1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-23 11:18:54 +00:00
freebsd/sys/cam/scsi/scsi_enc.c
Kenneth D. Merry 86d45c7f3b Fix a device departure bug for the the pass(4), enc(4), sg(4) and ch(4)
drivers.

The bug occurrs when a userland process has the driver instance
open and the underlying device goes away.  We get the devfs
callback that the device node has been destroyed, but not all of
the closes necessary to fully decrement the reference count on the
CAM peripheral.

The reason is that once devfs calls back and says the device has
been destroyed, it is moved off to deadfs, and devfs guarantees
that there will be no more open or close calls.  So the solution
is to keep track of how many outstanding open calls there are on
the device, and just release that many references when we get the
callback from devfs.

scsi_pass.c,
scsi_enc.c,
scsi_enc_internal.h:	Add an open count to the softc in these
			drivers.  Increment it on open and
			decrement it on close.

			When we get a devfs callback to say that
			the device node has gone away, decrement
			the peripheral reference count by the
			number of still outstanding opens.

			Make sure we don't access the peripheral
			with cam_periph_unlock() after what might
			be the final call to
			cam_periph_release_locked().  The
			peripheral might have been freed, and we
			will be dereferencing freed memory.

scsi_ch.c,
scsi_sg.c:		For the ch(4) and sg(4) drivers, add the
			same changes described above, and in
			addition, fix another bug that was
			previously fixed in the pass(4) and enc(4)
			drivers.

			These drivers were calling destroy_dev()
			from their cleanup routine, but that could
			cause a deadlock because the cleanup
			routine could be indirectly called from
			the driver's close routine.  This would
			cause a deadlock, because the device node
			is being held open by the active close
			call, and can't be destroyed.

Sponsored by:	Spectra Logic Corporation
MFC after:	1 week
2012-12-08 04:03:04 +00:00

1064 lines
25 KiB
C

/*-
* Copyright (c) 2000 Matthew Jacob
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/errno.h>
#include <sys/fcntl.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/sx.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#include <machine/stdarg.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_debug.h>
#include <cam/cam_periph.h>
#include <cam/cam_xpt_periph.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <cam/scsi/scsi_enc.h>
#include <cam/scsi/scsi_enc_internal.h>
MALLOC_DEFINE(M_SCSIENC, "SCSI ENC", "SCSI ENC buffers");
/* Enclosure type independent driver */
static d_open_t enc_open;
static d_close_t enc_close;
static d_ioctl_t enc_ioctl;
static periph_init_t enc_init;
static periph_ctor_t enc_ctor;
static periph_oninv_t enc_oninvalidate;
static periph_dtor_t enc_dtor;
static periph_start_t enc_start;
static void enc_async(void *, uint32_t, struct cam_path *, void *);
static enctyp enc_type(struct ccb_getdev *);
SYSCTL_NODE(_kern_cam, OID_AUTO, enc, CTLFLAG_RD, 0,
"CAM Enclosure Services driver");
static struct periph_driver encdriver = {
enc_init, "ses",
TAILQ_HEAD_INITIALIZER(encdriver.units), /* generation */ 0
};
PERIPHDRIVER_DECLARE(enc, encdriver);
static struct cdevsw enc_cdevsw = {
.d_version = D_VERSION,
.d_open = enc_open,
.d_close = enc_close,
.d_ioctl = enc_ioctl,
.d_name = "ses",
.d_flags = D_TRACKCLOSE,
};
static void
enc_init(void)
{
cam_status status;
/*
* Install a global async callback. This callback will
* receive async callbacks like "new device found".
*/
status = xpt_register_async(AC_FOUND_DEVICE, enc_async, NULL, NULL);
if (status != CAM_REQ_CMP) {
printf("enc: Failed to attach master async callback "
"due to status 0x%x!\n", status);
}
}
static void
enc_devgonecb(void *arg)
{
struct cam_sim *sim;
struct cam_periph *periph;
struct enc_softc *enc;
int i;
periph = (struct cam_periph *)arg;
sim = periph->sim;
enc = (struct enc_softc *)periph->softc;
mtx_lock(sim->mtx);
/*
* When we get this callback, we will get no more close calls from
* devfs. So if we have any dangling opens, we need to release the
* reference held for that particular context.
*/
for (i = 0; i < enc->open_count; i++)
cam_periph_release_locked(periph);
enc->open_count = 0;
/*
* Release the reference held for the device node, it is gone now.
*/
cam_periph_release_locked(periph);
/*
* We reference the SIM lock directly here, instead of using
* cam_periph_unlock(). The reason is that the final call to
* cam_periph_release_locked() above could result in the periph
* getting freed. If that is the case, dereferencing the periph
* with a cam_periph_unlock() call would cause a page fault.
*/
mtx_unlock(sim->mtx);
}
static void
enc_oninvalidate(struct cam_periph *periph)
{
struct enc_softc *enc;
enc = periph->softc;
enc->enc_flags |= ENC_FLAG_INVALID;
/* If the sub-driver has an invalidate routine, call it */
if (enc->enc_vec.softc_invalidate != NULL)
enc->enc_vec.softc_invalidate(enc);
/*
* Unregister any async callbacks.
*/
xpt_register_async(0, enc_async, periph, periph->path);
/*
* Shutdown our daemon.
*/
enc->enc_flags |= ENC_FLAG_SHUTDOWN;
if (enc->enc_daemon != NULL) {
/* Signal the ses daemon to terminate. */
wakeup(enc->enc_daemon);
}
callout_drain(&enc->status_updater);
destroy_dev_sched_cb(enc->enc_dev, enc_devgonecb, periph);
xpt_print(periph->path, "lost device\n");
}
static void
enc_dtor(struct cam_periph *periph)
{
struct enc_softc *enc;
enc = periph->softc;
xpt_print(periph->path, "removing device entry\n");
/* If the sub-driver has a cleanup routine, call it */
if (enc->enc_vec.softc_cleanup != NULL)
enc->enc_vec.softc_cleanup(enc);
if (enc->enc_boot_hold_ch.ich_func != NULL) {
config_intrhook_disestablish(&enc->enc_boot_hold_ch);
enc->enc_boot_hold_ch.ich_func = NULL;
}
ENC_FREE(enc);
}
static void
enc_async(void *callback_arg, uint32_t code, struct cam_path *path, void *arg)
{
struct cam_periph *periph;
periph = (struct cam_periph *)callback_arg;
switch(code) {
case AC_FOUND_DEVICE:
{
struct ccb_getdev *cgd;
cam_status status;
path_id_t path_id;
cgd = (struct ccb_getdev *)arg;
if (arg == NULL) {
break;
}
if (enc_type(cgd) == ENC_NONE) {
/*
* Schedule announcement of the ENC bindings for
* this device if it is managed by a SEP.
*/
path_id = xpt_path_path_id(path);
xpt_lock_buses();
TAILQ_FOREACH(periph, &encdriver.units, unit_links) {
struct enc_softc *softc;
softc = (struct enc_softc *)periph->softc;
if (xpt_path_path_id(periph->path) != path_id
|| softc == NULL
|| (softc->enc_flags & ENC_FLAG_INITIALIZED)
== 0
|| softc->enc_vec.device_found == NULL)
continue;
softc->enc_vec.device_found(softc);
}
xpt_unlock_buses();
return;
}
status = cam_periph_alloc(enc_ctor, enc_oninvalidate,
enc_dtor, enc_start, "ses", CAM_PERIPH_BIO,
cgd->ccb_h.path, enc_async, AC_FOUND_DEVICE, cgd);
if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) {
printf("enc_async: Unable to probe new device due to "
"status 0x%x\n", status);
}
break;
}
default:
cam_periph_async(periph, code, path, arg);
break;
}
}
static int
enc_open(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct cam_periph *periph;
struct enc_softc *softc;
int error = 0;
periph = (struct cam_periph *)dev->si_drv1;
if (periph == NULL) {
return (ENXIO);
}
if (cam_periph_acquire(periph) != CAM_REQ_CMP)
return (ENXIO);
cam_periph_lock(periph);
softc = (struct enc_softc *)periph->softc;
if ((softc->enc_flags & ENC_FLAG_INITIALIZED) == 0) {
error = ENXIO;
goto out;
}
if (softc->enc_flags & ENC_FLAG_INVALID) {
error = ENXIO;
goto out;
}
out:
if (error != 0)
cam_periph_release_locked(periph);
else
softc->open_count++;
cam_periph_unlock(periph);
return (error);
}
static int
enc_close(struct cdev *dev, int flag, int fmt, struct thread *td)
{
struct cam_sim *sim;
struct cam_periph *periph;
struct enc_softc *enc;
periph = (struct cam_periph *)dev->si_drv1;
if (periph == NULL)
return (ENXIO);
sim = periph->sim;
enc = periph->softc;
mtx_lock(sim->mtx);
enc->open_count--;
cam_periph_release_locked(periph);
/*
* We reference the SIM lock directly here, instead of using
* cam_periph_unlock(). The reason is that the call to
* cam_periph_release_locked() above could result in the periph
* getting freed. If that is the case, dereferencing the periph
* with a cam_periph_unlock() call would cause a page fault.
*
* cam_periph_release() avoids this problem using the same method,
* but we're manually acquiring and dropping the lock here to
* protect the open count and avoid another lock acquisition and
* release.
*/
mtx_unlock(sim->mtx);
return (0);
}
static void
enc_start(struct cam_periph *p, union ccb *sccb)
{
struct enc_softc *enc;
enc = p->softc;
ENC_DLOG(enc, "%s enter imm=%d prio=%d\n",
__func__, p->immediate_priority, p->pinfo.priority);
if (p->immediate_priority <= p->pinfo.priority) {
SLIST_INSERT_HEAD(&p->ccb_list, &sccb->ccb_h, periph_links.sle);
p->immediate_priority = CAM_PRIORITY_NONE;
wakeup(&p->ccb_list);
} else
xpt_release_ccb(sccb);
ENC_DLOG(enc, "%s exit\n", __func__);
}
void
enc_done(struct cam_periph *periph, union ccb *dccb)
{
wakeup(&dccb->ccb_h.cbfcnp);
}
int
enc_error(union ccb *ccb, uint32_t cflags, uint32_t sflags)
{
struct enc_softc *softc;
struct cam_periph *periph;
periph = xpt_path_periph(ccb->ccb_h.path);
softc = (struct enc_softc *)periph->softc;
return (cam_periph_error(ccb, cflags, sflags, &softc->saved_ccb));
}
static int
enc_ioctl(struct cdev *dev, u_long cmd, caddr_t arg_addr, int flag,
struct thread *td)
{
struct cam_periph *periph;
encioc_enc_status_t tmp;
encioc_string_t sstr;
encioc_elm_status_t elms;
encioc_elm_desc_t elmd;
encioc_elm_devnames_t elmdn;
encioc_element_t *uelm;
enc_softc_t *enc;
enc_cache_t *cache;
void *addr;
int error, i;
if (arg_addr)
addr = *((caddr_t *) arg_addr);
else
addr = NULL;
periph = (struct cam_periph *)dev->si_drv1;
if (periph == NULL)
return (ENXIO);
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering encioctl\n"));
cam_periph_lock(periph);
enc = (struct enc_softc *)periph->softc;
cache = &enc->enc_cache;
/*
* Now check to see whether we're initialized or not.
* This actually should never fail as we're not supposed
* to get past enc_open w/o successfully initializing
* things.
*/
if ((enc->enc_flags & ENC_FLAG_INITIALIZED) == 0) {
cam_periph_unlock(periph);
return (ENXIO);
}
cam_periph_unlock(periph);
error = 0;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
("trying to do ioctl %#lx\n", cmd));
/*
* If this command can change the device's state,
* we must have the device open for writing.
*
* For commands that get information about the
* device- we don't need to lock the peripheral
* if we aren't running a command. The periph
* also can't go away while a user process has
* it open.
*/
switch (cmd) {
case ENCIOC_GETNELM:
case ENCIOC_GETELMMAP:
case ENCIOC_GETENCSTAT:
case ENCIOC_GETELMSTAT:
case ENCIOC_GETELMDESC:
case ENCIOC_GETELMDEVNAMES:
break;
default:
if ((flag & FWRITE) == 0) {
return (EBADF);
}
}
/*
* XXX The values read here are only valid for the current
* configuration generation. We need these ioctls
* to also pass in/out a generation number.
*/
sx_slock(&enc->enc_cache_lock);
switch (cmd) {
case ENCIOC_GETNELM:
error = copyout(&cache->nelms, addr, sizeof (cache->nelms));
break;
case ENCIOC_GETELMMAP:
for (uelm = addr, i = 0; i != cache->nelms; i++) {
encioc_element_t kelm;
kelm.elm_idx = i;
kelm.elm_subenc_id = cache->elm_map[i].subenclosure;
kelm.elm_type = cache->elm_map[i].enctype;
error = copyout(&kelm, &uelm[i], sizeof(kelm));
if (error)
break;
}
break;
case ENCIOC_GETENCSTAT:
cam_periph_lock(periph);
error = enc->enc_vec.get_enc_status(enc, 1);
if (error) {
cam_periph_unlock(periph);
break;
}
tmp = cache->enc_status;
cam_periph_unlock(periph);
error = copyout(&tmp, addr, sizeof(tmp));
cache->enc_status = tmp;
break;
case ENCIOC_SETENCSTAT:
error = copyin(addr, &tmp, sizeof(tmp));
if (error)
break;
cam_periph_lock(periph);
error = enc->enc_vec.set_enc_status(enc, tmp, 1);
cam_periph_unlock(periph);
break;
case ENCIOC_GETSTRING:
case ENCIOC_SETSTRING:
if (enc->enc_vec.handle_string == NULL) {
error = EINVAL;
break;
}
error = copyin(addr, &sstr, sizeof(sstr));
if (error)
break;
cam_periph_lock(periph);
error = enc->enc_vec.handle_string(enc, &sstr, cmd);
cam_periph_unlock(periph);
break;
case ENCIOC_GETELMSTAT:
error = copyin(addr, &elms, sizeof(elms));
if (error)
break;
if (elms.elm_idx >= cache->nelms) {
error = EINVAL;
break;
}
cam_periph_lock(periph);
error = enc->enc_vec.get_elm_status(enc, &elms, 1);
cam_periph_unlock(periph);
if (error)
break;
error = copyout(&elms, addr, sizeof(elms));
break;
case ENCIOC_GETELMDESC:
error = copyin(addr, &elmd, sizeof(elmd));
if (error)
break;
if (elmd.elm_idx >= cache->nelms) {
error = EINVAL;
break;
}
if (enc->enc_vec.get_elm_desc != NULL) {
error = enc->enc_vec.get_elm_desc(enc, &elmd);
if (error)
break;
} else
elmd.elm_desc_len = 0;
error = copyout(&elmd, addr, sizeof(elmd));
break;
case ENCIOC_GETELMDEVNAMES:
if (enc->enc_vec.get_elm_devnames == NULL) {
error = EINVAL;
break;
}
error = copyin(addr, &elmdn, sizeof(elmdn));
if (error)
break;
if (elmdn.elm_idx >= cache->nelms) {
error = EINVAL;
break;
}
cam_periph_lock(periph);
error = (*enc->enc_vec.get_elm_devnames)(enc, &elmdn);
cam_periph_unlock(periph);
if (error)
break;
error = copyout(&elmdn, addr, sizeof(elmdn));
break;
case ENCIOC_SETELMSTAT:
error = copyin(addr, &elms, sizeof(elms));
if (error)
break;
if (elms.elm_idx >= cache->nelms) {
error = EINVAL;
break;
}
cam_periph_lock(periph);
error = enc->enc_vec.set_elm_status(enc, &elms, 1);
cam_periph_unlock(periph);
break;
case ENCIOC_INIT:
cam_periph_lock(periph);
error = enc->enc_vec.init_enc(enc);
cam_periph_unlock(periph);
break;
default:
cam_periph_lock(periph);
error = cam_periph_ioctl(periph, cmd, arg_addr, enc_error);
cam_periph_unlock(periph);
break;
}
sx_sunlock(&enc->enc_cache_lock);
return (error);
}
int
enc_runcmd(struct enc_softc *enc, char *cdb, int cdbl, char *dptr, int *dlenp)
{
int error, dlen, tdlen;
ccb_flags ddf;
union ccb *ccb;
CAM_DEBUG(enc->periph->path, CAM_DEBUG_TRACE,
("entering enc_runcmd\n"));
if (dptr) {
if ((dlen = *dlenp) < 0) {
dlen = -dlen;
ddf = CAM_DIR_OUT;
} else {
ddf = CAM_DIR_IN;
}
} else {
dlen = 0;
ddf = CAM_DIR_NONE;
}
if (cdbl > IOCDBLEN) {
cdbl = IOCDBLEN;
}
ccb = cam_periph_getccb(enc->periph, CAM_PRIORITY_NORMAL);
if (enc->enc_type == ENC_SEMB_SES || enc->enc_type == ENC_SEMB_SAFT) {
tdlen = min(dlen, 1020);
tdlen = (tdlen + 3) & ~3;
cam_fill_ataio(&ccb->ataio, 0, enc_done, ddf, 0, dptr, tdlen,
30 * 1000);
if (cdb[0] == RECEIVE_DIAGNOSTIC)
ata_28bit_cmd(&ccb->ataio,
ATA_SEP_ATTN, cdb[2], 0x02, tdlen / 4);
else if (cdb[0] == SEND_DIAGNOSTIC)
ata_28bit_cmd(&ccb->ataio,
ATA_SEP_ATTN, dlen > 0 ? dptr[0] : 0,
0x82, tdlen / 4);
else if (cdb[0] == READ_BUFFER)
ata_28bit_cmd(&ccb->ataio,
ATA_SEP_ATTN, cdb[2], 0x00, tdlen / 4);
else
ata_28bit_cmd(&ccb->ataio,
ATA_SEP_ATTN, dlen > 0 ? dptr[0] : 0,
0x80, tdlen / 4);
} else {
tdlen = dlen;
cam_fill_csio(&ccb->csio, 0, enc_done, ddf, MSG_SIMPLE_Q_TAG,
dptr, dlen, sizeof (struct scsi_sense_data), cdbl,
60 * 1000);
bcopy(cdb, ccb->csio.cdb_io.cdb_bytes, cdbl);
}
error = cam_periph_runccb(ccb, enc_error, ENC_CFLAGS, ENC_FLAGS, NULL);
if (error) {
if (dptr) {
*dlenp = dlen;
}
} else {
if (dptr) {
if (ccb->ccb_h.func_code == XPT_ATA_IO)
*dlenp = ccb->ataio.resid;
else
*dlenp = ccb->csio.resid;
*dlenp += tdlen - dlen;
}
}
xpt_release_ccb(ccb);
CAM_DEBUG(enc->periph->path, CAM_DEBUG_SUBTRACE,
("exiting enc_runcmd: *dlenp = %d\n", *dlenp));
return (error);
}
void
enc_log(struct enc_softc *enc, const char *fmt, ...)
{
va_list ap;
printf("%s%d: ", enc->periph->periph_name, enc->periph->unit_number);
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
}
/*
* The code after this point runs on many platforms,
* so forgive the slightly awkward and nonconforming
* appearance.
*/
/*
* Is this a device that supports enclosure services?
*
* It's a pretty simple ruleset- if it is device type
* 0x0D (13), it's an ENCLOSURE device.
*/
#define SAFTE_START 44
#define SAFTE_END 50
#define SAFTE_LEN SAFTE_END-SAFTE_START
static enctyp
enc_type(struct ccb_getdev *cgd)
{
int buflen;
unsigned char *iqd;
if (cgd->protocol == PROTO_SEMB) {
iqd = (unsigned char *)&cgd->ident_data;
if (STRNCMP(iqd + 43, "S-E-S", 5) == 0)
return (ENC_SEMB_SES);
else if (STRNCMP(iqd + 43, "SAF-TE", 6) == 0)
return (ENC_SEMB_SAFT);
return (ENC_NONE);
} else if (cgd->protocol != PROTO_SCSI)
return (ENC_NONE);
iqd = (unsigned char *)&cgd->inq_data;
buflen = min(sizeof(cgd->inq_data),
SID_ADDITIONAL_LENGTH(&cgd->inq_data));
if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
if ((iqd[2] & 0x7) > 2) {
return (ENC_SES);
} else {
return (ENC_SES_SCSI2);
}
return (ENC_NONE);
}
#ifdef ENC_ENABLE_PASSTHROUGH
if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
/*
* PassThrough Device.
*/
return (ENC_ENC_PASSTHROUGH);
}
#endif
/*
* The comparison is short for a reason-
* some vendors were chopping it short.
*/
if (buflen < SAFTE_END - 2) {
return (ENC_NONE);
}
if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
return (ENC_SAFT);
}
return (ENC_NONE);
}
/*================== Enclosure Monitoring/Processing Daemon ==================*/
/**
* \brief Queue an update request for a given action, if needed.
*
* \param enc SES softc to queue the request for.
* \param action Action requested.
*/
void
enc_update_request(enc_softc_t *enc, uint32_t action)
{
if ((enc->pending_actions & (0x1 << action)) == 0) {
enc->pending_actions |= (0x1 << action);
ENC_DLOG(enc, "%s: queing requested action %d\n",
__func__, action);
if (enc->current_action == ENC_UPDATE_NONE)
wakeup(enc->enc_daemon);
} else {
ENC_DLOG(enc, "%s: ignoring requested action %d - "
"Already queued\n", __func__, action);
}
}
/**
* \brief Invoke the handler of the highest priority pending
* state in the SES state machine.
*
* \param enc The SES instance invoking the state machine.
*/
static void
enc_fsm_step(enc_softc_t *enc)
{
union ccb *ccb;
uint8_t *buf;
struct enc_fsm_state *cur_state;
int error;
uint32_t xfer_len;
ENC_DLOG(enc, "%s enter %p\n", __func__, enc);
enc->current_action = ffs(enc->pending_actions) - 1;
enc->pending_actions &= ~(0x1 << enc->current_action);
cur_state = &enc->enc_fsm_states[enc->current_action];
buf = NULL;
if (cur_state->buf_size != 0) {
cam_periph_unlock(enc->periph);
buf = malloc(cur_state->buf_size, M_SCSIENC, M_WAITOK|M_ZERO);
cam_periph_lock(enc->periph);
}
error = 0;
ccb = NULL;
if (cur_state->fill != NULL) {
ccb = cam_periph_getccb(enc->periph, CAM_PRIORITY_NORMAL);
error = cur_state->fill(enc, cur_state, ccb, buf);
if (error != 0)
goto done;
error = cam_periph_runccb(ccb, cur_state->error,
ENC_CFLAGS,
ENC_FLAGS|SF_QUIET_IR, NULL);
}
if (ccb != NULL) {
if (ccb->ccb_h.func_code == XPT_ATA_IO)
xfer_len = ccb->ataio.dxfer_len - ccb->ataio.resid;
else
xfer_len = ccb->csio.dxfer_len - ccb->csio.resid;
} else
xfer_len = 0;
cam_periph_unlock(enc->periph);
cur_state->done(enc, cur_state, ccb, &buf, error, xfer_len);
cam_periph_lock(enc->periph);
done:
ENC_DLOG(enc, "%s exit - result %d\n", __func__, error);
ENC_FREE_AND_NULL(buf);
if (ccb != NULL)
xpt_release_ccb(ccb);
}
/**
* \invariant Called with cam_periph mutex held.
*/
static void
enc_status_updater(void *arg)
{
enc_softc_t *enc;
enc = arg;
if (enc->enc_vec.poll_status != NULL)
enc->enc_vec.poll_status(enc);
}
static void
enc_daemon(void *arg)
{
enc_softc_t *enc;
enc = arg;
cam_periph_lock(enc->periph);
while ((enc->enc_flags & ENC_FLAG_SHUTDOWN) == 0) {
if (enc->pending_actions == 0) {
struct intr_config_hook *hook;
/*
* Reset callout and msleep, or
* issue timed task completion
* status command.
*/
enc->current_action = ENC_UPDATE_NONE;
/*
* We've been through our state machine at least
* once. Allow the transition to userland.
*/
hook = &enc->enc_boot_hold_ch;
if (hook->ich_func != NULL) {
config_intrhook_disestablish(hook);
hook->ich_func = NULL;
}
callout_reset(&enc->status_updater, 60*hz,
enc_status_updater, enc);
cam_periph_sleep(enc->periph, enc->enc_daemon,
PUSER, "idle", 0);
} else {
enc_fsm_step(enc);
}
}
enc->enc_daemon = NULL;
cam_periph_unlock(enc->periph);
cam_periph_release(enc->periph);
kproc_exit(0);
}
static int
enc_kproc_init(enc_softc_t *enc)
{
int result;
callout_init_mtx(&enc->status_updater, enc->periph->sim->mtx, 0);
if (cam_periph_acquire(enc->periph) != CAM_REQ_CMP)
return (ENXIO);
result = kproc_create(enc_daemon, enc, &enc->enc_daemon, /*flags*/0,
/*stackpgs*/0, "enc_daemon%d",
enc->periph->unit_number);
if (result == 0) {
/* Do an initial load of all page data. */
cam_periph_lock(enc->periph);
enc->enc_vec.poll_status(enc);
cam_periph_unlock(enc->periph);
} else
cam_periph_release(enc->periph);
return (result);
}
/**
* \brief Interrupt configuration hook callback associated with
* enc_boot_hold_ch.
*
* Since interrupts are always functional at the time of enclosure
* configuration, there is nothing to be done when the callback occurs.
* This hook is only registered to hold up boot processing while initial
* eclosure processing occurs.
*
* \param arg The enclosure softc, but currently unused in this callback.
*/
static void
enc_nop_confighook_cb(void *arg __unused)
{
}
static cam_status
enc_ctor(struct cam_periph *periph, void *arg)
{
cam_status status = CAM_REQ_CMP_ERR;
int err;
enc_softc_t *enc;
struct ccb_getdev *cgd;
char *tname;
cgd = (struct ccb_getdev *)arg;
if (cgd == NULL) {
printf("enc_ctor: no getdev CCB, can't register device\n");
goto out;
}
enc = ENC_MALLOCZ(sizeof(*enc));
if (enc == NULL) {
printf("enc_ctor: Unable to probe new device. "
"Unable to allocate enc\n");
goto out;
}
enc->periph = periph;
enc->current_action = ENC_UPDATE_INVALID;
enc->enc_type = enc_type(cgd);
sx_init(&enc->enc_cache_lock, "enccache");
switch (enc->enc_type) {
case ENC_SES:
case ENC_SES_SCSI2:
case ENC_SES_PASSTHROUGH:
case ENC_SEMB_SES:
err = ses_softc_init(enc);
break;
case ENC_SAFT:
case ENC_SEMB_SAFT:
err = safte_softc_init(enc);
break;
case ENC_NONE:
default:
ENC_FREE(enc);
return (CAM_REQ_CMP_ERR);
}
if (err) {
xpt_print(periph->path, "error %d initializing\n", err);
goto out;
}
/*
* Hold off userland until we have made at least one pass
* through our state machine so that physical path data is
* present.
*/
if (enc->enc_vec.poll_status != NULL) {
enc->enc_boot_hold_ch.ich_func = enc_nop_confighook_cb;
enc->enc_boot_hold_ch.ich_arg = enc;
config_intrhook_establish(&enc->enc_boot_hold_ch);
}
/*
* The softc field is set only once the enc is fully initialized
* so that we can rely on this field to detect partially
* initialized periph objects in the AC_FOUND_DEVICE handler.
*/
periph->softc = enc;
cam_periph_unlock(periph);
if (enc->enc_vec.poll_status != NULL) {
err = enc_kproc_init(enc);
if (err) {
xpt_print(periph->path,
"error %d starting enc_daemon\n", err);
goto out;
}
}
/*
* Acquire a reference to the periph before we create the devfs
* instance for it. We'll release this reference once the devfs
* instance has been freed.
*/
if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
xpt_print(periph->path, "%s: lost periph during "
"registration!\n", __func__);
cam_periph_lock(periph);
return (CAM_REQ_CMP_ERR);
}
enc->enc_dev = make_dev(&enc_cdevsw, periph->unit_number,
UID_ROOT, GID_OPERATOR, 0600, "%s%d",
periph->periph_name, periph->unit_number);
cam_periph_lock(periph);
enc->enc_dev->si_drv1 = periph;
enc->enc_flags |= ENC_FLAG_INITIALIZED;
/*
* Add an async callback so that we get notified if this
* device goes away.
*/
xpt_register_async(AC_LOST_DEVICE, enc_async, periph, periph->path);
switch (enc->enc_type) {
default:
case ENC_NONE:
tname = "No ENC device";
break;
case ENC_SES_SCSI2:
tname = "SCSI-2 ENC Device";
break;
case ENC_SES:
tname = "SCSI-3 ENC Device";
break;
case ENC_SES_PASSTHROUGH:
tname = "ENC Passthrough Device";
break;
case ENC_SAFT:
tname = "SAF-TE Compliant Device";
break;
case ENC_SEMB_SES:
tname = "SEMB SES Device";
break;
case ENC_SEMB_SAFT:
tname = "SEMB SAF-TE Device";
break;
}
xpt_announce_periph(periph, tname);
status = CAM_REQ_CMP;
out:
if (status != CAM_REQ_CMP)
enc_dtor(periph);
return (status);
}