1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-26 16:18:31 +00:00
freebsd/sys/dev/random/yarrow.c
Simon L. B. Nielsen 9790a3cbd4 Correct a random value disclosure in random(4).
Security:	FreeBSD-SA-07:09.random
2007-11-29 16:06:12 +00:00

351 lines
9.7 KiB
C

/*-
* Copyright (c) 2000-2004 Mark R V Murray
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/random.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <crypto/rijndael/rijndael-api-fst.h>
#include <crypto/sha2/sha2.h>
#include <dev/random/hash.h>
#include <dev/random/randomdev_soft.h>
#include <dev/random/yarrow.h>
RANDOM_CHECK_UINT(gengateinterval, 4, 64);
RANDOM_CHECK_UINT(bins, 2, 16);
RANDOM_CHECK_UINT(fastthresh, BLOCKSIZE/4, BLOCKSIZE);
RANDOM_CHECK_UINT(slowthresh, BLOCKSIZE/4, BLOCKSIZE);
RANDOM_CHECK_UINT(slowoverthresh, 1, 5);
/* Structure holding the entropy state */
static struct random_state random_state;
static void generator_gate(void);
static void reseed(u_int);
/* The reseed thread mutex */
struct mtx random_reseed_mtx;
/* Process a single stochastic event off the harvest queue */
void
random_process_event(struct harvest *event)
{
u_int pl, overthreshhold[2];
struct source *source;
enum esource src;
/* Unpack the event into the appropriate source accumulator */
pl = random_state.which;
source = &random_state.pool[pl].source[event->source];
yarrow_hash_iterate(&random_state.pool[pl].hash, event->entropy,
sizeof(event->entropy));
yarrow_hash_iterate(&random_state.pool[pl].hash, &event->somecounter,
sizeof(event->somecounter));
source->frac += event->frac;
source->bits += event->bits + source->frac/1024;
source->frac %= 1024;
/* Count the over-threshold sources in each pool */
for (pl = 0; pl < 2; pl++) {
overthreshhold[pl] = 0;
for (src = RANDOM_START; src < ENTROPYSOURCE; src++) {
if (random_state.pool[pl].source[src].bits
> random_state.pool[pl].thresh)
overthreshhold[pl]++;
}
}
/* if any fast source over threshhold, reseed */
if (overthreshhold[FAST])
reseed(FAST);
/* if enough slow sources are over threshhold, reseed */
if (overthreshhold[SLOW] >= random_state.slowoverthresh)
reseed(SLOW);
/* Invert the fast/slow pool selector bit */
random_state.which = !random_state.which;
}
void
random_yarrow_init_alg(struct sysctl_ctx_list *clist, struct sysctl_oid *in_o)
{
int i;
struct sysctl_oid *random_yarrow_o;
/* Yarrow parameters. Do not adjust these unless you have
* have a very good clue about what they do!
*/
random_yarrow_o = SYSCTL_ADD_NODE(clist,
SYSCTL_CHILDREN(in_o),
OID_AUTO, "yarrow", CTLFLAG_RW, 0,
"Yarrow Parameters");
SYSCTL_ADD_PROC(clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"gengateinterval", CTLTYPE_INT|CTLFLAG_RW,
&random_state.gengateinterval, 10,
random_check_uint_gengateinterval, "I",
"Generation gate interval");
SYSCTL_ADD_PROC(clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"bins", CTLTYPE_INT|CTLFLAG_RW,
&random_state.bins, 10,
random_check_uint_bins, "I",
"Execution time tuner");
SYSCTL_ADD_PROC(clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"fastthresh", CTLTYPE_INT|CTLFLAG_RW,
&random_state.pool[0].thresh, (3*BLOCKSIZE)/4,
random_check_uint_fastthresh, "I",
"Fast reseed threshold");
SYSCTL_ADD_PROC(clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"slowthresh", CTLTYPE_INT|CTLFLAG_RW,
&random_state.pool[1].thresh, BLOCKSIZE,
random_check_uint_slowthresh, "I",
"Slow reseed threshold");
SYSCTL_ADD_PROC(clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"slowoverthresh", CTLTYPE_INT|CTLFLAG_RW,
&random_state.slowoverthresh, 2,
random_check_uint_slowoverthresh, "I",
"Slow over-threshold reseed");
random_state.gengateinterval = 10;
random_state.bins = 10;
random_state.pool[0].thresh = (3*BLOCKSIZE)/4;
random_state.pool[1].thresh = BLOCKSIZE;
random_state.slowoverthresh = 2;
random_state.which = FAST;
/* Initialise the fast and slow entropy pools */
for (i = 0; i < 2; i++)
yarrow_hash_init(&random_state.pool[i].hash);
/* Clear the counter */
for (i = 0; i < 4; i++)
random_state.counter[i] = 0;
/* Set up a lock for the reseed process */
mtx_init(&random_reseed_mtx, "random reseed", NULL, MTX_DEF);
}
void
random_yarrow_deinit_alg(void)
{
mtx_destroy(&random_reseed_mtx);
}
static void
reseed(u_int fastslow)
{
/* Interrupt-context stack is a limited resource; make large
* structures static.
*/
static u_char v[TIMEBIN][KEYSIZE]; /* v[i] */
static struct yarrowhash context;
u_char hash[KEYSIZE]; /* h' */
u_char temp[KEYSIZE];
u_int i;
enum esource j;
/* The reseed task must not be jumped on */
mtx_lock(&random_reseed_mtx);
/* 1. Hash the accumulated entropy into v[0] */
yarrow_hash_init(&context);
/* Feed the slow pool hash in if slow */
if (fastslow == SLOW)
yarrow_hash_iterate(&context,
&random_state.pool[SLOW].hash,
sizeof(struct yarrowhash));
yarrow_hash_iterate(&context,
&random_state.pool[FAST].hash, sizeof(struct yarrowhash));
yarrow_hash_finish(&context, v[0]);
/* 2. Compute hash values for all v. _Supposed_ to be computationally
* intensive.
*/
if (random_state.bins > TIMEBIN)
random_state.bins = TIMEBIN;
for (i = 1; i < random_state.bins; i++) {
yarrow_hash_init(&context);
/* v[i] #= h(v[i - 1]) */
yarrow_hash_iterate(&context, v[i - 1], KEYSIZE);
/* v[i] #= h(v[0]) */
yarrow_hash_iterate(&context, v[0], KEYSIZE);
/* v[i] #= h(i) */
yarrow_hash_iterate(&context, &i, sizeof(u_int));
/* Return the hashval */
yarrow_hash_finish(&context, v[i]);
}
/* 3. Compute a new key; h' is the identity function here;
* it is not being ignored!
*/
yarrow_hash_init(&context);
yarrow_hash_iterate(&context, &random_state.key, KEYSIZE);
for (i = 1; i < random_state.bins; i++)
yarrow_hash_iterate(&context, &v[i], KEYSIZE);
yarrow_hash_finish(&context, temp);
yarrow_encrypt_init(&random_state.key, temp);
/* 4. Recompute the counter */
for (i = 0; i < 4; i++)
random_state.counter[i] = 0;
yarrow_encrypt(&random_state.key, random_state.counter, temp);
memcpy(random_state.counter, temp, sizeof(random_state.counter));
/* 5. Reset entropy estimate accumulators to zero */
for (i = 0; i <= fastslow; i++) {
for (j = RANDOM_START; j < ENTROPYSOURCE; j++) {
random_state.pool[i].source[j].bits = 0;
random_state.pool[i].source[j].frac = 0;
}
}
/* 6. Wipe memory of intermediate values */
memset((void *)v, 0, sizeof(v));
memset((void *)temp, 0, sizeof(temp));
memset((void *)hash, 0, sizeof(hash));
/* 7. Dump to seed file */
/* XXX Not done here yet */
/* Unblock the device if it was blocked due to being unseeded */
random_yarrow_unblock();
/* Release the reseed mutex */
mtx_unlock(&random_reseed_mtx);
}
/* Internal function to return processed entropy from the PRNG */
int
random_yarrow_read(void *buf, int count)
{
static int cur = 0;
static int gate = 1;
static u_char genval[KEYSIZE];
size_t tomove;
int i;
int retval;
/* The reseed task must not be jumped on */
mtx_lock(&random_reseed_mtx);
if (gate) {
generator_gate();
random_state.outputblocks = 0;
gate = 0;
}
if (count > 0 && (size_t)count >= sizeof(random_state.counter)) {
retval = 0;
for (i = 0; i < count; i += (int)sizeof(random_state.counter)) {
random_state.counter[0]++;
yarrow_encrypt(&random_state.key, random_state.counter,
genval);
tomove = min(count - i, sizeof(random_state.counter));
memcpy((char *)buf + i, genval, tomove);
if (++random_state.outputblocks >=
random_state.gengateinterval) {
generator_gate();
random_state.outputblocks = 0;
}
retval += (int)tomove;
cur = 0;
}
}
else {
if (!cur) {
random_state.counter[0]++;
yarrow_encrypt(&random_state.key, random_state.counter,
genval);
memcpy(buf, genval, (size_t)count);
cur = (int)sizeof(random_state.counter) - count;
if (++random_state.outputblocks >=
random_state.gengateinterval) {
generator_gate();
random_state.outputblocks = 0;
}
retval = count;
}
else {
retval = MIN(cur, count);
memcpy(buf,
&genval[(int)sizeof(random_state.counter) - cur],
(size_t)retval);
cur -= retval;
}
}
mtx_unlock(&random_reseed_mtx);
return retval;
}
static void
generator_gate(void)
{
u_int i;
u_char temp[KEYSIZE];
for (i = 0; i < KEYSIZE; i += sizeof(random_state.counter)) {
random_state.counter[0]++;
yarrow_encrypt(&random_state.key, random_state.counter,
&(temp[i]));
}
yarrow_encrypt_init(&random_state.key, temp);
memset((void *)temp, 0, KEYSIZE);
}
/* Helper routine to perform explicit reseeds */
void
random_yarrow_reseed(void)
{
reseed(SLOW);
}