mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-19 15:33:56 +00:00
da1b038af9
On some architectures, u_long isn't large enough for resource definitions. Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but type `long' is only 32-bit. This extends rman's resources to uintmax_t. With this change, any resource can feasibly be placed anywhere in physical memory (within the constraints of the driver). Why uintmax_t and not something machine dependent, or uint64_t? Though it's possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on 32-bit architectures. 64-bit architectures should have plenty of RAM to absorb the increase on resource sizes if and when this occurs, and the number of resources on memory-constrained systems should be sufficiently small as to not pose a drastic overhead. That being said, uintmax_t was chosen for source clarity. If it's specified as uint64_t, all printf()-like calls would either need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t aren't horrible, but it would also bake into the API for resource_list_print_type() either a hidden assumption that entries get cast to uintmax_t for printing, or these calls would need the PRI*64 macros. Since source code is meant to be read more often than written, I chose the clearest path of simply using uintmax_t. Tested on a PowerPC p5020-based board, which places all device resources in 0xfxxxxxxxx, and has 8GB RAM. Regression tested on qemu-system-i386 Regression tested on qemu-system-mips (malta profile) Tested PAE and devinfo on virtualbox (live CD) Special thanks to bz for his testing on ARM. Reviewed By: bz, jhb (previous) Relnotes: Yes Sponsored by: Alex Perez/Inertial Computing Differential Revision: https://reviews.freebsd.org/D4544 |
||
---|---|---|
.. | ||
ppc_acpi.c | ||
ppc_isa.c | ||
ppc_pci.c | ||
ppc_puc.c | ||
ppc.c | ||
ppcreg.h | ||
ppcvar.h |