
|
* material required by ieee80211_input. Note that
|
|
* noise setting is filled in above.
|
|
*/
|
|
if (ieee80211_radiotap_active(ic)) {
|
|
ath_rx_tap(ifp, m, rs, rstamp, nf);
|
|
#ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
|
|
ath_rx_tap_vendor(ifp, m, rs, rstamp, nf);
|
|
#endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
|
|
}
|
|
|
|
/*
|
|
* From this point on we assume the frame is at least
|
|
* as large as ieee80211_frame_min; verify that.
|
|
*/
|
|
if (len < IEEE80211_MIN_LEN) {
|
|
if (!ieee80211_radiotap_active(ic)) {
|
|
DPRINTF(sc, ATH_DEBUG_RECV,
|
|
"%s: short packet %d\n", __func__, len);
|
|
sc->sc_stats.ast_rx_tooshort++;
|
|
} else {
|
|
/* NB: in particular this captures ack's */
|
|
ieee80211_radiotap_rx_all(ic, m);
|
|
}
|
|
m_freem(m); m = NULL;
|
|
goto rx_next;
|
|
}
|
|
|
|
if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
|
|
const HAL_RATE_TABLE *rt = sc->sc_currates;
|
|
uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
|
|
|
|
ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
|
|
sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
|
|
}
|
|
|
|
m_adj(m, -IEEE80211_CRC_LEN);
|
|
|
|
/*
|
|
* Locate the node for sender, track state, and then
|
|
* pass the (referenced) node up to the 802.11 layer
|
|
* for its use.
|
|
*/
|
|
ni = ieee80211_find_rxnode_withkey(ic,
|
|
mtod(m, const struct ieee80211_frame_min *),
|
|
rs->rs_keyix == HAL_RXKEYIX_INVALID ?
|
|
IEEE80211_KEYIX_NONE : rs->rs_keyix);
|
|
sc->sc_lastrs = rs;
|
|
|
|
#ifdef AH_SUPPORT_AR5416
|
|
if (rs->rs_isaggr)
|
|
sc->sc_stats.ast_rx_agg++;
|
|
#endif /* AH_SUPPORT_AR5416 */
|
|
|
|
if (ni != NULL) {
|
|
/*
|
|
* Only punt packets for ampdu reorder processing for
|
|
* 11n nodes; net80211 enforces that M_AMPDU is only
|
|
* set for 11n nodes.
|
|
*/
|
|
if (ni->ni_flags & IEEE80211_NODE_HT)
|
|
m->m_flags |= M_AMPDU;
|
|
|
|
/*
|
|
* Sending station is known, dispatch directly.
|
|
*/
|
|
type = ieee80211_input(ni, m, rs->rs_rssi, nf);
|
|
ieee80211_free_node(ni);
|
|
m = NULL;
|
|
/*
|
|
* Arrange to update the last rx timestamp only for
|
|
* frames from our ap when operating in station mode.
|
|
* This assumes the rx key is always setup when
|
|
* associated.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_STA &&
|
|
rs->rs_keyix != HAL_RXKEYIX_INVALID)
|
|
is_good = 1;
|
|
} else {
|
|
type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
|
|
m = NULL;
|
|
}
|
|
|
|
/*
|
|
* At this point we have passed the frame up the stack; thus
|
|
* the mbuf is no longer ours.
|
|
*/
|
|
|
|
/*
|
|
* Track rx rssi and do any rx antenna management.
|
|
*/
|
|
ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
|
|
if (sc->sc_diversity) {
|
|
/*
|
|
* When using fast diversity, change the default rx
|
|
* antenna if diversity chooses the other antenna 3
|
|
* times in a row.
|
|
*/
|
|
if (sc->sc_defant != rs->rs_antenna) {
|
|
if (++sc->sc_rxotherant >= 3)
|
|
ath_setdefantenna(sc, rs->rs_antenna);
|
|
} else
|
|
sc->sc_rxotherant = 0;
|
|
}
|
|
|
|
/* Handle slow diversity if enabled */
|
|
if (sc->sc_dolnadiv) {
|
|
ath_lna_rx_comb_scan(sc, rs, ticks, hz);
|
|
}
|
|
|
|
if (sc->sc_softled) {
|
|
/*
|
|
* Blink for any data frame. Otherwise do a
|
|
* heartbeat-style blink when idle. The latter
|
|
* is mainly for station mode where we depend on
|
|
* periodic beacon frames to trigger the poll event.
|
|
*/
|
|
if (type == IEEE80211_FC0_TYPE_DATA) {
|
|
const HAL_RATE_TABLE *rt = sc->sc_currates;
|
|
ath_led_event(sc,
|
|
rt->rateCodeToIndex[rs->rs_rate]);
|
|
} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
|
|
ath_led_event(sc, 0);
|
|
}
|
|
rx_next:
|
|
/*
|
|
* Debugging - complain if we didn't NULL the mbuf pointer
|
|
* here.
|
|
*/
|
|
if (m != NULL) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: mbuf %p should've been freed!\n",
|
|
__func__,
|
|
m);
|
|
}
|
|
return (is_good);
|
|
}
|
|
|
|
#define ATH_RX_MAX 128
|
|
|
|
/*
|
|
* XXX TODO: break out the "get buffers" from "call ath_rx_pkt()" like
|
|
* the EDMA code does.
|
|
*
|
|
* XXX TODO: then, do all of the RX list management stuff inside
|
|
* ATH_RX_LOCK() so we don't end up potentially racing. The EDMA
|
|
* code is doing it right.
|
|
*/
|
|
static void
|
|
ath_rx_proc(struct ath_softc *sc, int resched)
|
|
{
|
|
#define PA2DESC(_sc, _pa) \
|
|
((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
|
|
((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
|
|
struct ath_buf *bf;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
#endif
|
|
struct ath_desc *ds;
|
|
struct ath_rx_status *rs;
|
|
struct mbuf *m;
|
|
int ngood;
|
|
HAL_STATUS status;
|
|
int16_t nf;
|
|
u_int64_t tsf;
|
|
int npkts = 0;
|
|
int kickpcu = 0;
|
|
int ret;
|
|
|
|
/* XXX we must not hold the ATH_LOCK here */
|
|
ATH_UNLOCK_ASSERT(sc);
|
|
ATH_PCU_UNLOCK_ASSERT(sc);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_rxproc_cnt++;
|
|
kickpcu = sc->sc_kickpcu;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
|
|
ngood = 0;
|
|
nf = ath_hal_getchannoise(ah, sc->sc_curchan);
|
|
sc->sc_stats.ast_rx_noise = nf;
|
|
tsf = ath_hal_gettsf64(ah);
|
|
do {
|
|
/*
|
|
* Don't process too many packets at a time; give the
|
|
* TX thread time to also run - otherwise the TX
|
|
* latency can jump by quite a bit, causing throughput
|
|
* degredation.
|
|
*/
|
|
if (!kickpcu && npkts >= ATH_RX_MAX)
|
|
break;
|
|
|
|
bf = TAILQ_FIRST(&sc->sc_rxbuf);
|
|
if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */
|
|
if_printf(ifp, "%s: no buffer!\n", __func__);
|
|
break;
|
|
} else if (bf == NULL) {
|
|
/*
|
|
* End of List:
|
|
* this can happen for non-self-linked RX chains
|
|
*/
|
|
sc->sc_stats.ast_rx_hitqueueend++;
|
|
break;
|
|
}
|
|
m = bf->bf_m;
|
|
if (m == NULL) { /* NB: shouldn't happen */
|
|
/*
|
|
* If mbuf allocation failed previously there
|
|
* will be no mbuf; try again to re-populate it.
|
|
*/
|
|
/* XXX make debug msg */
|
|
if_printf(ifp, "%s: no mbuf!\n", __func__);
|
|
TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
|
|
goto rx_proc_next;
|
|
}
|
|
ds = bf->bf_desc;
|
|
if (ds->ds_link == bf->bf_daddr) {
|
|
/* NB: never process the self-linked entry at the end */
|
|
sc->sc_stats.ast_rx_hitqueueend++;
|
|
break;
|
|
}
|
|
/* XXX sync descriptor memory */
|
|
/*
|
|
* Must provide the virtual address of the current
|
|
* descriptor, the physical address, and the virtual
|
|
* address of the next descriptor in the h/w chain.
|
|
* This allows the HAL to look ahead to see if the
|
|
* hardware is done with a descriptor by checking the
|
|
* done bit in the following descriptor and the address
|
|
* of the current descriptor the DMA engine is working
|
|
* on. All this is necessary because of our use of
|
|
* a self-linked list to avoid rx overruns.
|
|
*/
|
|
rs = &bf->bf_status.ds_rxstat;
|
|
status = ath_hal_rxprocdesc(ah, ds,
|
|
bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
|
|
ath_printrxbuf(sc, bf, 0, status == HAL_OK);
|
|
#endif
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
|
|
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
|
|
sc->sc_rx_statuslen, (char *) ds);
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
|
|
if (status == HAL_EINPROGRESS)
|
|
break;
|
|
|
|
TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
|
|
npkts++;
|
|
|
|
/*
|
|
* Process a single frame.
|
|
*/
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
bf->bf_m = NULL;
|
|
if (ath_rx_pkt(sc, rs, status, tsf, nf, HAL_RX_QUEUE_HP, bf, m))
|
|
ngood++;
|
|
rx_proc_next:
|
|
/*
|
|
* If there's a holding buffer, insert that onto
|
|
* the RX list; the hardware is now definitely not pointing
|
|
* to it now.
|
|
*/
|
|
ret = 0;
|
|
if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf != NULL) {
|
|
TAILQ_INSERT_TAIL(&sc->sc_rxbuf,
|
|
sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf,
|
|
bf_list);
|
|
ret = ath_rxbuf_init(sc,
|
|
sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf);
|
|
}
|
|
/*
|
|
* Next, throw our buffer into the holding entry. The hardware
|
|
* may use the descriptor to read the link pointer before
|
|
* DMAing the next descriptor in to write out a packet.
|
|
*/
|
|
sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = bf;
|
|
} while (ret == 0);
|
|
|
|
/* rx signal state monitoring */
|
|
ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
|
|
if (ngood)
|
|
sc->sc_lastrx = tsf;
|
|
|
|
ATH_KTR(sc, ATH_KTR_RXPROC, 2, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
|
|
/* Queue DFS tasklet if needed */
|
|
if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
|
|
|
|
/*
|
|
* Now that all the RX frames were handled that
|
|
* need to be handled, kick the PCU if there's
|
|
* been an RXEOL condition.
|
|
*/
|
|
if (resched && kickpcu) {
|
|
ATH_PCU_LOCK(sc);
|
|
ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_rx_proc: kickpcu");
|
|
device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
|
|
__func__, npkts);
|
|
|
|
/*
|
|
* Go through the process of fully tearing down
|
|
* the RX buffers and reinitialising them.
|
|
*
|
|
* There's a hardware bug that causes the RX FIFO
|
|
* to get confused under certain conditions and
|
|
* constantly write over the same frame, leading
|
|
* the RX driver code here to get heavily confused.
|
|
*/
|
|
/*
|
|
* XXX Has RX DMA stopped enough here to just call
|
|
* ath_startrecv()?
|
|
* XXX Do we need to use the holding buffer to restart
|
|
* RX DMA by appending entries to the final
|
|
* descriptor? Quite likely.
|
|
*/
|
|
#if 1
|
|
ath_startrecv(sc);
|
|
#else
|
|
/*
|
|
* Disabled for now - it'd be nice to be able to do
|
|
* this in order to limit the amount of CPU time spent
|
|
* reinitialising the RX side (and thus minimise RX
|
|
* drops) however there's a hardware issue that
|
|
* causes things to get too far out of whack.
|
|
*/
|
|
/*
|
|
* XXX can we hold the PCU lock here?
|
|
* Are there any net80211 buffer calls involved?
|
|
*/
|
|
bf = TAILQ_FIRST(&sc->sc_rxbuf);
|
|
ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
|
|
ath_hal_rxena(ah); /* enable recv descriptors */
|
|
ath_mode_init(sc); /* set filters, etc. */
|
|
ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
|
|
#endif
|
|
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
sc->sc_kickpcu = 0;
|
|
ATH_PCU_UNLOCK(sc);
|
|
}
|
|
|
|
/* XXX check this inside of IF_LOCK? */
|
|
if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
ieee80211_ff_age_all(ic, 100);
|
|
#endif
|
|
if (!IFQ_IS_EMPTY(&ifp->if_snd))
|
|
ath_tx_kick(sc);
|
|
}
|
|
#undef PA2DESC
|
|
|
|
/*
|
|
* Put the hardware to sleep again if we're done with it.
|
|
*/
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
/*
|
|
* If we hit the maximum number of frames in this round,
|
|
* reschedule for another immediate pass. This gives
|
|
* the TX and TX completion routines time to run, which
|
|
* will reduce latency.
|
|
*/
|
|
if (npkts >= ATH_RX_MAX)
|
|
sc->sc_rx.recv_sched(sc, resched);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_rxproc_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
}
|
|
|
|
#undef ATH_RX_MAX
|
|
|
|
/*
|
|
* Only run the RX proc if it's not already running.
|
|
* Since this may get run as part of the reset/flush path,
|
|
* the task can't clash with an existing, running tasklet.
|
|
*/
|
|
static void
|
|
ath_legacy_rx_tasklet(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
|
|
ATH_KTR(sc, ATH_KTR_RXPROC, 1, "ath_rx_proc: pending=%d", npending);
|
|
DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
|
|
ATH_PCU_LOCK(sc);
|
|
if (sc->sc_inreset_cnt > 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: sc_inreset_cnt > 0; skipping\n", __func__);
|
|
ATH_PCU_UNLOCK(sc);
|
|
return;
|
|
}
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
ath_rx_proc(sc, 1);
|
|
}
|
|
|
|
static void
|
|
ath_legacy_flushrecv(struct ath_softc *sc)
|
|
{
|
|
|
|
ath_rx_proc(sc, 0);
|
|
}
|
|
|
|
static void
|
|
ath_legacy_flush_rxpending(struct ath_softc *sc)
|
|
{
|
|
|
|
/* XXX ATH_RX_LOCK_ASSERT(sc); */
|
|
|
|
if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending != NULL) {
|
|
m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
|
|
sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
|
|
}
|
|
if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending != NULL) {
|
|
m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
|
|
sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
ath_legacy_flush_rxholdbf(struct ath_softc *sc)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
/* XXX ATH_RX_LOCK_ASSERT(sc); */
|
|
/*
|
|
* If there are RX holding buffers, free them here and return
|
|
* them to the list.
|
|
*
|
|
* XXX should just verify that bf->bf_m is NULL, as it must
|
|
* be at this point!
|
|
*/
|
|
bf = sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf;
|
|
if (bf != NULL) {
|
|
if (bf->bf_m != NULL)
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
|
|
(void) ath_rxbuf_init(sc, bf);
|
|
}
|
|
sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = NULL;
|
|
|
|
bf = sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf;
|
|
if (bf != NULL) {
|
|
if (bf->bf_m != NULL)
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
|
|
(void) ath_rxbuf_init(sc, bf);
|
|
}
|
|
sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf = NULL;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Disable the receive h/w in preparation for a reset.
|
|
*/
|
|
static void
|
|
ath_legacy_stoprecv(struct ath_softc *sc, int dodelay)
|
|
{
|
|
#define PA2DESC(_sc, _pa) \
|
|
((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
|
|
((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
ATH_RX_LOCK(sc);
|
|
|
|
ath_hal_stoppcurecv(ah); /* disable PCU */
|
|
ath_hal_setrxfilter(ah, 0); /* clear recv filter */
|
|
ath_hal_stopdmarecv(ah); /* disable DMA engine */
|
|
/*
|
|
* TODO: see if this particular DELAY() is required; it may be
|
|
* masking some missing FIFO flush or DMA sync.
|
|
*/
|
|
#if 0
|
|
if (dodelay)
|
|
#endif
|
|
DELAY(3000); /* 3ms is long enough for 1 frame */
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
|
|
struct ath_buf *bf;
|
|
u_int ix;
|
|
|
|
device_printf(sc->sc_dev,
|
|
"%s: rx queue %p, link %p\n",
|
|
__func__,
|
|
(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah, HAL_RX_QUEUE_HP),
|
|
sc->sc_rxlink);
|
|
ix = 0;
|
|
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
|
|
struct ath_desc *ds = bf->bf_desc;
|
|
struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
|
|
HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
|
|
bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
|
|
if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
|
|
ath_printrxbuf(sc, bf, ix, status == HAL_OK);
|
|
ix++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
(void) ath_legacy_flush_rxpending(sc);
|
|
(void) ath_legacy_flush_rxholdbf(sc);
|
|
|
|
sc->sc_rxlink = NULL; /* just in case */
|
|
|
|
ATH_RX_UNLOCK(sc);
|
|
#undef PA2DESC
|
|
}
|
|
|
|
/*
|
|
* XXX TODO: something was calling startrecv without calling
|
|
* stoprecv. Let's figure out what/why. It was showing up
|
|
* as a mbuf leak (rxpending) and ath_buf leak (holdbf.)
|
|
*/
|
|
|
|
/*
|
|
* Enable the receive h/w following a reset.
|
|
*/
|
|
static int
|
|
ath_legacy_startrecv(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
|
|
ATH_RX_LOCK(sc);
|
|
|
|
/*
|
|
* XXX should verify these are already all NULL!
|
|
*/
|
|
sc->sc_rxlink = NULL;
|
|
(void) ath_legacy_flush_rxpending(sc);
|
|
(void) ath_legacy_flush_rxholdbf(sc);
|
|
|
|
/*
|
|
* Re-chain all of the buffers in the RX buffer list.
|
|
*/
|
|
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
|
|
int error = ath_rxbuf_init(sc, bf);
|
|
if (error != 0) {
|
|
DPRINTF(sc, ATH_DEBUG_RECV,
|
|
"%s: ath_rxbuf_init failed %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
bf = TAILQ_FIRST(&sc->sc_rxbuf);
|
|
ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
|
|
ath_hal_rxena(ah); /* enable recv descriptors */
|
|
ath_mode_init(sc); /* set filters, etc. */
|
|
ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
|
|
|
|
ATH_RX_UNLOCK(sc);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_legacy_dma_rxsetup(struct ath_softc *sc)
|
|
{
|
|
int error;
|
|
|
|
error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
|
|
"rx", sizeof(struct ath_desc), ath_rxbuf, 1);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ath_legacy_dma_rxteardown(struct ath_softc *sc)
|
|
{
|
|
|
|
if (sc->sc_rxdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
ath_legacy_recv_sched(struct ath_softc *sc, int dosched)
|
|
{
|
|
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
|
|
}
|
|
|
|
static void
|
|
ath_legacy_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE q,
|
|
int dosched)
|
|
{
|
|
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
|
|
}
|
|
|
|
void
|
|
ath_recv_setup_legacy(struct ath_softc *sc)
|
|
{
|
|
|
|
/* Sensible legacy defaults */
|
|
/*
|
|
* XXX this should be changed to properly support the
|
|
* exact RX descriptor size for each HAL.
|
|
*/
|
|
sc->sc_rx_statuslen = sizeof(struct ath_desc);
|
|
|
|
sc->sc_rx.recv_start = ath_legacy_startrecv;
|
|
sc->sc_rx.recv_stop = ath_legacy_stoprecv;
|
|
sc->sc_rx.recv_flush = ath_legacy_flushrecv;
|
|
sc->sc_rx.recv_tasklet = ath_legacy_rx_tasklet;
|
|
sc->sc_rx.recv_rxbuf_init = ath_legacy_rxbuf_init;
|
|
|
|
sc->sc_rx.recv_setup = ath_legacy_dma_rxsetup;
|
|
sc->sc_rx.recv_teardown = ath_legacy_dma_rxteardown;
|
|
sc->sc_rx.recv_sched = ath_legacy_recv_sched;
|
|
sc->sc_rx.recv_sched_queue = ath_legacy_recv_sched_queue;
|
|
}
|