1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-30 12:04:07 +00:00
freebsd/sys/dev/an/if_an.c
Robert Watson 2a8c860fe3 In order to reduce use of M_EXT outside of the mbuf allocator and
socket-buffer implementations, introduce a return value for MCLGET()
(and m_cljget() that underlies it) to allow the caller to avoid testing
M_EXT itself.  Update all callers to use the return value.

With this change, very few network device drivers remain aware of
M_EXT; the primary exceptions lie in mbuf-chain pretty printers for
debugging, and in a few cases, custom mbuf and cluster allocation
implementations.

NB: This is a difficult-to-test change as it touches many drivers for
which I don't have physical devices.  Instead we've gone for intensive
review, but further post-commit review would definitely be appreciated
to spot errors where changes could not easily be made mechanically,
but were largely mechanical in nature.

Differential Revision:	https://reviews.freebsd.org/D1440
Reviewed by:	adrian, bz, gnn
Sponsored by:	EMC / Isilon Storage Division
2015-01-06 12:59:37 +00:00

3822 lines
90 KiB
C

/*-
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* The Aironet 4500/4800 series cards come in PCMCIA, ISA and PCI form.
* This driver supports all three device types (PCI devices are supported
* through an extra PCI shim: /sys/dev/an/if_an_pci.c). ISA devices can be
* supported either using hard-coded IO port/IRQ settings or via Plug
* and Play. The 4500 series devices support 1Mbps and 2Mbps data rates.
* The 4800 devices support 1, 2, 5.5 and 11Mbps rates.
*
* Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially
* PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA
* device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are
* a couple of important differences though:
*
* - Lucent ISA card looks to the host like a PCMCIA controller with
* a PCMCIA WaveLAN card inserted. This means that even desktop
* machines need to be configured with PCMCIA support in order to
* use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand
* actually look like normal ISA and PCI devices to the host, so
* no PCMCIA controller support is needed
*
* The latter point results in a small gotcha. The Aironet PCMCIA
* cards can be configured for one of two operating modes depending
* on how the Vpp1 and Vpp2 programming voltages are set when the
* card is activated. In order to put the card in proper PCMCIA
* operation (where the CIS table is visible and the interface is
* programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be
* set to 5 volts. FreeBSD by default doesn't set the Vpp voltages,
* which leaves the card in ISA/PCI mode, which prevents it from
* being activated as an PCMCIA device.
*
* Note that some PCMCIA controller software packages for Windows NT
* fail to set the voltages as well.
*
* The Aironet devices can operate in both station mode and access point
* mode. Typically, when programmed for station mode, the card can be set
* to automatically perform encapsulation/decapsulation of Ethernet II
* and 802.3 frames within 802.11 frames so that the host doesn't have
* to do it itself. This driver doesn't program the card that way: the
* driver handles all of the encapsulation/decapsulation itself.
*/
#include "opt_inet.h"
#ifdef INET
#define ANCACHE /* enable signal strength cache */
#endif
#include <sys/param.h>
#include <sys/ctype.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#ifdef ANCACHE
#include <sys/syslog.h>
#endif
#include <sys/sysctl.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <machine/resource.h>
#include <sys/malloc.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/ethernet.h>
#include <net/if_types.h>
#include <net/if_media.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_ioctl.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/bpf.h>
#include <machine/md_var.h>
#include <dev/an/if_aironet_ieee.h>
#include <dev/an/if_anreg.h>
/* These are global because we need them in sys/pci/if_an_p.c. */
static void an_reset(struct an_softc *);
static int an_init_mpi350_desc(struct an_softc *);
static int an_ioctl(struct ifnet *, u_long, caddr_t);
static void an_init(void *);
static void an_init_locked(struct an_softc *);
static int an_init_tx_ring(struct an_softc *);
static void an_start(struct ifnet *);
static void an_start_locked(struct ifnet *);
static void an_watchdog(struct an_softc *);
static void an_rxeof(struct an_softc *);
static void an_txeof(struct an_softc *, int);
static void an_promisc(struct an_softc *, int);
static int an_cmd(struct an_softc *, int, int);
static int an_cmd_struct(struct an_softc *, struct an_command *,
struct an_reply *);
static int an_read_record(struct an_softc *, struct an_ltv_gen *);
static int an_write_record(struct an_softc *, struct an_ltv_gen *);
static int an_read_data(struct an_softc *, int, int, caddr_t, int);
static int an_write_data(struct an_softc *, int, int, caddr_t, int);
static int an_seek(struct an_softc *, int, int, int);
static int an_alloc_nicmem(struct an_softc *, int, int *);
static int an_dma_malloc(struct an_softc *, bus_size_t, struct an_dma_alloc *,
int);
static void an_dma_free(struct an_softc *, struct an_dma_alloc *);
static void an_dma_malloc_cb(void *, bus_dma_segment_t *, int, int);
static void an_stats_update(void *);
static void an_setdef(struct an_softc *, struct an_req *);
#ifdef ANCACHE
static void an_cache_store(struct an_softc *, struct ether_header *,
struct mbuf *, u_int8_t, u_int8_t);
#endif
/* function definitions for use with the Cisco's Linux configuration
utilities
*/
static int readrids(struct ifnet*, struct aironet_ioctl*);
static int writerids(struct ifnet*, struct aironet_ioctl*);
static int flashcard(struct ifnet*, struct aironet_ioctl*);
static int cmdreset(struct ifnet *);
static int setflashmode(struct ifnet *);
static int flashgchar(struct ifnet *,int,int);
static int flashpchar(struct ifnet *,int,int);
static int flashputbuf(struct ifnet *);
static int flashrestart(struct ifnet *);
static int WaitBusy(struct ifnet *, int);
static int unstickbusy(struct ifnet *);
static void an_dump_record (struct an_softc *,struct an_ltv_gen *,
char *);
static int an_media_change (struct ifnet *);
static void an_media_status (struct ifnet *, struct ifmediareq *);
static int an_dump = 0;
static int an_cache_mode = 0;
#define DBM 0
#define PERCENT 1
#define RAW 2
static char an_conf[256];
static char an_conf_cache[256];
/* sysctl vars */
static SYSCTL_NODE(_hw, OID_AUTO, an, CTLFLAG_RD, 0,
"Wireless driver parameters");
/* XXX violate ethernet/netgraph callback hooks */
extern void (*ng_ether_attach_p)(struct ifnet *ifp);
extern void (*ng_ether_detach_p)(struct ifnet *ifp);
static int
sysctl_an_dump(SYSCTL_HANDLER_ARGS)
{
int error, r, last;
char *s = an_conf;
last = an_dump;
switch (an_dump) {
case 0:
strcpy(an_conf, "off");
break;
case 1:
strcpy(an_conf, "type");
break;
case 2:
strcpy(an_conf, "dump");
break;
default:
snprintf(an_conf, 5, "%x", an_dump);
break;
}
error = sysctl_handle_string(oidp, an_conf, sizeof(an_conf), req);
if (strncmp(an_conf,"off", 3) == 0) {
an_dump = 0;
}
if (strncmp(an_conf,"dump", 4) == 0) {
an_dump = 1;
}
if (strncmp(an_conf,"type", 4) == 0) {
an_dump = 2;
}
if (*s == 'f') {
r = 0;
for (;;s++) {
if ((*s >= '0') && (*s <= '9')) {
r = r * 16 + (*s - '0');
} else if ((*s >= 'a') && (*s <= 'f')) {
r = r * 16 + (*s - 'a' + 10);
} else {
break;
}
}
an_dump = r;
}
if (an_dump != last)
printf("Sysctl changed for Aironet driver\n");
return error;
}
SYSCTL_PROC(_hw_an, OID_AUTO, an_dump, CTLTYPE_STRING | CTLFLAG_RW,
0, sizeof(an_conf), sysctl_an_dump, "A", "");
static int
sysctl_an_cache_mode(SYSCTL_HANDLER_ARGS)
{
int error;
switch (an_cache_mode) {
case 1:
strcpy(an_conf_cache, "per");
break;
case 2:
strcpy(an_conf_cache, "raw");
break;
default:
strcpy(an_conf_cache, "dbm");
break;
}
error = sysctl_handle_string(oidp, an_conf_cache,
sizeof(an_conf_cache), req);
if (strncmp(an_conf_cache,"dbm", 3) == 0) {
an_cache_mode = 0;
}
if (strncmp(an_conf_cache,"per", 3) == 0) {
an_cache_mode = 1;
}
if (strncmp(an_conf_cache,"raw", 3) == 0) {
an_cache_mode = 2;
}
return error;
}
SYSCTL_PROC(_hw_an, OID_AUTO, an_cache_mode, CTLTYPE_STRING | CTLFLAG_RW,
0, sizeof(an_conf_cache), sysctl_an_cache_mode, "A", "");
/*
* Setup the lock for PCI attachment since it skips the an_probe
* function. We need to setup the lock in an_probe since some
* operations need the lock. So we might as well create the
* lock in the probe.
*/
int
an_pci_probe(device_t dev)
{
struct an_softc *sc = device_get_softc(dev);
mtx_init(&sc->an_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
return(0);
}
/*
* We probe for an Aironet 4500/4800 card by attempting to
* read the default SSID list. On reset, the first entry in
* the SSID list will contain the name "tsunami." If we don't
* find this, then there's no card present.
*/
int
an_probe(device_t dev)
{
struct an_softc *sc = device_get_softc(dev);
struct an_ltv_ssidlist_new ssid;
int error;
bzero((char *)&ssid, sizeof(ssid));
error = an_alloc_port(dev, 0, AN_IOSIZ);
if (error != 0)
return (0);
/* can't do autoprobing */
if (rman_get_start(sc->port_res) == -1)
return(0);
/*
* We need to fake up a softc structure long enough
* to be able to issue commands and call some of the
* other routines.
*/
ssid.an_len = sizeof(ssid);
ssid.an_type = AN_RID_SSIDLIST;
/* Make sure interrupts are disabled. */
sc->mpi350 = 0;
CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 0xFFFF);
sc->an_dev = dev;
mtx_init(&sc->an_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
AN_LOCK(sc);
an_reset(sc);
if (an_cmd(sc, AN_CMD_READCFG, 0)) {
AN_UNLOCK(sc);
goto fail;
}
if (an_read_record(sc, (struct an_ltv_gen *)&ssid)) {
AN_UNLOCK(sc);
goto fail;
}
/* See if the ssid matches what we expect ... but doesn't have to */
if (strcmp(ssid.an_entry[0].an_ssid, AN_DEF_SSID)) {
AN_UNLOCK(sc);
goto fail;
}
AN_UNLOCK(sc);
return(AN_IOSIZ);
fail:
mtx_destroy(&sc->an_mtx);
return(0);
}
/*
* Allocate a port resource with the given resource id.
*/
int
an_alloc_port(device_t dev, int rid, int size)
{
struct an_softc *sc = device_get_softc(dev);
struct resource *res;
res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
0ul, ~0ul, size, RF_ACTIVE);
if (res) {
sc->port_rid = rid;
sc->port_res = res;
return (0);
} else {
return (ENOENT);
}
}
/*
* Allocate a memory resource with the given resource id.
*/
int an_alloc_memory(device_t dev, int rid, int size)
{
struct an_softc *sc = device_get_softc(dev);
struct resource *res;
res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
0ul, ~0ul, size, RF_ACTIVE);
if (res) {
sc->mem_rid = rid;
sc->mem_res = res;
sc->mem_used = size;
return (0);
} else {
return (ENOENT);
}
}
/*
* Allocate a auxilary memory resource with the given resource id.
*/
int an_alloc_aux_memory(device_t dev, int rid, int size)
{
struct an_softc *sc = device_get_softc(dev);
struct resource *res;
res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
0ul, ~0ul, size, RF_ACTIVE);
if (res) {
sc->mem_aux_rid = rid;
sc->mem_aux_res = res;
sc->mem_aux_used = size;
return (0);
} else {
return (ENOENT);
}
}
/*
* Allocate an irq resource with the given resource id.
*/
int
an_alloc_irq(device_t dev, int rid, int flags)
{
struct an_softc *sc = device_get_softc(dev);
struct resource *res;
res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
(RF_ACTIVE | flags));
if (res) {
sc->irq_rid = rid;
sc->irq_res = res;
return (0);
} else {
return (ENOENT);
}
}
static void
an_dma_malloc_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *paddr = (bus_addr_t*) arg;
*paddr = segs->ds_addr;
}
/*
* Alloc DMA memory and set the pointer to it
*/
static int
an_dma_malloc(struct an_softc *sc, bus_size_t size, struct an_dma_alloc *dma,
int mapflags)
{
int r;
r = bus_dmamem_alloc(sc->an_dtag, (void**) &dma->an_dma_vaddr,
BUS_DMA_NOWAIT, &dma->an_dma_map);
if (r != 0)
goto fail_1;
r = bus_dmamap_load(sc->an_dtag, dma->an_dma_map, dma->an_dma_vaddr,
size,
an_dma_malloc_cb,
&dma->an_dma_paddr,
mapflags | BUS_DMA_NOWAIT);
if (r != 0)
goto fail_2;
dma->an_dma_size = size;
return (0);
fail_2:
bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
fail_1:
bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
return (r);
}
static void
an_dma_free(struct an_softc *sc, struct an_dma_alloc *dma)
{
bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
dma->an_dma_vaddr = 0;
}
/*
* Release all resources
*/
void
an_release_resources(device_t dev)
{
struct an_softc *sc = device_get_softc(dev);
int i;
if (sc->port_res) {
bus_release_resource(dev, SYS_RES_IOPORT,
sc->port_rid, sc->port_res);
sc->port_res = 0;
}
if (sc->mem_res) {
bus_release_resource(dev, SYS_RES_MEMORY,
sc->mem_rid, sc->mem_res);
sc->mem_res = 0;
}
if (sc->mem_aux_res) {
bus_release_resource(dev, SYS_RES_MEMORY,
sc->mem_aux_rid, sc->mem_aux_res);
sc->mem_aux_res = 0;
}
if (sc->irq_res) {
bus_release_resource(dev, SYS_RES_IRQ,
sc->irq_rid, sc->irq_res);
sc->irq_res = 0;
}
if (sc->an_rid_buffer.an_dma_paddr) {
an_dma_free(sc, &sc->an_rid_buffer);
}
for (i = 0; i < AN_MAX_RX_DESC; i++)
if (sc->an_rx_buffer[i].an_dma_paddr) {
an_dma_free(sc, &sc->an_rx_buffer[i]);
}
for (i = 0; i < AN_MAX_TX_DESC; i++)
if (sc->an_tx_buffer[i].an_dma_paddr) {
an_dma_free(sc, &sc->an_tx_buffer[i]);
}
if (sc->an_dtag) {
bus_dma_tag_destroy(sc->an_dtag);
}
}
int
an_init_mpi350_desc(struct an_softc *sc)
{
struct an_command cmd_struct;
struct an_reply reply;
struct an_card_rid_desc an_rid_desc;
struct an_card_rx_desc an_rx_desc;
struct an_card_tx_desc an_tx_desc;
int i, desc;
AN_LOCK_ASSERT(sc);
if(!sc->an_rid_buffer.an_dma_paddr)
an_dma_malloc(sc, AN_RID_BUFFER_SIZE,
&sc->an_rid_buffer, 0);
for (i = 0; i < AN_MAX_RX_DESC; i++)
if(!sc->an_rx_buffer[i].an_dma_paddr)
an_dma_malloc(sc, AN_RX_BUFFER_SIZE,
&sc->an_rx_buffer[i], 0);
for (i = 0; i < AN_MAX_TX_DESC; i++)
if(!sc->an_tx_buffer[i].an_dma_paddr)
an_dma_malloc(sc, AN_TX_BUFFER_SIZE,
&sc->an_tx_buffer[i], 0);
/*
* Allocate RX descriptor
*/
bzero(&reply,sizeof(reply));
cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
cmd_struct.an_parm0 = AN_DESCRIPTOR_RX;
cmd_struct.an_parm1 = AN_RX_DESC_OFFSET;
cmd_struct.an_parm2 = AN_MAX_RX_DESC;
if (an_cmd_struct(sc, &cmd_struct, &reply)) {
if_printf(sc->an_ifp, "failed to allocate RX descriptor\n");
return(EIO);
}
for (desc = 0; desc < AN_MAX_RX_DESC; desc++) {
bzero(&an_rx_desc, sizeof(an_rx_desc));
an_rx_desc.an_valid = 1;
an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
an_rx_desc.an_done = 0;
an_rx_desc.an_phys = sc->an_rx_buffer[desc].an_dma_paddr;
for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
CSR_MEM_AUX_WRITE_4(sc, AN_RX_DESC_OFFSET
+ (desc * sizeof(an_rx_desc))
+ (i * 4),
((u_int32_t *)(void *)&an_rx_desc)[i]);
}
/*
* Allocate TX descriptor
*/
bzero(&reply,sizeof(reply));
cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
cmd_struct.an_parm0 = AN_DESCRIPTOR_TX;
cmd_struct.an_parm1 = AN_TX_DESC_OFFSET;
cmd_struct.an_parm2 = AN_MAX_TX_DESC;
if (an_cmd_struct(sc, &cmd_struct, &reply)) {
if_printf(sc->an_ifp, "failed to allocate TX descriptor\n");
return(EIO);
}
for (desc = 0; desc < AN_MAX_TX_DESC; desc++) {
bzero(&an_tx_desc, sizeof(an_tx_desc));
an_tx_desc.an_offset = 0;
an_tx_desc.an_eoc = 0;
an_tx_desc.an_valid = 0;
an_tx_desc.an_len = 0;
an_tx_desc.an_phys = sc->an_tx_buffer[desc].an_dma_paddr;
for (i = 0; i < sizeof(an_tx_desc) / 4; i++)
CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
+ (desc * sizeof(an_tx_desc))
+ (i * 4),
((u_int32_t *)(void *)&an_tx_desc)[i]);
}
/*
* Allocate RID descriptor
*/
bzero(&reply,sizeof(reply));
cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
cmd_struct.an_parm0 = AN_DESCRIPTOR_HOSTRW;
cmd_struct.an_parm1 = AN_HOST_DESC_OFFSET;
cmd_struct.an_parm2 = 1;
if (an_cmd_struct(sc, &cmd_struct, &reply)) {
if_printf(sc->an_ifp, "failed to allocate host descriptor\n");
return(EIO);
}
bzero(&an_rid_desc, sizeof(an_rid_desc));
an_rid_desc.an_valid = 1;
an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
an_rid_desc.an_rid = 0;
an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
((u_int32_t *)(void *)&an_rid_desc)[i]);
return(0);
}
int
an_attach(struct an_softc *sc, int flags)
{
struct ifnet *ifp;
int error = EIO;
int i, nrate, mword;
u_int8_t r;
ifp = sc->an_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(sc->an_dev, "can not if_alloc()\n");
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(sc->an_dev),
device_get_unit(sc->an_dev));
sc->an_gone = 0;
sc->an_associated = 0;
sc->an_monitor = 0;
sc->an_was_monitor = 0;
sc->an_flash_buffer = NULL;
/* Reset the NIC. */
AN_LOCK(sc);
an_reset(sc);
if (sc->mpi350) {
error = an_init_mpi350_desc(sc);
if (error)
goto fail;
}
/* Load factory config */
if (an_cmd(sc, AN_CMD_READCFG, 0)) {
device_printf(sc->an_dev, "failed to load config data\n");
goto fail;
}
/* Read the current configuration */
sc->an_config.an_type = AN_RID_GENCONFIG;
sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
device_printf(sc->an_dev, "read record failed\n");
goto fail;
}
/* Read the card capabilities */
sc->an_caps.an_type = AN_RID_CAPABILITIES;
sc->an_caps.an_len = sizeof(struct an_ltv_caps);
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) {
device_printf(sc->an_dev, "read record failed\n");
goto fail;
}
/* Read ssid list */
sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist_new);
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
device_printf(sc->an_dev, "read record failed\n");
goto fail;
}
/* Read AP list */
sc->an_aplist.an_type = AN_RID_APLIST;
sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
device_printf(sc->an_dev, "read record failed\n");
goto fail;
}
#ifdef ANCACHE
/* Read the RSSI <-> dBm map */
sc->an_have_rssimap = 0;
if (sc->an_caps.an_softcaps & 8) {
sc->an_rssimap.an_type = AN_RID_RSSI_MAP;
sc->an_rssimap.an_len = sizeof(struct an_ltv_rssi_map);
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_rssimap)) {
device_printf(sc->an_dev,
"unable to get RSSI <-> dBM map\n");
} else {
device_printf(sc->an_dev, "got RSSI <-> dBM map\n");
sc->an_have_rssimap = 1;
}
} else {
device_printf(sc->an_dev, "no RSSI <-> dBM map\n");
}
#endif
AN_UNLOCK(sc);
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = an_ioctl;
ifp->if_start = an_start;
ifp->if_init = an_init;
ifp->if_baudrate = 10000000;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename));
bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename,
sizeof(AN_DEFAULT_NODENAME) - 1);
bzero(sc->an_ssidlist.an_entry[0].an_ssid,
sizeof(sc->an_ssidlist.an_entry[0].an_ssid));
bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_entry[0].an_ssid,
sizeof(AN_DEFAULT_NETNAME) - 1);
sc->an_ssidlist.an_entry[0].an_len = strlen(AN_DEFAULT_NETNAME);
sc->an_config.an_opmode =
AN_OPMODE_INFRASTRUCTURE_STATION;
sc->an_tx_rate = 0;
bzero((char *)&sc->an_stats, sizeof(sc->an_stats));
nrate = 8;
ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status);
if_printf(ifp, "supported rates: ");
#define ADD(s, o) ifmedia_add(&sc->an_ifmedia, \
IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
ADD(IFM_AUTO, 0);
ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
for (i = 0; i < nrate; i++) {
r = sc->an_caps.an_rates[i];
mword = ieee80211_rate2media(NULL, r, IEEE80211_MODE_AUTO);
if (mword == 0)
continue;
printf("%s%d%sMbps", (i != 0 ? " " : ""),
(r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
ADD(mword, 0);
ADD(mword, IFM_IEEE80211_ADHOC);
}
printf("\n");
ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211,
IFM_AUTO, 0, 0));
#undef ADD
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, sc->an_caps.an_oemaddr);
callout_init_mtx(&sc->an_stat_ch, &sc->an_mtx, 0);
return(0);
fail:
AN_UNLOCK(sc);
mtx_destroy(&sc->an_mtx);
if (ifp != NULL)
if_free(ifp);
return(error);
}
int
an_detach(device_t dev)
{
struct an_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->an_ifp;
if (sc->an_gone) {
device_printf(dev,"already unloaded\n");
return(0);
}
AN_LOCK(sc);
an_stop(sc);
sc->an_gone = 1;
ifmedia_removeall(&sc->an_ifmedia);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
AN_UNLOCK(sc);
ether_ifdetach(ifp);
bus_teardown_intr(dev, sc->irq_res, sc->irq_handle);
callout_drain(&sc->an_stat_ch);
if_free(ifp);
an_release_resources(dev);
mtx_destroy(&sc->an_mtx);
return (0);
}
static void
an_rxeof(struct an_softc *sc)
{
struct ifnet *ifp;
struct ether_header *eh;
struct ieee80211_frame *ih;
struct an_rxframe rx_frame;
struct an_rxframe_802_3 rx_frame_802_3;
struct mbuf *m;
int len, id, error = 0, i, count = 0;
int ieee80211_header_len;
u_char *bpf_buf;
u_short fc1;
struct an_card_rx_desc an_rx_desc;
u_int8_t *buf;
AN_LOCK_ASSERT(sc);
ifp = sc->an_ifp;
if (!sc->mpi350) {
id = CSR_READ_2(sc, AN_RX_FID);
if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
/* read raw 802.11 packet */
bpf_buf = sc->buf_802_11;
/* read header */
if (an_read_data(sc, id, 0x0, (caddr_t)&rx_frame,
sizeof(rx_frame))) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
/*
* skip beacon by default since this increases the
* system load a lot
*/
if (!(sc->an_monitor & AN_MONITOR_INCLUDE_BEACON) &&
(rx_frame.an_frame_ctl &
IEEE80211_FC0_SUBTYPE_BEACON)) {
return;
}
if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
len = rx_frame.an_rx_payload_len
+ sizeof(rx_frame);
/* Check for insane frame length */
if (len > sizeof(sc->buf_802_11)) {
if_printf(ifp, "oversized packet "
"received (%d, %d)\n",
len, MCLBYTES);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
bcopy((char *)&rx_frame,
bpf_buf, sizeof(rx_frame));
error = an_read_data(sc, id, sizeof(rx_frame),
(caddr_t)bpf_buf+sizeof(rx_frame),
rx_frame.an_rx_payload_len);
} else {
fc1=rx_frame.an_frame_ctl >> 8;
ieee80211_header_len =
sizeof(struct ieee80211_frame);
if ((fc1 & IEEE80211_FC1_DIR_TODS) &&
(fc1 & IEEE80211_FC1_DIR_FROMDS)) {
ieee80211_header_len += ETHER_ADDR_LEN;
}
len = rx_frame.an_rx_payload_len
+ ieee80211_header_len;
/* Check for insane frame length */
if (len > sizeof(sc->buf_802_11)) {
if_printf(ifp, "oversized packet "
"received (%d, %d)\n",
len, MCLBYTES);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
ih = (struct ieee80211_frame *)bpf_buf;
bcopy((char *)&rx_frame.an_frame_ctl,
(char *)ih, ieee80211_header_len);
error = an_read_data(sc, id, sizeof(rx_frame) +
rx_frame.an_gaplen,
(caddr_t)ih +ieee80211_header_len,
rx_frame.an_rx_payload_len);
}
/* dump raw 802.11 packet to bpf and skip ip stack */
BPF_TAP(ifp, bpf_buf, len);
} else {
MGETHDR(m, M_NOWAIT, MT_DATA);
if (m == NULL) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
if (!(MCLGET(m, M_NOWAIT))) {
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
m->m_pkthdr.rcvif = ifp;
/* Read Ethernet encapsulated packet */
#ifdef ANCACHE
/* Read NIC frame header */
if (an_read_data(sc, id, 0, (caddr_t)&rx_frame,
sizeof(rx_frame))) {
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
#endif
/* Read in the 802_3 frame header */
if (an_read_data(sc, id, 0x34,
(caddr_t)&rx_frame_802_3,
sizeof(rx_frame_802_3))) {
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
if (rx_frame_802_3.an_rx_802_3_status != 0) {
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
/* Check for insane frame length */
len = rx_frame_802_3.an_rx_802_3_payload_len;
if (len > sizeof(sc->buf_802_11)) {
m_freem(m);
if_printf(ifp, "oversized packet "
"received (%d, %d)\n",
len, MCLBYTES);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
m->m_pkthdr.len = m->m_len =
rx_frame_802_3.an_rx_802_3_payload_len + 12;
eh = mtod(m, struct ether_header *);
bcopy((char *)&rx_frame_802_3.an_rx_dst_addr,
(char *)&eh->ether_dhost, ETHER_ADDR_LEN);
bcopy((char *)&rx_frame_802_3.an_rx_src_addr,
(char *)&eh->ether_shost, ETHER_ADDR_LEN);
/* in mbuf header type is just before payload */
error = an_read_data(sc, id, 0x44,
(caddr_t)&(eh->ether_type),
rx_frame_802_3.an_rx_802_3_payload_len);
if (error) {
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
/* Receive packet. */
#ifdef ANCACHE
an_cache_store(sc, eh, m,
rx_frame.an_rx_signal_strength,
rx_frame.an_rsvd0);
#endif
AN_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
AN_LOCK(sc);
}
} else { /* MPI-350 */
for (count = 0; count < AN_MAX_RX_DESC; count++){
for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
((u_int32_t *)(void *)&an_rx_desc)[i]
= CSR_MEM_AUX_READ_4(sc,
AN_RX_DESC_OFFSET
+ (count * sizeof(an_rx_desc))
+ (i * 4));
if (an_rx_desc.an_done && !an_rx_desc.an_valid) {
buf = sc->an_rx_buffer[count].an_dma_vaddr;
MGETHDR(m, M_NOWAIT, MT_DATA);
if (m == NULL) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
if (!(MCLGET(m, M_NOWAIT))) {
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
m->m_pkthdr.rcvif = ifp;
/* Read Ethernet encapsulated packet */
/*
* No ANCACHE support since we just get back
* an Ethernet packet no 802.11 info
*/
#if 0
#ifdef ANCACHE
/* Read NIC frame header */
bcopy(buf, (caddr_t)&rx_frame,
sizeof(rx_frame));
#endif
#endif
/* Check for insane frame length */
len = an_rx_desc.an_len + 12;
if (len > MCLBYTES) {
m_freem(m);
if_printf(ifp, "oversized packet "
"received (%d, %d)\n",
len, MCLBYTES);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
m->m_pkthdr.len = m->m_len =
an_rx_desc.an_len + 12;
eh = mtod(m, struct ether_header *);
bcopy(buf, (char *)eh,
m->m_pkthdr.len);
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
/* Receive packet. */
#if 0
#ifdef ANCACHE
an_cache_store(sc, eh, m,
rx_frame.an_rx_signal_strength,
rx_frame.an_rsvd0);
#endif
#endif
AN_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
AN_LOCK(sc);
an_rx_desc.an_valid = 1;
an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
an_rx_desc.an_done = 0;
an_rx_desc.an_phys =
sc->an_rx_buffer[count].an_dma_paddr;
for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
CSR_MEM_AUX_WRITE_4(sc,
AN_RX_DESC_OFFSET
+ (count * sizeof(an_rx_desc))
+ (i * 4),
((u_int32_t *)(void *)&an_rx_desc)[i]);
} else {
if_printf(ifp, "Didn't get valid RX packet "
"%x %x %d\n",
an_rx_desc.an_done,
an_rx_desc.an_valid, an_rx_desc.an_len);
}
}
}
}
static void
an_txeof(struct an_softc *sc, int status)
{
struct ifnet *ifp;
int id, i;
AN_LOCK_ASSERT(sc);
ifp = sc->an_ifp;
sc->an_timer = 0;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (!sc->mpi350) {
id = CSR_READ_2(sc, AN_TX_CMP_FID(sc->mpi350));
if (status & AN_EV_TX_EXC) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
} else
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
for (i = 0; i < AN_TX_RING_CNT; i++) {
if (id == sc->an_rdata.an_tx_ring[i]) {
sc->an_rdata.an_tx_ring[i] = 0;
break;
}
}
AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT);
} else { /* MPI 350 */
id = CSR_READ_2(sc, AN_TX_CMP_FID(sc->mpi350));
if (!sc->an_rdata.an_tx_empty){
if (status & AN_EV_TX_EXC) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
} else
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
AN_INC(sc->an_rdata.an_tx_cons, AN_MAX_TX_DESC);
if (sc->an_rdata.an_tx_prod ==
sc->an_rdata.an_tx_cons)
sc->an_rdata.an_tx_empty = 1;
}
}
return;
}
/*
* We abuse the stats updater to check the current NIC status. This
* is important because we don't want to allow transmissions until
* the NIC has synchronized to the current cell (either as the master
* in an ad-hoc group, or as a station connected to an access point).
*
* Note that this function will be called via callout(9) with a lock held.
*/
static void
an_stats_update(void *xsc)
{
struct an_softc *sc;
struct ifnet *ifp;
sc = xsc;
AN_LOCK_ASSERT(sc);
ifp = sc->an_ifp;
if (sc->an_timer > 0 && --sc->an_timer == 0)
an_watchdog(sc);
sc->an_status.an_type = AN_RID_STATUS;
sc->an_status.an_len = sizeof(struct an_ltv_status);
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_status))
return;
if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC)
sc->an_associated = 1;
else
sc->an_associated = 0;
/* Don't do this while we're transmitting */
if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
callout_reset(&sc->an_stat_ch, hz, an_stats_update, sc);
return;
}
sc->an_stats.an_len = sizeof(struct an_ltv_stats);
sc->an_stats.an_type = AN_RID_32BITS_CUM;
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len))
return;
callout_reset(&sc->an_stat_ch, hz, an_stats_update, sc);
return;
}
void
an_intr(void *xsc)
{
struct an_softc *sc;
struct ifnet *ifp;
u_int16_t status;
sc = (struct an_softc*)xsc;
AN_LOCK(sc);
if (sc->an_gone) {
AN_UNLOCK(sc);
return;
}
ifp = sc->an_ifp;
/* Disable interrupts. */
CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
status = CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350));
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), ~AN_INTRS(sc->mpi350));
if (status & AN_EV_MIC) {
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_MIC);
}
if (status & AN_EV_LINKSTAT) {
if (CSR_READ_2(sc, AN_LINKSTAT(sc->mpi350))
== AN_LINKSTAT_ASSOCIATED)
sc->an_associated = 1;
else
sc->an_associated = 0;
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_LINKSTAT);
}
if (status & AN_EV_RX) {
an_rxeof(sc);
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_RX);
}
if (sc->mpi350 && status & AN_EV_TX_CPY) {
an_txeof(sc, status);
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_CPY);
}
if (status & AN_EV_TX) {
an_txeof(sc, status);
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX);
}
if (status & AN_EV_TX_EXC) {
an_txeof(sc, status);
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_EXC);
}
if (status & AN_EV_ALLOC)
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
/* Re-enable interrupts. */
CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
if ((ifp->if_flags & IFF_UP) && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
an_start_locked(ifp);
AN_UNLOCK(sc);
return;
}
static int
an_cmd_struct(struct an_softc *sc, struct an_command *cmd,
struct an_reply *reply)
{
int i;
AN_LOCK_ASSERT(sc);
for (i = 0; i != AN_TIMEOUT; i++) {
if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
DELAY(1000);
} else
break;
}
if( i == AN_TIMEOUT) {
printf("BUSY\n");
return(ETIMEDOUT);
}
CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), cmd->an_parm0);
CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), cmd->an_parm1);
CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), cmd->an_parm2);
CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd->an_cmd);
for (i = 0; i < AN_TIMEOUT; i++) {
if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
break;
DELAY(1000);
}
reply->an_resp0 = CSR_READ_2(sc, AN_RESP0(sc->mpi350));
reply->an_resp1 = CSR_READ_2(sc, AN_RESP1(sc->mpi350));
reply->an_resp2 = CSR_READ_2(sc, AN_RESP2(sc->mpi350));
reply->an_status = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350),
AN_EV_CLR_STUCK_BUSY);
/* Ack the command */
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
if (i == AN_TIMEOUT)
return(ETIMEDOUT);
return(0);
}
static int
an_cmd(struct an_softc *sc, int cmd, int val)
{
int i, s = 0;
AN_LOCK_ASSERT(sc);
CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), val);
CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), 0);
CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), 0);
CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
for (i = 0; i < AN_TIMEOUT; i++) {
if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
break;
else {
if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) == cmd)
CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
}
}
for (i = 0; i < AN_TIMEOUT; i++) {
CSR_READ_2(sc, AN_RESP0(sc->mpi350));
CSR_READ_2(sc, AN_RESP1(sc->mpi350));
CSR_READ_2(sc, AN_RESP2(sc->mpi350));
s = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE))
break;
}
/* Ack the command */
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
if (i == AN_TIMEOUT)
return(ETIMEDOUT);
return(0);
}
/*
* This reset sequence may look a little strange, but this is the
* most reliable method I've found to really kick the NIC in the
* head and force it to reboot correctly.
*/
static void
an_reset(struct an_softc *sc)
{
if (sc->an_gone)
return;
AN_LOCK_ASSERT(sc);
an_cmd(sc, AN_CMD_ENABLE, 0);
an_cmd(sc, AN_CMD_FW_RESTART, 0);
an_cmd(sc, AN_CMD_NOOP2, 0);
if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT)
device_printf(sc->an_dev, "reset failed\n");
an_cmd(sc, AN_CMD_DISABLE, 0);
return;
}
/*
* Read an LTV record from the NIC.
*/
static int
an_read_record(struct an_softc *sc, struct an_ltv_gen *ltv)
{
struct an_ltv_gen *an_ltv;
struct an_card_rid_desc an_rid_desc;
struct an_command cmd;
struct an_reply reply;
struct ifnet *ifp;
u_int16_t *ptr;
u_int8_t *ptr2;
int i, len;
AN_LOCK_ASSERT(sc);
if (ltv->an_len < 4 || ltv->an_type == 0)
return(EINVAL);
ifp = sc->an_ifp;
if (!sc->mpi350){
/* Tell the NIC to enter record read mode. */
if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) {
if_printf(ifp, "RID access failed\n");
return(EIO);
}
/* Seek to the record. */
if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) {
if_printf(ifp, "seek to record failed\n");
return(EIO);
}
/*
* Read the length and record type and make sure they
* match what we expect (this verifies that we have enough
* room to hold all of the returned data).
* Length includes type but not length.
*/
len = CSR_READ_2(sc, AN_DATA1);
if (len > (ltv->an_len - 2)) {
if_printf(ifp, "record length mismatch -- expected %d, "
"got %d for Rid %x\n",
ltv->an_len - 2, len, ltv->an_type);
len = ltv->an_len - 2;
} else {
ltv->an_len = len + 2;
}
/* Now read the data. */
len -= 2; /* skip the type */
ptr = &ltv->an_val;
for (i = len; i > 1; i -= 2)
*ptr++ = CSR_READ_2(sc, AN_DATA1);
if (i) {
ptr2 = (u_int8_t *)ptr;
*ptr2 = CSR_READ_1(sc, AN_DATA1);
}
} else { /* MPI-350 */
if (!sc->an_rid_buffer.an_dma_vaddr)
return(EIO);
an_rid_desc.an_valid = 1;
an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
an_rid_desc.an_rid = 0;
an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
bzero(sc->an_rid_buffer.an_dma_vaddr, AN_RID_BUFFER_SIZE);
bzero(&cmd, sizeof(cmd));
bzero(&reply, sizeof(reply));
cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_READ;
cmd.an_parm0 = ltv->an_type;
for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
((u_int32_t *)(void *)&an_rid_desc)[i]);
if (an_cmd_struct(sc, &cmd, &reply)
|| reply.an_status & AN_CMD_QUAL_MASK) {
if_printf(ifp, "failed to read RID %x %x %x %x %x, %d\n",
ltv->an_type,
reply.an_status,
reply.an_resp0,
reply.an_resp1,
reply.an_resp2,
i);
return(EIO);
}
an_ltv = (struct an_ltv_gen *)sc->an_rid_buffer.an_dma_vaddr;
if (an_ltv->an_len + 2 < an_rid_desc.an_len) {
an_rid_desc.an_len = an_ltv->an_len;
}
len = an_rid_desc.an_len;
if (len > (ltv->an_len - 2)) {
if_printf(ifp, "record length mismatch -- expected %d, "
"got %d for Rid %x\n",
ltv->an_len - 2, len, ltv->an_type);
len = ltv->an_len - 2;
} else {
ltv->an_len = len + 2;
}
bcopy(&an_ltv->an_type,
&ltv->an_val,
len);
}
if (an_dump)
an_dump_record(sc, ltv, "Read");
return(0);
}
/*
* Same as read, except we inject data instead of reading it.
*/
static int
an_write_record(struct an_softc *sc, struct an_ltv_gen *ltv)
{
struct an_card_rid_desc an_rid_desc;
struct an_command cmd;
struct an_reply reply;
u_int16_t *ptr;
u_int8_t *ptr2;
int i, len;
AN_LOCK_ASSERT(sc);
if (an_dump)
an_dump_record(sc, ltv, "Write");
if (!sc->mpi350){
if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type))
return(EIO);
if (an_seek(sc, ltv->an_type, 0, AN_BAP1))
return(EIO);
/*
* Length includes type but not length.
*/
len = ltv->an_len - 2;
CSR_WRITE_2(sc, AN_DATA1, len);
len -= 2; /* skip the type */
ptr = &ltv->an_val;
for (i = len; i > 1; i -= 2)
CSR_WRITE_2(sc, AN_DATA1, *ptr++);
if (i) {
ptr2 = (u_int8_t *)ptr;
CSR_WRITE_1(sc, AN_DATA0, *ptr2);
}
if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type))
return(EIO);
} else {
/* MPI-350 */
for (i = 0; i != AN_TIMEOUT; i++) {
if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350))
& AN_CMD_BUSY) {
DELAY(10);
} else
break;
}
if (i == AN_TIMEOUT) {
printf("BUSY\n");
}
an_rid_desc.an_valid = 1;
an_rid_desc.an_len = ltv->an_len - 2;
an_rid_desc.an_rid = ltv->an_type;
an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
bcopy(&ltv->an_type, sc->an_rid_buffer.an_dma_vaddr,
an_rid_desc.an_len);
bzero(&cmd,sizeof(cmd));
bzero(&reply,sizeof(reply));
cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_WRITE;
cmd.an_parm0 = ltv->an_type;
for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
((u_int32_t *)(void *)&an_rid_desc)[i]);
DELAY(100000);
if ((i = an_cmd_struct(sc, &cmd, &reply))) {
if_printf(sc->an_ifp,
"failed to write RID 1 %x %x %x %x %x, %d\n",
ltv->an_type,
reply.an_status,
reply.an_resp0,
reply.an_resp1,
reply.an_resp2,
i);
return(EIO);
}
if (reply.an_status & AN_CMD_QUAL_MASK) {
if_printf(sc->an_ifp,
"failed to write RID 2 %x %x %x %x %x, %d\n",
ltv->an_type,
reply.an_status,
reply.an_resp0,
reply.an_resp1,
reply.an_resp2,
i);
return(EIO);
}
DELAY(100000);
}
return(0);
}
static void
an_dump_record(struct an_softc *sc, struct an_ltv_gen *ltv, char *string)
{
u_int8_t *ptr2;
int len;
int i;
int count = 0;
char buf[17], temp;
len = ltv->an_len - 4;
if_printf(sc->an_ifp, "RID %4x, Length %4d, Mode %s\n",
ltv->an_type, ltv->an_len - 4, string);
if (an_dump == 1 || (an_dump == ltv->an_type)) {
if_printf(sc->an_ifp, "\t");
bzero(buf,sizeof(buf));
ptr2 = (u_int8_t *)&ltv->an_val;
for (i = len; i > 0; i--) {
printf("%02x ", *ptr2);
temp = *ptr2++;
if (isprint(temp))
buf[count] = temp;
else
buf[count] = '.';
if (++count == 16) {
count = 0;
printf("%s\n",buf);
if_printf(sc->an_ifp, "\t");
bzero(buf,sizeof(buf));
}
}
for (; count != 16; count++) {
printf(" ");
}
printf(" %s\n",buf);
}
}
static int
an_seek(struct an_softc *sc, int id, int off, int chan)
{
int i;
int selreg, offreg;
switch (chan) {
case AN_BAP0:
selreg = AN_SEL0;
offreg = AN_OFF0;
break;
case AN_BAP1:
selreg = AN_SEL1;
offreg = AN_OFF1;
break;
default:
if_printf(sc->an_ifp, "invalid data path: %x\n", chan);
return(EIO);
}
CSR_WRITE_2(sc, selreg, id);
CSR_WRITE_2(sc, offreg, off);
for (i = 0; i < AN_TIMEOUT; i++) {
if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR)))
break;
}
if (i == AN_TIMEOUT)
return(ETIMEDOUT);
return(0);
}
static int
an_read_data(struct an_softc *sc, int id, int off, caddr_t buf, int len)
{
int i;
u_int16_t *ptr;
u_int8_t *ptr2;
if (off != -1) {
if (an_seek(sc, id, off, AN_BAP1))
return(EIO);
}
ptr = (u_int16_t *)buf;
for (i = len; i > 1; i -= 2)
*ptr++ = CSR_READ_2(sc, AN_DATA1);
if (i) {
ptr2 = (u_int8_t *)ptr;
*ptr2 = CSR_READ_1(sc, AN_DATA1);
}
return(0);
}
static int
an_write_data(struct an_softc *sc, int id, int off, caddr_t buf, int len)
{
int i;
u_int16_t *ptr;
u_int8_t *ptr2;
if (off != -1) {
if (an_seek(sc, id, off, AN_BAP0))
return(EIO);
}
ptr = (u_int16_t *)buf;
for (i = len; i > 1; i -= 2)
CSR_WRITE_2(sc, AN_DATA0, *ptr++);
if (i) {
ptr2 = (u_int8_t *)ptr;
CSR_WRITE_1(sc, AN_DATA0, *ptr2);
}
return(0);
}
/*
* Allocate a region of memory inside the NIC and zero
* it out.
*/
static int
an_alloc_nicmem(struct an_softc *sc, int len, int *id)
{
int i;
if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
if_printf(sc->an_ifp, "failed to allocate %d bytes on NIC\n",
len);
return(ENOMEM);
}
for (i = 0; i < AN_TIMEOUT; i++) {
if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_ALLOC)
break;
}
if (i == AN_TIMEOUT)
return(ETIMEDOUT);
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
*id = CSR_READ_2(sc, AN_ALLOC_FID);
if (an_seek(sc, *id, 0, AN_BAP0))
return(EIO);
for (i = 0; i < len / 2; i++)
CSR_WRITE_2(sc, AN_DATA0, 0);
return(0);
}
static void
an_setdef(struct an_softc *sc, struct an_req *areq)
{
struct ifnet *ifp;
struct an_ltv_genconfig *cfg;
struct an_ltv_ssidlist_new *ssid;
struct an_ltv_aplist *ap;
struct an_ltv_gen *sp;
ifp = sc->an_ifp;
AN_LOCK_ASSERT(sc);
switch (areq->an_type) {
case AN_RID_GENCONFIG:
cfg = (struct an_ltv_genconfig *)areq;
bcopy((char *)&cfg->an_macaddr, IF_LLADDR(sc->an_ifp),
ETHER_ADDR_LEN);
bcopy((char *)cfg, (char *)&sc->an_config,
sizeof(struct an_ltv_genconfig));
break;
case AN_RID_SSIDLIST:
ssid = (struct an_ltv_ssidlist_new *)areq;
bcopy((char *)ssid, (char *)&sc->an_ssidlist,
sizeof(struct an_ltv_ssidlist_new));
break;
case AN_RID_APLIST:
ap = (struct an_ltv_aplist *)areq;
bcopy((char *)ap, (char *)&sc->an_aplist,
sizeof(struct an_ltv_aplist));
break;
case AN_RID_TX_SPEED:
sp = (struct an_ltv_gen *)areq;
sc->an_tx_rate = sp->an_val;
/* Read the current configuration */
sc->an_config.an_type = AN_RID_GENCONFIG;
sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
cfg = &sc->an_config;
/* clear other rates and set the only one we want */
bzero(cfg->an_rates, sizeof(cfg->an_rates));
cfg->an_rates[0] = sc->an_tx_rate;
/* Save the new rate */
sc->an_config.an_type = AN_RID_GENCONFIG;
sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
break;
case AN_RID_WEP_TEMP:
/* Cache the temp keys */
bcopy(areq,
&sc->an_temp_keys[((struct an_ltv_key *)areq)->kindex],
sizeof(struct an_ltv_key));
case AN_RID_WEP_PERM:
case AN_RID_LEAPUSERNAME:
case AN_RID_LEAPPASSWORD:
an_init_locked(sc);
/* Disable the MAC. */
an_cmd(sc, AN_CMD_DISABLE, 0);
/* Write the key */
an_write_record(sc, (struct an_ltv_gen *)areq);
/* Turn the MAC back on. */
an_cmd(sc, AN_CMD_ENABLE, 0);
break;
case AN_RID_MONITOR_MODE:
cfg = (struct an_ltv_genconfig *)areq;
bpfdetach(ifp);
if (ng_ether_detach_p != NULL)
(*ng_ether_detach_p) (ifp);
sc->an_monitor = cfg->an_len;
if (sc->an_monitor & AN_MONITOR) {
if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
bpfattach(ifp, DLT_AIRONET_HEADER,
sizeof(struct ether_header));
} else {
bpfattach(ifp, DLT_IEEE802_11,
sizeof(struct ether_header));
}
} else {
bpfattach(ifp, DLT_EN10MB,
sizeof(struct ether_header));
if (ng_ether_attach_p != NULL)
(*ng_ether_attach_p) (ifp);
}
break;
default:
if_printf(ifp, "unknown RID: %x\n", areq->an_type);
return;
}
/* Reinitialize the card. */
if (ifp->if_flags)
an_init_locked(sc);
return;
}
/*
* Derived from Linux driver to enable promiscious mode.
*/
static void
an_promisc(struct an_softc *sc, int promisc)
{
AN_LOCK_ASSERT(sc);
if (sc->an_was_monitor) {
an_reset(sc);
if (sc->mpi350)
an_init_mpi350_desc(sc);
}
if (sc->an_monitor || sc->an_was_monitor)
an_init_locked(sc);
sc->an_was_monitor = sc->an_monitor;
an_cmd(sc, AN_CMD_SET_MODE, promisc ? 0xffff : 0);
return;
}
static int
an_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
int error = 0;
int len;
int i, max;
struct an_softc *sc;
struct ifreq *ifr;
struct thread *td = curthread;
struct ieee80211req *ireq;
struct ieee80211_channel ch;
u_int8_t tmpstr[IEEE80211_NWID_LEN*2];
u_int8_t *tmpptr;
struct an_ltv_genconfig *config;
struct an_ltv_key *key;
struct an_ltv_status *status;
struct an_ltv_ssidlist_new *ssids;
int mode;
struct aironet_ioctl l_ioctl;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
ireq = (struct ieee80211req *)data;
config = (struct an_ltv_genconfig *)&sc->areq;
key = (struct an_ltv_key *)&sc->areq;
status = (struct an_ltv_status *)&sc->areq;
ssids = (struct an_ltv_ssidlist_new *)&sc->areq;
if (sc->an_gone) {
error = ENODEV;
goto out;
}
switch (command) {
case SIOCSIFFLAGS:
AN_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->an_if_flags & IFF_PROMISC)) {
an_promisc(sc, 1);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->an_if_flags & IFF_PROMISC) {
an_promisc(sc, 0);
} else
an_init_locked(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
an_stop(sc);
}
sc->an_if_flags = ifp->if_flags;
AN_UNLOCK(sc);
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* The Aironet has no multicast filter. */
error = 0;
break;
case SIOCGAIRONET:
error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
if (error != 0)
break;
AN_LOCK(sc);
#ifdef ANCACHE
if (sc->areq.an_type == AN_RID_ZERO_CACHE) {
error = priv_check(td, PRIV_DRIVER);
if (error)
break;
sc->an_sigitems = sc->an_nextitem = 0;
break;
} else if (sc->areq.an_type == AN_RID_READ_CACHE) {
char *pt = (char *)&sc->areq.an_val;
bcopy((char *)&sc->an_sigitems, (char *)pt,
sizeof(int));
pt += sizeof(int);
sc->areq.an_len = sizeof(int) / 2;
bcopy((char *)&sc->an_sigcache, (char *)pt,
sizeof(struct an_sigcache) * sc->an_sigitems);
sc->areq.an_len += ((sizeof(struct an_sigcache) *
sc->an_sigitems) / 2) + 1;
} else
#endif
if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) {
AN_UNLOCK(sc);
error = EINVAL;
break;
}
AN_UNLOCK(sc);
error = copyout(&sc->areq, ifr->ifr_data, sizeof(sc->areq));
break;
case SIOCSAIRONET:
if ((error = priv_check(td, PRIV_DRIVER)))
goto out;
AN_LOCK(sc);
error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
if (error != 0)
break;
an_setdef(sc, &sc->areq);
AN_UNLOCK(sc);
break;
case SIOCGPRIVATE_0: /* used by Cisco client utility */
if ((error = priv_check(td, PRIV_DRIVER)))
goto out;
error = copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
if (error)
goto out;
mode = l_ioctl.command;
AN_LOCK(sc);
if (mode >= AIROGCAP && mode <= AIROGSTATSD32) {
error = readrids(ifp, &l_ioctl);
} else if (mode >= AIROPCAP && mode <= AIROPLEAPUSR) {
error = writerids(ifp, &l_ioctl);
} else if (mode >= AIROFLSHRST && mode <= AIRORESTART) {
error = flashcard(ifp, &l_ioctl);
} else {
error =-1;
}
AN_UNLOCK(sc);
if (!error) {
/* copy out the updated command info */
error = copyout(&l_ioctl, ifr->ifr_data, sizeof(l_ioctl));
}
break;
case SIOCGPRIVATE_1: /* used by Cisco client utility */
if ((error = priv_check(td, PRIV_DRIVER)))
goto out;
error = copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
if (error)
goto out;
l_ioctl.command = 0;
error = AIROMAGIC;
(void) copyout(&error, l_ioctl.data, sizeof(error));
error = 0;
break;
case SIOCG80211:
sc->areq.an_len = sizeof(sc->areq);
/* was that a good idea DJA we are doing a short-cut */
switch (ireq->i_type) {
case IEEE80211_IOC_SSID:
AN_LOCK(sc);
if (ireq->i_val == -1) {
sc->areq.an_type = AN_RID_STATUS;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
len = status->an_ssidlen;
tmpptr = status->an_ssid;
} else if (ireq->i_val >= 0) {
sc->areq.an_type = AN_RID_SSIDLIST;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
max = (sc->areq.an_len - 4)
/ sizeof(struct an_ltv_ssid_entry);
if ( max > MAX_SSIDS ) {
printf("To many SSIDs only using "
"%d of %d\n",
MAX_SSIDS, max);
max = MAX_SSIDS;
}
if (ireq->i_val > max) {
error = EINVAL;
AN_UNLOCK(sc);
break;
} else {
len = ssids->an_entry[ireq->i_val].an_len;
tmpptr = ssids->an_entry[ireq->i_val].an_ssid;
}
} else {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
if (len > IEEE80211_NWID_LEN) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
AN_UNLOCK(sc);
ireq->i_len = len;
bzero(tmpstr, IEEE80211_NWID_LEN);
bcopy(tmpptr, tmpstr, len);
error = copyout(tmpstr, ireq->i_data,
IEEE80211_NWID_LEN);
break;
case IEEE80211_IOC_NUMSSIDS:
AN_LOCK(sc);
sc->areq.an_len = sizeof(sc->areq);
sc->areq.an_type = AN_RID_SSIDLIST;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
AN_UNLOCK(sc);
error = EINVAL;
break;
}
max = (sc->areq.an_len - 4)
/ sizeof(struct an_ltv_ssid_entry);
AN_UNLOCK(sc);
if ( max > MAX_SSIDS ) {
printf("To many SSIDs only using "
"%d of %d\n",
MAX_SSIDS, max);
max = MAX_SSIDS;
}
ireq->i_val = max;
break;
case IEEE80211_IOC_WEP:
AN_LOCK(sc);
sc->areq.an_type = AN_RID_ACTUALCFG;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
AN_UNLOCK(sc);
if (config->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) {
if (config->an_authtype &
AN_AUTHTYPE_ALLOW_UNENCRYPTED)
ireq->i_val = IEEE80211_WEP_MIXED;
else
ireq->i_val = IEEE80211_WEP_ON;
} else {
ireq->i_val = IEEE80211_WEP_OFF;
}
break;
case IEEE80211_IOC_WEPKEY:
/*
* XXX: I'm not entierly convinced this is
* correct, but it's what is implemented in
* ancontrol so it will have to do until we get
* access to actual Cisco code.
*/
if (ireq->i_val < 0 || ireq->i_val > 8) {
error = EINVAL;
break;
}
len = 0;
if (ireq->i_val < 5) {
AN_LOCK(sc);
sc->areq.an_type = AN_RID_WEP_TEMP;
for (i = 0; i < 5; i++) {
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
break;
}
if (key->kindex == 0xffff)
break;
if (key->kindex == ireq->i_val)
len = key->klen;
/* Required to get next entry */
sc->areq.an_type = AN_RID_WEP_PERM;
}
AN_UNLOCK(sc);
if (error != 0) {
break;
}
}
/* We aren't allowed to read the value of the
* key from the card so we just output zeros
* like we would if we could read the card, but
* denied the user access.
*/
bzero(tmpstr, len);
ireq->i_len = len;
error = copyout(tmpstr, ireq->i_data, len);
break;
case IEEE80211_IOC_NUMWEPKEYS:
ireq->i_val = 9; /* include home key */
break;
case IEEE80211_IOC_WEPTXKEY:
/*
* For some strange reason, you have to read all
* keys before you can read the txkey.
*/
AN_LOCK(sc);
sc->areq.an_type = AN_RID_WEP_TEMP;
for (i = 0; i < 5; i++) {
if (an_read_record(sc,
(struct an_ltv_gen *) &sc->areq)) {
error = EINVAL;
break;
}
if (key->kindex == 0xffff) {
break;
}
/* Required to get next entry */
sc->areq.an_type = AN_RID_WEP_PERM;
}
if (error != 0) {
AN_UNLOCK(sc);
break;
}
sc->areq.an_type = AN_RID_WEP_PERM;
key->kindex = 0xffff;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
ireq->i_val = key->mac[0];
/*
* Check for home mode. Map home mode into
* 5th key since that is how it is stored on
* the card
*/
sc->areq.an_len = sizeof(struct an_ltv_genconfig);
sc->areq.an_type = AN_RID_GENCONFIG;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
if (config->an_home_product & AN_HOME_NETWORK)
ireq->i_val = 4;
AN_UNLOCK(sc);
break;
case IEEE80211_IOC_AUTHMODE:
AN_LOCK(sc);
sc->areq.an_type = AN_RID_ACTUALCFG;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
AN_UNLOCK(sc);
if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
AN_AUTHTYPE_NONE) {
ireq->i_val = IEEE80211_AUTH_NONE;
} else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
AN_AUTHTYPE_OPEN) {
ireq->i_val = IEEE80211_AUTH_OPEN;
} else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
AN_AUTHTYPE_SHAREDKEY) {
ireq->i_val = IEEE80211_AUTH_SHARED;
} else
error = EINVAL;
break;
case IEEE80211_IOC_STATIONNAME:
AN_LOCK(sc);
sc->areq.an_type = AN_RID_ACTUALCFG;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
AN_UNLOCK(sc);
ireq->i_len = sizeof(config->an_nodename);
tmpptr = config->an_nodename;
bzero(tmpstr, IEEE80211_NWID_LEN);
bcopy(tmpptr, tmpstr, ireq->i_len);
error = copyout(tmpstr, ireq->i_data,
IEEE80211_NWID_LEN);
break;
case IEEE80211_IOC_CHANNEL:
AN_LOCK(sc);
sc->areq.an_type = AN_RID_STATUS;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
AN_UNLOCK(sc);
ireq->i_val = status->an_cur_channel;
break;
case IEEE80211_IOC_CURCHAN:
AN_LOCK(sc);
sc->areq.an_type = AN_RID_STATUS;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
AN_UNLOCK(sc);
bzero(&ch, sizeof(ch));
ch.ic_freq = ieee80211_ieee2mhz(status->an_cur_channel,
IEEE80211_CHAN_B);
ch.ic_flags = IEEE80211_CHAN_B;
ch.ic_ieee = status->an_cur_channel;
error = copyout(&ch, ireq->i_data, sizeof(ch));
break;
case IEEE80211_IOC_POWERSAVE:
AN_LOCK(sc);
sc->areq.an_type = AN_RID_ACTUALCFG;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
AN_UNLOCK(sc);
if (config->an_psave_mode == AN_PSAVE_NONE) {
ireq->i_val = IEEE80211_POWERSAVE_OFF;
} else if (config->an_psave_mode == AN_PSAVE_CAM) {
ireq->i_val = IEEE80211_POWERSAVE_CAM;
} else if (config->an_psave_mode == AN_PSAVE_PSP) {
ireq->i_val = IEEE80211_POWERSAVE_PSP;
} else if (config->an_psave_mode == AN_PSAVE_PSP_CAM) {
ireq->i_val = IEEE80211_POWERSAVE_PSP_CAM;
} else
error = EINVAL;
break;
case IEEE80211_IOC_POWERSAVESLEEP:
AN_LOCK(sc);
sc->areq.an_type = AN_RID_ACTUALCFG;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
AN_UNLOCK(sc);
ireq->i_val = config->an_listen_interval;
break;
}
break;
case SIOCS80211:
if ((error = priv_check(td, PRIV_NET80211_MANAGE)))
goto out;
AN_LOCK(sc);
sc->areq.an_len = sizeof(sc->areq);
/*
* We need a config structure for everything but the WEP
* key management and SSIDs so we get it now so avoid
* duplicating this code every time.
*/
if (ireq->i_type != IEEE80211_IOC_SSID &&
ireq->i_type != IEEE80211_IOC_WEPKEY &&
ireq->i_type != IEEE80211_IOC_WEPTXKEY) {
sc->areq.an_type = AN_RID_GENCONFIG;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
}
switch (ireq->i_type) {
case IEEE80211_IOC_SSID:
sc->areq.an_len = sizeof(sc->areq);
sc->areq.an_type = AN_RID_SSIDLIST;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
if (ireq->i_len > IEEE80211_NWID_LEN) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
max = (sc->areq.an_len - 4)
/ sizeof(struct an_ltv_ssid_entry);
if ( max > MAX_SSIDS ) {
printf("To many SSIDs only using "
"%d of %d\n",
MAX_SSIDS, max);
max = MAX_SSIDS;
}
if (ireq->i_val > max) {
error = EINVAL;
AN_UNLOCK(sc);
break;
} else {
error = copyin(ireq->i_data,
ssids->an_entry[ireq->i_val].an_ssid,
ireq->i_len);
ssids->an_entry[ireq->i_val].an_len
= ireq->i_len;
sc->areq.an_len = sizeof(sc->areq);
sc->areq.an_type = AN_RID_SSIDLIST;
an_setdef(sc, &sc->areq);
AN_UNLOCK(sc);
break;
}
break;
case IEEE80211_IOC_WEP:
switch (ireq->i_val) {
case IEEE80211_WEP_OFF:
config->an_authtype &=
~(AN_AUTHTYPE_PRIVACY_IN_USE |
AN_AUTHTYPE_ALLOW_UNENCRYPTED);
break;
case IEEE80211_WEP_ON:
config->an_authtype |=
AN_AUTHTYPE_PRIVACY_IN_USE;
config->an_authtype &=
~AN_AUTHTYPE_ALLOW_UNENCRYPTED;
break;
case IEEE80211_WEP_MIXED:
config->an_authtype |=
AN_AUTHTYPE_PRIVACY_IN_USE |
AN_AUTHTYPE_ALLOW_UNENCRYPTED;
break;
default:
error = EINVAL;
break;
}
if (error != EINVAL)
an_setdef(sc, &sc->areq);
AN_UNLOCK(sc);
break;
case IEEE80211_IOC_WEPKEY:
if (ireq->i_val < 0 || ireq->i_val > 8 ||
ireq->i_len > 13) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
error = copyin(ireq->i_data, tmpstr, 13);
if (error != 0) {
AN_UNLOCK(sc);
break;
}
/*
* Map the 9th key into the home mode
* since that is how it is stored on
* the card
*/
bzero(&sc->areq, sizeof(struct an_ltv_key));
sc->areq.an_len = sizeof(struct an_ltv_key);
key->mac[0] = 1; /* The others are 0. */
if (ireq->i_val < 4) {
sc->areq.an_type = AN_RID_WEP_TEMP;
key->kindex = ireq->i_val;
} else {
sc->areq.an_type = AN_RID_WEP_PERM;
key->kindex = ireq->i_val - 4;
}
key->klen = ireq->i_len;
bcopy(tmpstr, key->key, key->klen);
an_setdef(sc, &sc->areq);
AN_UNLOCK(sc);
break;
case IEEE80211_IOC_WEPTXKEY:
if (ireq->i_val < 0 || ireq->i_val > 4) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
/*
* Map the 5th key into the home mode
* since that is how it is stored on
* the card
*/
sc->areq.an_len = sizeof(struct an_ltv_genconfig);
sc->areq.an_type = AN_RID_ACTUALCFG;
if (an_read_record(sc,
(struct an_ltv_gen *)&sc->areq)) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
if (ireq->i_val == 4) {
config->an_home_product |= AN_HOME_NETWORK;
ireq->i_val = 0;
} else {
config->an_home_product &= ~AN_HOME_NETWORK;
}
sc->an_config.an_home_product
= config->an_home_product;
/* update configuration */
an_init_locked(sc);
bzero(&sc->areq, sizeof(struct an_ltv_key));
sc->areq.an_len = sizeof(struct an_ltv_key);
sc->areq.an_type = AN_RID_WEP_PERM;
key->kindex = 0xffff;
key->mac[0] = ireq->i_val;
an_setdef(sc, &sc->areq);
AN_UNLOCK(sc);
break;
case IEEE80211_IOC_AUTHMODE:
switch (ireq->i_val) {
case IEEE80211_AUTH_NONE:
config->an_authtype = AN_AUTHTYPE_NONE |
(config->an_authtype & ~AN_AUTHTYPE_MASK);
break;
case IEEE80211_AUTH_OPEN:
config->an_authtype = AN_AUTHTYPE_OPEN |
(config->an_authtype & ~AN_AUTHTYPE_MASK);
break;
case IEEE80211_AUTH_SHARED:
config->an_authtype = AN_AUTHTYPE_SHAREDKEY |
(config->an_authtype & ~AN_AUTHTYPE_MASK);
break;
default:
error = EINVAL;
}
if (error != EINVAL) {
an_setdef(sc, &sc->areq);
}
AN_UNLOCK(sc);
break;
case IEEE80211_IOC_STATIONNAME:
if (ireq->i_len > 16) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
bzero(config->an_nodename, 16);
error = copyin(ireq->i_data,
config->an_nodename, ireq->i_len);
an_setdef(sc, &sc->areq);
AN_UNLOCK(sc);
break;
case IEEE80211_IOC_CHANNEL:
/*
* The actual range is 1-14, but if you set it
* to 0 you get the default so we let that work
* too.
*/
if (ireq->i_val < 0 || ireq->i_val >14) {
error = EINVAL;
AN_UNLOCK(sc);
break;
}
config->an_ds_channel = ireq->i_val;
an_setdef(sc, &sc->areq);
AN_UNLOCK(sc);
break;
case IEEE80211_IOC_POWERSAVE:
switch (ireq->i_val) {
case IEEE80211_POWERSAVE_OFF:
config->an_psave_mode = AN_PSAVE_NONE;
break;
case IEEE80211_POWERSAVE_CAM:
config->an_psave_mode = AN_PSAVE_CAM;
break;
case IEEE80211_POWERSAVE_PSP:
config->an_psave_mode = AN_PSAVE_PSP;
break;
case IEEE80211_POWERSAVE_PSP_CAM:
config->an_psave_mode = AN_PSAVE_PSP_CAM;
break;
default:
error = EINVAL;
break;
}
an_setdef(sc, &sc->areq);
AN_UNLOCK(sc);
break;
case IEEE80211_IOC_POWERSAVESLEEP:
config->an_listen_interval = ireq->i_val;
an_setdef(sc, &sc->areq);
AN_UNLOCK(sc);
break;
default:
AN_UNLOCK(sc);
break;
}
/*
if (!error) {
AN_LOCK(sc);
an_setdef(sc, &sc->areq);
AN_UNLOCK(sc);
}
*/
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
out:
return(error != 0);
}
static int
an_init_tx_ring(struct an_softc *sc)
{
int i;
int id;
if (sc->an_gone)
return (0);
if (!sc->mpi350) {
for (i = 0; i < AN_TX_RING_CNT; i++) {
if (an_alloc_nicmem(sc, 1518 +
0x44, &id))
return(ENOMEM);
sc->an_rdata.an_tx_fids[i] = id;
sc->an_rdata.an_tx_ring[i] = 0;
}
}
sc->an_rdata.an_tx_prod = 0;
sc->an_rdata.an_tx_cons = 0;
sc->an_rdata.an_tx_empty = 1;
return(0);
}
static void
an_init(void *xsc)
{
struct an_softc *sc = xsc;
AN_LOCK(sc);
an_init_locked(sc);
AN_UNLOCK(sc);
}
static void
an_init_locked(struct an_softc *sc)
{
struct ifnet *ifp;
AN_LOCK_ASSERT(sc);
ifp = sc->an_ifp;
if (sc->an_gone)
return;
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
an_stop(sc);
sc->an_associated = 0;
/* Allocate the TX buffers */
if (an_init_tx_ring(sc)) {
an_reset(sc);
if (sc->mpi350)
an_init_mpi350_desc(sc);
if (an_init_tx_ring(sc)) {
if_printf(ifp, "tx buffer allocation failed\n");
return;
}
}
/* Set our MAC address. */
bcopy((char *)IF_LLADDR(sc->an_ifp),
(char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN);
if (ifp->if_flags & IFF_BROADCAST)
sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR;
else
sc->an_config.an_rxmode = AN_RXMODE_ADDR;
if (ifp->if_flags & IFF_MULTICAST)
sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
if (ifp->if_flags & IFF_PROMISC) {
if (sc->an_monitor & AN_MONITOR) {
if (sc->an_monitor & AN_MONITOR_ANY_BSS) {
sc->an_config.an_rxmode |=
AN_RXMODE_80211_MONITOR_ANYBSS |
AN_RXMODE_NO_8023_HEADER;
} else {
sc->an_config.an_rxmode |=
AN_RXMODE_80211_MONITOR_CURBSS |
AN_RXMODE_NO_8023_HEADER;
}
}
}
#ifdef ANCACHE
if (sc->an_have_rssimap)
sc->an_config.an_rxmode |= AN_RXMODE_NORMALIZED_RSSI;
#endif
/* Set the ssid list */
sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist_new);
if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
if_printf(ifp, "failed to set ssid list\n");
return;
}
/* Set the AP list */
sc->an_aplist.an_type = AN_RID_APLIST;
sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
if_printf(ifp, "failed to set AP list\n");
return;
}
/* Set the configuration in the NIC */
sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
sc->an_config.an_type = AN_RID_GENCONFIG;
if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
if_printf(ifp, "failed to set configuration\n");
return;
}
/* Enable the MAC */
if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
if_printf(ifp, "failed to enable MAC\n");
return;
}
if (ifp->if_flags & IFF_PROMISC)
an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
/* enable interrupts */
CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->an_stat_ch, hz, an_stats_update, sc);
return;
}
static void
an_start(struct ifnet *ifp)
{
struct an_softc *sc;
sc = ifp->if_softc;
AN_LOCK(sc);
an_start_locked(ifp);
AN_UNLOCK(sc);
}
static void
an_start_locked(struct ifnet *ifp)
{
struct an_softc *sc;
struct mbuf *m0 = NULL;
struct an_txframe_802_3 tx_frame_802_3;
struct ether_header *eh;
int id, idx, i;
unsigned char txcontrol;
struct an_card_tx_desc an_tx_desc;
u_int8_t *buf;
sc = ifp->if_softc;
AN_LOCK_ASSERT(sc);
if (sc->an_gone)
return;
if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
return;
if (!sc->an_associated)
return;
/* We can't send in monitor mode so toss any attempts. */
if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
for (;;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
m_freem(m0);
}
return;
}
idx = sc->an_rdata.an_tx_prod;
if (!sc->mpi350) {
bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3));
while (sc->an_rdata.an_tx_ring[idx] == 0) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
id = sc->an_rdata.an_tx_fids[idx];
eh = mtod(m0, struct ether_header *);
bcopy((char *)&eh->ether_dhost,
(char *)&tx_frame_802_3.an_tx_dst_addr,
ETHER_ADDR_LEN);
bcopy((char *)&eh->ether_shost,
(char *)&tx_frame_802_3.an_tx_src_addr,
ETHER_ADDR_LEN);
/* minus src/dest mac & type */
tx_frame_802_3.an_tx_802_3_payload_len =
m0->m_pkthdr.len - 12;
m_copydata(m0, sizeof(struct ether_header) - 2 ,
tx_frame_802_3.an_tx_802_3_payload_len,
(caddr_t)&sc->an_txbuf);
txcontrol = AN_TXCTL_8023 | AN_TXCTL_HW(sc->mpi350);
/* write the txcontrol only */
an_write_data(sc, id, 0x08, (caddr_t)&txcontrol,
sizeof(txcontrol));
/* 802_3 header */
an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3,
sizeof(struct an_txframe_802_3));
/* in mbuf header type is just before payload */
an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf,
tx_frame_802_3.an_tx_802_3_payload_len);
/*
* If there's a BPF listner, bounce a copy of
* this frame to him.
*/
BPF_MTAP(ifp, m0);
m_freem(m0);
m0 = NULL;
sc->an_rdata.an_tx_ring[idx] = id;
if (an_cmd(sc, AN_CMD_TX, id))
if_printf(ifp, "xmit failed\n");
AN_INC(idx, AN_TX_RING_CNT);
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->an_timer = 5;
}
} else { /* MPI-350 */
/* Disable interrupts. */
CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
while (sc->an_rdata.an_tx_empty ||
idx != sc->an_rdata.an_tx_cons) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL) {
break;
}
buf = sc->an_tx_buffer[idx].an_dma_vaddr;
eh = mtod(m0, struct ether_header *);
/* DJA optimize this to limit bcopy */
bcopy((char *)&eh->ether_dhost,
(char *)&tx_frame_802_3.an_tx_dst_addr,
ETHER_ADDR_LEN);
bcopy((char *)&eh->ether_shost,
(char *)&tx_frame_802_3.an_tx_src_addr,
ETHER_ADDR_LEN);
/* minus src/dest mac & type */
tx_frame_802_3.an_tx_802_3_payload_len =
m0->m_pkthdr.len - 12;
m_copydata(m0, sizeof(struct ether_header) - 2 ,
tx_frame_802_3.an_tx_802_3_payload_len,
(caddr_t)&sc->an_txbuf);
txcontrol = AN_TXCTL_8023 | AN_TXCTL_HW(sc->mpi350);
/* write the txcontrol only */
bcopy((caddr_t)&txcontrol, &buf[0x08],
sizeof(txcontrol));
/* 802_3 header */
bcopy((caddr_t)&tx_frame_802_3, &buf[0x34],
sizeof(struct an_txframe_802_3));
/* in mbuf header type is just before payload */
bcopy((caddr_t)&sc->an_txbuf, &buf[0x44],
tx_frame_802_3.an_tx_802_3_payload_len);
bzero(&an_tx_desc, sizeof(an_tx_desc));
an_tx_desc.an_offset = 0;
an_tx_desc.an_eoc = 1;
an_tx_desc.an_valid = 1;
an_tx_desc.an_len = 0x44 +
tx_frame_802_3.an_tx_802_3_payload_len;
an_tx_desc.an_phys
= sc->an_tx_buffer[idx].an_dma_paddr;
for (i = sizeof(an_tx_desc) / 4 - 1; i >= 0; i--) {
CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
/* zero for now */
+ (0 * sizeof(an_tx_desc))
+ (i * 4),
((u_int32_t *)(void *)&an_tx_desc)[i]);
}
/*
* If there's a BPF listner, bounce a copy of
* this frame to him.
*/
BPF_MTAP(ifp, m0);
m_freem(m0);
m0 = NULL;
AN_INC(idx, AN_MAX_TX_DESC);
sc->an_rdata.an_tx_empty = 0;
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->an_timer = 5;
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
}
if (m0 != NULL)
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
sc->an_rdata.an_tx_prod = idx;
return;
}
void
an_stop(struct an_softc *sc)
{
struct ifnet *ifp;
int i;
AN_LOCK_ASSERT(sc);
if (sc->an_gone)
return;
ifp = sc->an_ifp;
an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
an_cmd(sc, AN_CMD_DISABLE, 0);
for (i = 0; i < AN_TX_RING_CNT; i++)
an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]);
callout_stop(&sc->an_stat_ch);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
if (sc->an_flash_buffer) {
free(sc->an_flash_buffer, M_DEVBUF);
sc->an_flash_buffer = NULL;
}
}
static void
an_watchdog(struct an_softc *sc)
{
struct ifnet *ifp;
AN_LOCK_ASSERT(sc);
if (sc->an_gone)
return;
ifp = sc->an_ifp;
if_printf(ifp, "device timeout\n");
an_reset(sc);
if (sc->mpi350)
an_init_mpi350_desc(sc);
an_init_locked(sc);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
}
int
an_shutdown(device_t dev)
{
struct an_softc *sc;
sc = device_get_softc(dev);
AN_LOCK(sc);
an_stop(sc);
sc->an_gone = 1;
AN_UNLOCK(sc);
return (0);
}
void
an_resume(device_t dev)
{
struct an_softc *sc;
struct ifnet *ifp;
int i;
sc = device_get_softc(dev);
AN_LOCK(sc);
ifp = sc->an_ifp;
sc->an_gone = 0;
an_reset(sc);
if (sc->mpi350)
an_init_mpi350_desc(sc);
an_init_locked(sc);
/* Recovery temporary keys */
for (i = 0; i < 4; i++) {
sc->areq.an_type = AN_RID_WEP_TEMP;
sc->areq.an_len = sizeof(struct an_ltv_key);
bcopy(&sc->an_temp_keys[i],
&sc->areq, sizeof(struct an_ltv_key));
an_setdef(sc, &sc->areq);
}
if (ifp->if_flags & IFF_UP)
an_start_locked(ifp);
AN_UNLOCK(sc);
return;
}
#ifdef ANCACHE
/* Aironet signal strength cache code.
* store signal/noise/quality on per MAC src basis in
* a small fixed cache. The cache wraps if > MAX slots
* used. The cache may be zeroed out to start over.
* Two simple filters exist to reduce computation:
* 1. ip only (literally 0x800, ETHERTYPE_IP) which may be used
* to ignore some packets. It defaults to ip only.
* it could be used to focus on broadcast, non-IP 802.11 beacons.
* 2. multicast/broadcast only. This may be used to
* ignore unicast packets and only cache signal strength
* for multicast/broadcast packets (beacons); e.g., Mobile-IP
* beacons and not unicast traffic.
*
* The cache stores (MAC src(index), IP src (major clue), signal,
* quality, noise)
*
* No apologies for storing IP src here. It's easy and saves much
* trouble elsewhere. The cache is assumed to be INET dependent,
* although it need not be.
*
* Note: the Aironet only has a single byte of signal strength value
* in the rx frame header, and it's not scaled to anything sensible.
* This is kind of lame, but it's all we've got.
*/
#ifdef documentation
int an_sigitems; /* number of cached entries */
struct an_sigcache an_sigcache[MAXANCACHE]; /* array of cache entries */
int an_nextitem; /* index/# of entries */
#endif
/* control variables for cache filtering. Basic idea is
* to reduce cost (e.g., to only Mobile-IP agent beacons
* which are broadcast or multicast). Still you might
* want to measure signal strength anth unicast ping packets
* on a pt. to pt. ant. setup.
*/
/* set true if you want to limit cache items to broadcast/mcast
* only packets (not unicast). Useful for mobile-ip beacons which
* are broadcast/multicast at network layer. Default is all packets
* so ping/unicast anll work say anth pt. to pt. antennae setup.
*/
static int an_cache_mcastonly = 0;
SYSCTL_INT(_hw_an, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW,
&an_cache_mcastonly, 0, "");
/* set true if you want to limit cache items to IP packets only
*/
static int an_cache_iponly = 1;
SYSCTL_INT(_hw_an, OID_AUTO, an_cache_iponly, CTLFLAG_RW,
&an_cache_iponly, 0, "");
/*
* an_cache_store, per rx packet store signal
* strength in MAC (src) indexed cache.
*/
static void
an_cache_store(struct an_softc *sc, struct ether_header *eh, struct mbuf *m,
u_int8_t rx_rssi, u_int8_t rx_quality)
{
struct ip *ip = 0;
int i;
static int cache_slot = 0; /* use this cache entry */
static int wrapindex = 0; /* next "free" cache entry */
int type_ipv4 = 0;
/* filters:
* 1. ip only
* 2. configurable filter to throw out unicast packets,
* keep multicast only.
*/
if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) {
type_ipv4 = 1;
}
/* filter for ip packets only
*/
if ( an_cache_iponly && !type_ipv4) {
return;
}
/* filter for broadcast/multicast only
*/
if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
return;
}
#ifdef SIGDEBUG
if_printf(sc->an_ifp, "q value %x (MSB=0x%x, LSB=0x%x) \n",
rx_rssi & 0xffff, rx_rssi >> 8, rx_rssi & 0xff);
#endif
/* find the ip header. we want to store the ip_src
* address.
*/
if (type_ipv4) {
ip = mtod(m, struct ip *);
}
/* do a linear search for a matching MAC address
* in the cache table
* . MAC address is 6 bytes,
* . var w_nextitem holds total number of entries already cached
*/
for (i = 0; i < sc->an_nextitem; i++) {
if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc, 6 )) {
/* Match!,
* so we already have this entry,
* update the data
*/
break;
}
}
/* did we find a matching mac address?
* if yes, then overwrite a previously existing cache entry
*/
if (i < sc->an_nextitem ) {
cache_slot = i;
}
/* else, have a new address entry,so
* add this new entry,
* if table full, then we need to replace LRU entry
*/
else {
/* check for space in cache table
* note: an_nextitem also holds number of entries
* added in the cache table
*/
if ( sc->an_nextitem < MAXANCACHE ) {
cache_slot = sc->an_nextitem;
sc->an_nextitem++;
sc->an_sigitems = sc->an_nextitem;
}
/* no space found, so simply wrap anth wrap index
* and "zap" the next entry
*/
else {
if (wrapindex == MAXANCACHE) {
wrapindex = 0;
}
cache_slot = wrapindex++;
}
}
/* invariant: cache_slot now points at some slot
* in cache.
*/
if (cache_slot < 0 || cache_slot >= MAXANCACHE) {
log(LOG_ERR, "an_cache_store, bad index: %d of "
"[0..%d], gross cache error\n",
cache_slot, MAXANCACHE);
return;
}
/* store items in cache
* .ip source address
* .mac src
* .signal, etc.
*/
if (type_ipv4) {
sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
}
bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc, 6);
switch (an_cache_mode) {
case DBM:
if (sc->an_have_rssimap) {
sc->an_sigcache[cache_slot].signal =
- sc->an_rssimap.an_entries[rx_rssi].an_rss_dbm;
sc->an_sigcache[cache_slot].quality =
- sc->an_rssimap.an_entries[rx_quality].an_rss_dbm;
} else {
sc->an_sigcache[cache_slot].signal = rx_rssi - 100;
sc->an_sigcache[cache_slot].quality = rx_quality - 100;
}
break;
case PERCENT:
if (sc->an_have_rssimap) {
sc->an_sigcache[cache_slot].signal =
sc->an_rssimap.an_entries[rx_rssi].an_rss_pct;
sc->an_sigcache[cache_slot].quality =
sc->an_rssimap.an_entries[rx_quality].an_rss_pct;
} else {
if (rx_rssi > 100)
rx_rssi = 100;
if (rx_quality > 100)
rx_quality = 100;
sc->an_sigcache[cache_slot].signal = rx_rssi;
sc->an_sigcache[cache_slot].quality = rx_quality;
}
break;
case RAW:
sc->an_sigcache[cache_slot].signal = rx_rssi;
sc->an_sigcache[cache_slot].quality = rx_quality;
break;
}
sc->an_sigcache[cache_slot].noise = 0;
return;
}
#endif
static int
an_media_change(struct ifnet *ifp)
{
struct an_softc *sc = ifp->if_softc;
struct an_ltv_genconfig *cfg;
int otype = sc->an_config.an_opmode;
int orate = sc->an_tx_rate;
AN_LOCK(sc);
sc->an_tx_rate = ieee80211_media2rate(
IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media));
if (sc->an_tx_rate < 0)
sc->an_tx_rate = 0;
if (orate != sc->an_tx_rate) {
/* Read the current configuration */
sc->an_config.an_type = AN_RID_GENCONFIG;
sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
cfg = &sc->an_config;
/* clear other rates and set the only one we want */
bzero(cfg->an_rates, sizeof(cfg->an_rates));
cfg->an_rates[0] = sc->an_tx_rate;
/* Save the new rate */
sc->an_config.an_type = AN_RID_GENCONFIG;
sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
}
if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
sc->an_config.an_opmode &= ~AN_OPMODE_INFRASTRUCTURE_STATION;
else
sc->an_config.an_opmode |= AN_OPMODE_INFRASTRUCTURE_STATION;
if (otype != sc->an_config.an_opmode ||
orate != sc->an_tx_rate)
an_init_locked(sc);
AN_UNLOCK(sc);
return(0);
}
static void
an_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct an_ltv_status status;
struct an_softc *sc = ifp->if_softc;
imr->ifm_active = IFM_IEEE80211;
AN_LOCK(sc);
status.an_len = sizeof(status);
status.an_type = AN_RID_STATUS;
if (an_read_record(sc, (struct an_ltv_gen *)&status)) {
/* If the status read fails, just lie. */
imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
}
if (sc->an_tx_rate == 0) {
imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
}
if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC)
imr->ifm_active |= IFM_IEEE80211_ADHOC;
imr->ifm_active |= ieee80211_rate2media(NULL,
status.an_current_tx_rate, IEEE80211_MODE_AUTO);
imr->ifm_status = IFM_AVALID;
if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED)
imr->ifm_status |= IFM_ACTIVE;
AN_UNLOCK(sc);
}
/********************** Cisco utility support routines *************/
/*
* ReadRids & WriteRids derived from Cisco driver additions to Ben Reed's
* Linux driver
*/
static int
readrids(struct ifnet *ifp, struct aironet_ioctl *l_ioctl)
{
unsigned short rid;
struct an_softc *sc;
int error;
switch (l_ioctl->command) {
case AIROGCAP:
rid = AN_RID_CAPABILITIES;
break;
case AIROGCFG:
rid = AN_RID_GENCONFIG;
break;
case AIROGSLIST:
rid = AN_RID_SSIDLIST;
break;
case AIROGVLIST:
rid = AN_RID_APLIST;
break;
case AIROGDRVNAM:
rid = AN_RID_DRVNAME;
break;
case AIROGEHTENC:
rid = AN_RID_ENCAPPROTO;
break;
case AIROGWEPKTMP:
rid = AN_RID_WEP_TEMP;
break;
case AIROGWEPKNV:
rid = AN_RID_WEP_PERM;
break;
case AIROGSTAT:
rid = AN_RID_STATUS;
break;
case AIROGSTATSD32:
rid = AN_RID_32BITS_DELTA;
break;
case AIROGSTATSC32:
rid = AN_RID_32BITS_CUM;
break;
default:
rid = 999;
break;
}
if (rid == 999) /* Is bad command */
return -EINVAL;
sc = ifp->if_softc;
sc->areq.an_len = AN_MAX_DATALEN;
sc->areq.an_type = rid;
an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
l_ioctl->len = sc->areq.an_len - 4; /* just data */
AN_UNLOCK(sc);
/* the data contains the length at first */
if (copyout(&(sc->areq.an_len), l_ioctl->data,
sizeof(sc->areq.an_len))) {
error = -EFAULT;
goto lock_exit;
}
/* Just copy the data back */
if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
l_ioctl->len)) {
error = -EFAULT;
goto lock_exit;
}
error = 0;
lock_exit:
AN_LOCK(sc);
return (error);
}
static int
writerids(struct ifnet *ifp, struct aironet_ioctl *l_ioctl)
{
struct an_softc *sc;
int rid, command, error;
sc = ifp->if_softc;
AN_LOCK_ASSERT(sc);
rid = 0;
command = l_ioctl->command;
switch (command) {
case AIROPSIDS:
rid = AN_RID_SSIDLIST;
break;
case AIROPCAP:
rid = AN_RID_CAPABILITIES;
break;
case AIROPAPLIST:
rid = AN_RID_APLIST;
break;
case AIROPCFG:
rid = AN_RID_GENCONFIG;
break;
case AIROPMACON:
an_cmd(sc, AN_CMD_ENABLE, 0);
return 0;
break;
case AIROPMACOFF:
an_cmd(sc, AN_CMD_DISABLE, 0);
return 0;
break;
case AIROPSTCLR:
/*
* This command merely clears the counts does not actually
* store any data only reads rid. But as it changes the cards
* state, I put it in the writerid routines.
*/
rid = AN_RID_32BITS_DELTACLR;
sc = ifp->if_softc;
sc->areq.an_len = AN_MAX_DATALEN;
sc->areq.an_type = rid;
an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
l_ioctl->len = sc->areq.an_len - 4; /* just data */
AN_UNLOCK(sc);
/* the data contains the length at first */
error = copyout(&(sc->areq.an_len), l_ioctl->data,
sizeof(sc->areq.an_len));
if (error) {
AN_LOCK(sc);
return -EFAULT;
}
/* Just copy the data */
error = copyout(&(sc->areq.an_val), l_ioctl->data + 2,
l_ioctl->len);
AN_LOCK(sc);
if (error)
return -EFAULT;
return 0;
break;
case AIROPWEPKEY:
rid = AN_RID_WEP_TEMP;
break;
case AIROPWEPKEYNV:
rid = AN_RID_WEP_PERM;
break;
case AIROPLEAPUSR:
rid = AN_RID_LEAPUSERNAME;
break;
case AIROPLEAPPWD:
rid = AN_RID_LEAPPASSWORD;
break;
default:
return -EOPNOTSUPP;
}
if (rid) {
if (l_ioctl->len > sizeof(sc->areq.an_val) + 4)
return -EINVAL;
sc->areq.an_len = l_ioctl->len + 4; /* add type & length */
sc->areq.an_type = rid;
/* Just copy the data back */
AN_UNLOCK(sc);
error = copyin((l_ioctl->data) + 2, &sc->areq.an_val,
l_ioctl->len);
AN_LOCK(sc);
if (error)
return -EFAULT;
an_cmd(sc, AN_CMD_DISABLE, 0);
an_write_record(sc, (struct an_ltv_gen *)&sc->areq);
an_cmd(sc, AN_CMD_ENABLE, 0);
return 0;
}
return -EOPNOTSUPP;
}
/*
* General Flash utilities derived from Cisco driver additions to Ben Reed's
* Linux driver
*/
#define FLASH_DELAY(_sc, x) msleep(ifp, &(_sc)->an_mtx, PZERO, \
"flash", ((x) / hz) + 1);
#define FLASH_COMMAND 0x7e7e
#define FLASH_SIZE 32 * 1024
static int
unstickbusy(struct ifnet *ifp)
{
struct an_softc *sc = ifp->if_softc;
if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350),
AN_EV_CLR_STUCK_BUSY);
return 1;
}
return 0;
}
/*
* Wait for busy completion from card wait for delay uSec's Return true for
* success meaning command reg is clear
*/
static int
WaitBusy(struct ifnet *ifp, int uSec)
{
int statword = 0xffff;
int delay = 0;
struct an_softc *sc = ifp->if_softc;
while ((statword & AN_CMD_BUSY) && delay <= (1000 * 100)) {
FLASH_DELAY(sc, 10);
delay += 10;
statword = CSR_READ_2(sc, AN_COMMAND(sc->mpi350));
if ((AN_CMD_BUSY & statword) && (delay % 200)) {
unstickbusy(ifp);
}
}
return 0 == (AN_CMD_BUSY & statword);
}
/*
* STEP 1) Disable MAC and do soft reset on card.
*/
static int
cmdreset(struct ifnet *ifp)
{
int status;
struct an_softc *sc = ifp->if_softc;
AN_LOCK(sc);
an_stop(sc);
an_cmd(sc, AN_CMD_DISABLE, 0);
if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
if_printf(ifp, "Waitbusy hang b4 RESET =%d\n", status);
AN_UNLOCK(sc);
return -EBUSY;
}
CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), AN_CMD_FW_RESTART);
FLASH_DELAY(sc, 1000); /* WAS 600 12/7/00 */
if (!(status = WaitBusy(ifp, 100))) {
if_printf(ifp, "Waitbusy hang AFTER RESET =%d\n", status);
AN_UNLOCK(sc);
return -EBUSY;
}
AN_UNLOCK(sc);
return 0;
}
/*
* STEP 2) Put the card in legendary flash mode
*/
static int
setflashmode(struct ifnet *ifp)
{
int status;
struct an_softc *sc = ifp->if_softc;
CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
CSR_WRITE_2(sc, AN_SW1(sc->mpi350), FLASH_COMMAND);
CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), FLASH_COMMAND);
/*
* mdelay(500); // 500ms delay
*/
FLASH_DELAY(sc, 500);
if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
printf("Waitbusy hang after setflash mode\n");
return -EIO;
}
return 0;
}
/*
* Get a character from the card matching matchbyte Step 3)
*/
static int
flashgchar(struct ifnet *ifp, int matchbyte, int dwelltime)
{
int rchar;
unsigned char rbyte = 0;
int success = -1;
struct an_softc *sc = ifp->if_softc;
do {
rchar = CSR_READ_2(sc, AN_SW1(sc->mpi350));
if (dwelltime && !(0x8000 & rchar)) {
dwelltime -= 10;
FLASH_DELAY(sc, 10);
continue;
}
rbyte = 0xff & rchar;
if ((rbyte == matchbyte) && (0x8000 & rchar)) {
CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
success = 1;
break;
}
if (rbyte == 0x81 || rbyte == 0x82 || rbyte == 0x83 || rbyte == 0x1a || 0xffff == rchar)
break;
CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
} while (dwelltime > 0);
return success;
}
/*
* Put character to SWS0 wait for dwelltime x 50us for echo .
*/
static int
flashpchar(struct ifnet *ifp, int byte, int dwelltime)
{
int echo;
int pollbusy, waittime;
struct an_softc *sc = ifp->if_softc;
byte |= 0x8000;
if (dwelltime == 0)
dwelltime = 200;
waittime = dwelltime;
/*
* Wait for busy bit d15 to go false indicating buffer empty
*/
do {
pollbusy = CSR_READ_2(sc, AN_SW0(sc->mpi350));
if (pollbusy & 0x8000) {
FLASH_DELAY(sc, 50);
waittime -= 50;
continue;
} else
break;
}
while (waittime >= 0);
/* timeout for busy clear wait */
if (waittime <= 0) {
if_printf(ifp, "flash putchar busywait timeout!\n");
return -1;
}
/*
* Port is clear now write byte and wait for it to echo back
*/
do {
CSR_WRITE_2(sc, AN_SW0(sc->mpi350), byte);
FLASH_DELAY(sc, 50);
dwelltime -= 50;
echo = CSR_READ_2(sc, AN_SW1(sc->mpi350));
} while (dwelltime >= 0 && echo != byte);
CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
return echo == byte;
}
/*
* Transfer 32k of firmware data from user buffer to our buffer and send to
* the card
*/
static int
flashputbuf(struct ifnet *ifp)
{
unsigned short *bufp;
int nwords;
struct an_softc *sc = ifp->if_softc;
/* Write stuff */
bufp = sc->an_flash_buffer;
if (!sc->mpi350) {
CSR_WRITE_2(sc, AN_AUX_PAGE, 0x100);
CSR_WRITE_2(sc, AN_AUX_OFFSET, 0);
for (nwords = 0; nwords != FLASH_SIZE / 2; nwords++) {
CSR_WRITE_2(sc, AN_AUX_DATA, bufp[nwords] & 0xffff);
}
} else {
for (nwords = 0; nwords != FLASH_SIZE / 4; nwords++) {
CSR_MEM_AUX_WRITE_4(sc, 0x8000,
((u_int32_t *)bufp)[nwords] & 0xffff);
}
}
CSR_WRITE_2(sc, AN_SW0(sc->mpi350), 0x8000);
return 0;
}
/*
* After flashing restart the card.
*/
static int
flashrestart(struct ifnet *ifp)
{
int status = 0;
struct an_softc *sc = ifp->if_softc;
FLASH_DELAY(sc, 1024); /* Added 12/7/00 */
an_init_locked(sc);
FLASH_DELAY(sc, 1024); /* Added 12/7/00 */
return status;
}
/*
* Entry point for flash ioclt.
*/
static int
flashcard(struct ifnet *ifp, struct aironet_ioctl *l_ioctl)
{
int z = 0, status;
struct an_softc *sc;
sc = ifp->if_softc;
if (sc->mpi350) {
if_printf(ifp, "flashing not supported on MPI 350 yet\n");
return(-1);
}
status = l_ioctl->command;
switch (l_ioctl->command) {
case AIROFLSHRST:
return cmdreset(ifp);
break;
case AIROFLSHSTFL:
if (sc->an_flash_buffer) {
free(sc->an_flash_buffer, M_DEVBUF);
sc->an_flash_buffer = NULL;
}
sc->an_flash_buffer = malloc(FLASH_SIZE, M_DEVBUF, M_WAITOK);
if (sc->an_flash_buffer)
return setflashmode(ifp);
else
return ENOBUFS;
break;
case AIROFLSHGCHR: /* Get char from aux */
AN_UNLOCK(sc);
status = copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
AN_LOCK(sc);
if (status)
return status;
z = *(int *)&sc->areq;
if ((status = flashgchar(ifp, z, 8000)) == 1)
return 0;
else
return -1;
case AIROFLSHPCHR: /* Send char to card. */
AN_UNLOCK(sc);
status = copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
AN_LOCK(sc);
if (status)
return status;
z = *(int *)&sc->areq;
if ((status = flashpchar(ifp, z, 8000)) == -1)
return -EIO;
else
return 0;
break;
case AIROFLPUTBUF: /* Send 32k to card */
if (l_ioctl->len > FLASH_SIZE) {
if_printf(ifp, "Buffer to big, %x %x\n",
l_ioctl->len, FLASH_SIZE);
return -EINVAL;
}
AN_UNLOCK(sc);
status = copyin(l_ioctl->data, sc->an_flash_buffer, l_ioctl->len);
AN_LOCK(sc);
if (status)
return status;
if ((status = flashputbuf(ifp)) != 0)
return -EIO;
else
return 0;
break;
case AIRORESTART:
if ((status = flashrestart(ifp)) != 0) {
if_printf(ifp, "FLASHRESTART returned %d\n", status);
return -EIO;
} else
return 0;
break;
default:
return -EINVAL;
}
return -EINVAL;
}