mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-12 14:29:28 +00:00
857 lines
22 KiB
C
857 lines
22 KiB
C
/*
|
|
* Copyright (c) 2013 EMC Corp.
|
|
* Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
|
|
* Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Path-compressed radix trie implementation.
|
|
* The following code is not generalized into a general purpose library
|
|
* because there are way too many parameters embedded that should really
|
|
* be decided by the library consumers. At the same time, consumers
|
|
* of this code must achieve highest possible performance.
|
|
*
|
|
* The implementation takes into account the following rationale:
|
|
* - Size of the nodes should be as small as possible but still big enough
|
|
* to avoid a large maximum depth for the trie. This is a balance
|
|
* between the necessity to not wire too much physical memory for the nodes
|
|
* and the necessity to avoid too much cache pollution during the trie
|
|
* operations.
|
|
* - There is not a huge bias toward the number of lookup operations over
|
|
* the number of insert and remove operations. This basically implies
|
|
* that optimizations supposedly helping one operation but hurting the
|
|
* other might be carefully evaluated.
|
|
* - On average not many nodes are expected to be fully populated, hence
|
|
* level compression may just complicate things.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <vm/uma.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_radix.h>
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
/*
|
|
* These widths should allow the pointers to a node's children to fit within
|
|
* a single cache line. The extra levels from a narrow width should not be
|
|
* a problem thanks to path compression.
|
|
*/
|
|
#ifdef __LP64__
|
|
#define VM_RADIX_WIDTH 4
|
|
#else
|
|
#define VM_RADIX_WIDTH 3
|
|
#endif
|
|
|
|
#define VM_RADIX_COUNT (1 << VM_RADIX_WIDTH)
|
|
#define VM_RADIX_MASK (VM_RADIX_COUNT - 1)
|
|
#define VM_RADIX_LIMIT \
|
|
(howmany((sizeof(vm_pindex_t) * NBBY), VM_RADIX_WIDTH) - 1)
|
|
|
|
/* Flag bits stored in node pointers. */
|
|
#define VM_RADIX_ISLEAF 0x1
|
|
#define VM_RADIX_FLAGS 0x1
|
|
#define VM_RADIX_PAD VM_RADIX_FLAGS
|
|
|
|
/* Returns one unit associated with specified level. */
|
|
#define VM_RADIX_UNITLEVEL(lev) \
|
|
((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH))
|
|
|
|
struct vm_radix_node {
|
|
vm_pindex_t rn_owner; /* Owner of record. */
|
|
uint16_t rn_count; /* Valid children. */
|
|
uint16_t rn_clev; /* Current level. */
|
|
void *rn_child[VM_RADIX_COUNT]; /* Child nodes. */
|
|
};
|
|
|
|
static uma_zone_t vm_radix_node_zone;
|
|
|
|
/*
|
|
* Allocate a radix node.
|
|
*/
|
|
static __inline struct vm_radix_node *
|
|
vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
|
|
{
|
|
struct vm_radix_node *rnode;
|
|
|
|
rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT | M_ZERO);
|
|
if (rnode == NULL)
|
|
return (NULL);
|
|
rnode->rn_owner = owner;
|
|
rnode->rn_count = count;
|
|
rnode->rn_clev = clevel;
|
|
return (rnode);
|
|
}
|
|
|
|
/*
|
|
* Free radix node.
|
|
*/
|
|
static __inline void
|
|
vm_radix_node_put(struct vm_radix_node *rnode)
|
|
{
|
|
|
|
uma_zfree(vm_radix_node_zone, rnode);
|
|
}
|
|
|
|
/*
|
|
* Return the position in the array for a given level.
|
|
*/
|
|
static __inline int
|
|
vm_radix_slot(vm_pindex_t index, uint16_t level)
|
|
{
|
|
|
|
return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
|
|
}
|
|
|
|
/* Trims the key after the specified level. */
|
|
static __inline vm_pindex_t
|
|
vm_radix_trimkey(vm_pindex_t index, uint16_t level)
|
|
{
|
|
vm_pindex_t ret;
|
|
|
|
ret = index;
|
|
if (level > 0) {
|
|
ret >>= level * VM_RADIX_WIDTH;
|
|
ret <<= level * VM_RADIX_WIDTH;
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Get the root node for a radix tree.
|
|
*/
|
|
static __inline struct vm_radix_node *
|
|
vm_radix_getroot(struct vm_radix *rtree)
|
|
{
|
|
|
|
return ((struct vm_radix_node *)rtree->rt_root);
|
|
}
|
|
|
|
/*
|
|
* Set the root node for a radix tree.
|
|
*/
|
|
static __inline void
|
|
vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
|
|
{
|
|
|
|
rtree->rt_root = (uintptr_t)rnode;
|
|
}
|
|
|
|
/*
|
|
* Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
|
|
*/
|
|
static __inline boolean_t
|
|
vm_radix_isleaf(struct vm_radix_node *rnode)
|
|
{
|
|
|
|
return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
|
|
}
|
|
|
|
/*
|
|
* Returns the associated page extracted from rnode.
|
|
*/
|
|
static __inline vm_page_t
|
|
vm_radix_topage(struct vm_radix_node *rnode)
|
|
{
|
|
|
|
return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
|
|
}
|
|
|
|
/*
|
|
* Adds the page as a child of the provided node.
|
|
*/
|
|
static __inline void
|
|
vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
|
|
vm_page_t page)
|
|
{
|
|
int slot;
|
|
|
|
slot = vm_radix_slot(index, clev);
|
|
rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
|
|
}
|
|
|
|
/*
|
|
* Returns the slot where two keys differ.
|
|
* It cannot accept 2 equal keys.
|
|
*/
|
|
static __inline uint16_t
|
|
vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
|
|
{
|
|
uint16_t clev;
|
|
|
|
KASSERT(index1 != index2, ("%s: passing the same key value %jx",
|
|
__func__, (uintmax_t)index1));
|
|
|
|
index1 ^= index2;
|
|
for (clev = VM_RADIX_LIMIT;; clev--)
|
|
if (vm_radix_slot(index1, clev) != 0)
|
|
return (clev);
|
|
}
|
|
|
|
/*
|
|
* Returns TRUE if it can be determined that key does not belong to the
|
|
* specified rnode. Otherwise, returns FALSE.
|
|
*/
|
|
static __inline boolean_t
|
|
vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
|
|
{
|
|
|
|
if (rnode->rn_clev < VM_RADIX_LIMIT) {
|
|
idx = vm_radix_trimkey(idx, rnode->rn_clev + 1);
|
|
return (idx != rnode->rn_owner);
|
|
}
|
|
return (FALSE);
|
|
}
|
|
|
|
/*
|
|
* Internal helper for vm_radix_reclaim_allnodes().
|
|
* This function is recursive.
|
|
*/
|
|
static void
|
|
vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
|
|
{
|
|
int slot;
|
|
|
|
KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
|
|
("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
|
|
for (slot = 0; rnode->rn_count != 0; slot++) {
|
|
if (rnode->rn_child[slot] == NULL)
|
|
continue;
|
|
if (!vm_radix_isleaf(rnode->rn_child[slot]))
|
|
vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
|
|
rnode->rn_child[slot] = NULL;
|
|
rnode->rn_count--;
|
|
}
|
|
vm_radix_node_put(rnode);
|
|
}
|
|
|
|
#ifdef INVARIANTS
|
|
/*
|
|
* Radix node zone destructor.
|
|
*/
|
|
static void
|
|
vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
|
|
{
|
|
struct vm_radix_node *rnode;
|
|
int slot;
|
|
|
|
rnode = mem;
|
|
KASSERT(rnode->rn_count == 0,
|
|
("vm_radix_node_put: rnode %p has %d children", rnode,
|
|
rnode->rn_count));
|
|
for (slot = 0; slot < VM_RADIX_COUNT; slot++)
|
|
KASSERT(rnode->rn_child[slot] == NULL,
|
|
("vm_radix_node_put: rnode %p has a child", rnode));
|
|
}
|
|
#endif
|
|
|
|
#ifndef UMA_MD_SMALL_ALLOC
|
|
/*
|
|
* Reserve the KVA necessary to satisfy the node allocation.
|
|
* This is mandatory in architectures not supporting direct
|
|
* mapping as they will need otherwise to carve into the kernel maps for
|
|
* every node allocation, resulting into deadlocks for consumers already
|
|
* working with kernel maps.
|
|
*/
|
|
static void
|
|
vm_radix_reserve_kva(void *arg __unused)
|
|
{
|
|
|
|
/*
|
|
* Calculate the number of reserved nodes, discounting the pages that
|
|
* are needed to store them.
|
|
*/
|
|
if (!uma_zone_reserve_kva(vm_radix_node_zone,
|
|
((vm_paddr_t)vm_cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
|
|
sizeof(struct vm_radix_node))))
|
|
panic("%s: unable to reserve KVA", __func__);
|
|
}
|
|
SYSINIT(vm_radix_reserve_kva, SI_SUB_KMEM, SI_ORDER_THIRD,
|
|
vm_radix_reserve_kva, NULL);
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the UMA slab zone.
|
|
* Until vm_radix_prealloc() is called, the zone will be served by the
|
|
* UMA boot-time pre-allocated pool of pages.
|
|
*/
|
|
void
|
|
vm_radix_init(void)
|
|
{
|
|
|
|
vm_radix_node_zone = uma_zcreate("RADIX NODE",
|
|
sizeof(struct vm_radix_node), NULL,
|
|
#ifdef INVARIANTS
|
|
vm_radix_node_zone_dtor,
|
|
#else
|
|
NULL,
|
|
#endif
|
|
NULL, NULL, VM_RADIX_PAD, UMA_ZONE_VM);
|
|
}
|
|
|
|
/*
|
|
* Inserts the key-value pair into the trie.
|
|
* Panics if the key already exists.
|
|
*/
|
|
int
|
|
vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
|
|
{
|
|
vm_pindex_t index, newind;
|
|
void **parentp;
|
|
struct vm_radix_node *rnode, *tmp;
|
|
vm_page_t m;
|
|
int slot;
|
|
uint16_t clev;
|
|
|
|
index = page->pindex;
|
|
|
|
restart:
|
|
|
|
/*
|
|
* The owner of record for root is not really important because it
|
|
* will never be used.
|
|
*/
|
|
rnode = vm_radix_getroot(rtree);
|
|
if (rnode == NULL) {
|
|
rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF;
|
|
return (0);
|
|
}
|
|
parentp = (void **)&rtree->rt_root;
|
|
for (;;) {
|
|
if (vm_radix_isleaf(rnode)) {
|
|
m = vm_radix_topage(rnode);
|
|
if (m->pindex == index)
|
|
panic("%s: key %jx is already present",
|
|
__func__, (uintmax_t)index);
|
|
clev = vm_radix_keydiff(m->pindex, index);
|
|
|
|
/*
|
|
* During node allocation the trie that is being
|
|
* walked can be modified because of recursing radix
|
|
* trie operations.
|
|
* If this is the case, the recursing functions signal
|
|
* such situation and the insert operation must
|
|
* start from scratch again.
|
|
* The freed radix node will then be in the UMA
|
|
* caches very likely to avoid the same situation
|
|
* to happen.
|
|
*/
|
|
rtree->rt_flags |= RT_INSERT_INPROG;
|
|
tmp = vm_radix_node_get(vm_radix_trimkey(index,
|
|
clev + 1), 2, clev);
|
|
rtree->rt_flags &= ~RT_INSERT_INPROG;
|
|
if (tmp == NULL) {
|
|
rtree->rt_flags &= ~RT_TRIE_MODIFIED;
|
|
return (ENOMEM);
|
|
}
|
|
if ((rtree->rt_flags & RT_TRIE_MODIFIED) != 0) {
|
|
rtree->rt_flags &= ~RT_TRIE_MODIFIED;
|
|
tmp->rn_count = 0;
|
|
vm_radix_node_put(tmp);
|
|
goto restart;
|
|
}
|
|
*parentp = tmp;
|
|
vm_radix_addpage(tmp, index, clev, page);
|
|
vm_radix_addpage(tmp, m->pindex, clev, m);
|
|
return (0);
|
|
} else if (vm_radix_keybarr(rnode, index))
|
|
break;
|
|
slot = vm_radix_slot(index, rnode->rn_clev);
|
|
if (rnode->rn_child[slot] == NULL) {
|
|
rnode->rn_count++;
|
|
vm_radix_addpage(rnode, index, rnode->rn_clev, page);
|
|
return (0);
|
|
}
|
|
parentp = &rnode->rn_child[slot];
|
|
rnode = rnode->rn_child[slot];
|
|
}
|
|
|
|
/*
|
|
* A new node is needed because the right insertion level is reached.
|
|
* Setup the new intermediate node and add the 2 children: the
|
|
* new object and the older edge.
|
|
*/
|
|
newind = rnode->rn_owner;
|
|
clev = vm_radix_keydiff(newind, index);
|
|
|
|
/* See the comments above. */
|
|
rtree->rt_flags |= RT_INSERT_INPROG;
|
|
tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2, clev);
|
|
rtree->rt_flags &= ~RT_INSERT_INPROG;
|
|
if (tmp == NULL) {
|
|
rtree->rt_flags &= ~RT_TRIE_MODIFIED;
|
|
return (ENOMEM);
|
|
}
|
|
if ((rtree->rt_flags & RT_TRIE_MODIFIED) != 0) {
|
|
rtree->rt_flags &= ~RT_TRIE_MODIFIED;
|
|
tmp->rn_count = 0;
|
|
vm_radix_node_put(tmp);
|
|
goto restart;
|
|
}
|
|
*parentp = tmp;
|
|
vm_radix_addpage(tmp, index, clev, page);
|
|
slot = vm_radix_slot(newind, clev);
|
|
tmp->rn_child[slot] = rnode;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Returns TRUE if the specified radix tree contains a single leaf and FALSE
|
|
* otherwise.
|
|
*/
|
|
boolean_t
|
|
vm_radix_is_singleton(struct vm_radix *rtree)
|
|
{
|
|
struct vm_radix_node *rnode;
|
|
|
|
rnode = vm_radix_getroot(rtree);
|
|
if (rnode == NULL)
|
|
return (FALSE);
|
|
return (vm_radix_isleaf(rnode));
|
|
}
|
|
|
|
/*
|
|
* Returns the value stored at the index. If the index is not present,
|
|
* NULL is returned.
|
|
*/
|
|
vm_page_t
|
|
vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
|
|
{
|
|
struct vm_radix_node *rnode;
|
|
vm_page_t m;
|
|
int slot;
|
|
|
|
rnode = vm_radix_getroot(rtree);
|
|
while (rnode != NULL) {
|
|
if (vm_radix_isleaf(rnode)) {
|
|
m = vm_radix_topage(rnode);
|
|
if (m->pindex == index)
|
|
return (m);
|
|
else
|
|
break;
|
|
} else if (vm_radix_keybarr(rnode, index))
|
|
break;
|
|
slot = vm_radix_slot(index, rnode->rn_clev);
|
|
rnode = rnode->rn_child[slot];
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Look up the nearest entry at a position bigger than or equal to index.
|
|
*/
|
|
vm_page_t
|
|
vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
|
|
{
|
|
struct vm_radix_node *stack[VM_RADIX_LIMIT];
|
|
vm_pindex_t inc;
|
|
vm_page_t m;
|
|
struct vm_radix_node *child, *rnode;
|
|
#ifdef INVARIANTS
|
|
int loops = 0;
|
|
#endif
|
|
int slot, tos;
|
|
|
|
rnode = vm_radix_getroot(rtree);
|
|
if (rnode == NULL)
|
|
return (NULL);
|
|
else if (vm_radix_isleaf(rnode)) {
|
|
m = vm_radix_topage(rnode);
|
|
if (m->pindex >= index)
|
|
return (m);
|
|
else
|
|
return (NULL);
|
|
}
|
|
tos = 0;
|
|
for (;;) {
|
|
/*
|
|
* If the keys differ before the current bisection node,
|
|
* then the search key might rollback to the earliest
|
|
* available bisection node or to the smallest key
|
|
* in the current node (if the owner is bigger than the
|
|
* search key).
|
|
*/
|
|
if (vm_radix_keybarr(rnode, index)) {
|
|
if (index > rnode->rn_owner) {
|
|
ascend:
|
|
KASSERT(++loops < 1000,
|
|
("vm_radix_lookup_ge: too many loops"));
|
|
|
|
/*
|
|
* Pop nodes from the stack until either the
|
|
* stack is empty or a node that could have a
|
|
* matching descendant is found.
|
|
*/
|
|
do {
|
|
if (tos == 0)
|
|
return (NULL);
|
|
rnode = stack[--tos];
|
|
} while (vm_radix_slot(index,
|
|
rnode->rn_clev) == (VM_RADIX_COUNT - 1));
|
|
|
|
/*
|
|
* The following computation cannot overflow
|
|
* because index's slot at the current level
|
|
* is less than VM_RADIX_COUNT - 1.
|
|
*/
|
|
index = vm_radix_trimkey(index,
|
|
rnode->rn_clev);
|
|
index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
|
|
} else
|
|
index = rnode->rn_owner;
|
|
KASSERT(!vm_radix_keybarr(rnode, index),
|
|
("vm_radix_lookup_ge: keybarr failed"));
|
|
}
|
|
slot = vm_radix_slot(index, rnode->rn_clev);
|
|
child = rnode->rn_child[slot];
|
|
if (vm_radix_isleaf(child)) {
|
|
m = vm_radix_topage(child);
|
|
if (m->pindex >= index)
|
|
return (m);
|
|
} else if (child != NULL)
|
|
goto descend;
|
|
|
|
/*
|
|
* Look for an available edge or page within the current
|
|
* bisection node.
|
|
*/
|
|
if (slot < (VM_RADIX_COUNT - 1)) {
|
|
inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
|
|
index = vm_radix_trimkey(index, rnode->rn_clev);
|
|
do {
|
|
index += inc;
|
|
slot++;
|
|
child = rnode->rn_child[slot];
|
|
if (vm_radix_isleaf(child)) {
|
|
m = vm_radix_topage(child);
|
|
if (m->pindex >= index)
|
|
return (m);
|
|
} else if (child != NULL)
|
|
goto descend;
|
|
} while (slot < (VM_RADIX_COUNT - 1));
|
|
}
|
|
KASSERT(child == NULL || vm_radix_isleaf(child),
|
|
("vm_radix_lookup_ge: child is radix node"));
|
|
|
|
/*
|
|
* If a page or edge bigger than the search slot is not found
|
|
* in the current node, ascend to the next higher-level node.
|
|
*/
|
|
goto ascend;
|
|
descend:
|
|
KASSERT(rnode->rn_clev > 0,
|
|
("vm_radix_lookup_ge: pushing leaf's parent"));
|
|
KASSERT(tos < VM_RADIX_LIMIT,
|
|
("vm_radix_lookup_ge: stack overflow"));
|
|
stack[tos++] = rnode;
|
|
rnode = child;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Look up the nearest entry at a position less than or equal to index.
|
|
*/
|
|
vm_page_t
|
|
vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
|
|
{
|
|
struct vm_radix_node *stack[VM_RADIX_LIMIT];
|
|
vm_pindex_t inc;
|
|
vm_page_t m;
|
|
struct vm_radix_node *child, *rnode;
|
|
#ifdef INVARIANTS
|
|
int loops = 0;
|
|
#endif
|
|
int slot, tos;
|
|
|
|
rnode = vm_radix_getroot(rtree);
|
|
if (rnode == NULL)
|
|
return (NULL);
|
|
else if (vm_radix_isleaf(rnode)) {
|
|
m = vm_radix_topage(rnode);
|
|
if (m->pindex <= index)
|
|
return (m);
|
|
else
|
|
return (NULL);
|
|
}
|
|
tos = 0;
|
|
for (;;) {
|
|
/*
|
|
* If the keys differ before the current bisection node,
|
|
* then the search key might rollback to the earliest
|
|
* available bisection node or to the largest key
|
|
* in the current node (if the owner is smaller than the
|
|
* search key).
|
|
*/
|
|
if (vm_radix_keybarr(rnode, index)) {
|
|
if (index > rnode->rn_owner) {
|
|
index = rnode->rn_owner + VM_RADIX_COUNT *
|
|
VM_RADIX_UNITLEVEL(rnode->rn_clev);
|
|
} else {
|
|
ascend:
|
|
KASSERT(++loops < 1000,
|
|
("vm_radix_lookup_le: too many loops"));
|
|
|
|
/*
|
|
* Pop nodes from the stack until either the
|
|
* stack is empty or a node that could have a
|
|
* matching descendant is found.
|
|
*/
|
|
do {
|
|
if (tos == 0)
|
|
return (NULL);
|
|
rnode = stack[--tos];
|
|
} while (vm_radix_slot(index,
|
|
rnode->rn_clev) == 0);
|
|
|
|
/*
|
|
* The following computation cannot overflow
|
|
* because index's slot at the current level
|
|
* is greater than 0.
|
|
*/
|
|
index = vm_radix_trimkey(index,
|
|
rnode->rn_clev);
|
|
}
|
|
index--;
|
|
KASSERT(!vm_radix_keybarr(rnode, index),
|
|
("vm_radix_lookup_le: keybarr failed"));
|
|
}
|
|
slot = vm_radix_slot(index, rnode->rn_clev);
|
|
child = rnode->rn_child[slot];
|
|
if (vm_radix_isleaf(child)) {
|
|
m = vm_radix_topage(child);
|
|
if (m->pindex <= index)
|
|
return (m);
|
|
} else if (child != NULL)
|
|
goto descend;
|
|
|
|
/*
|
|
* Look for an available edge or page within the current
|
|
* bisection node.
|
|
*/
|
|
if (slot > 0) {
|
|
inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
|
|
index |= inc - 1;
|
|
do {
|
|
index -= inc;
|
|
slot--;
|
|
child = rnode->rn_child[slot];
|
|
if (vm_radix_isleaf(child)) {
|
|
m = vm_radix_topage(child);
|
|
if (m->pindex <= index)
|
|
return (m);
|
|
} else if (child != NULL)
|
|
goto descend;
|
|
} while (slot > 0);
|
|
}
|
|
KASSERT(child == NULL || vm_radix_isleaf(child),
|
|
("vm_radix_lookup_le: child is radix node"));
|
|
|
|
/*
|
|
* If a page or edge smaller than the search slot is not found
|
|
* in the current node, ascend to the next higher-level node.
|
|
*/
|
|
goto ascend;
|
|
descend:
|
|
KASSERT(rnode->rn_clev > 0,
|
|
("vm_radix_lookup_le: pushing leaf's parent"));
|
|
KASSERT(tos < VM_RADIX_LIMIT,
|
|
("vm_radix_lookup_le: stack overflow"));
|
|
stack[tos++] = rnode;
|
|
rnode = child;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove the specified index from the tree.
|
|
* Panics if the key is not present.
|
|
*/
|
|
void
|
|
vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
|
|
{
|
|
struct vm_radix_node *rnode, *parent;
|
|
vm_page_t m;
|
|
int i, slot;
|
|
|
|
/*
|
|
* Detect if a page is going to be removed from a trie which is
|
|
* already undergoing another trie operation.
|
|
* Right now this is only possible for vm_radix_remove() recursing
|
|
* into vm_radix_insert().
|
|
* If this is the case, the caller must be notified about this
|
|
* situation. It will also takecare to update the RT_TRIE_MODIFIED
|
|
* accordingly.
|
|
* The RT_TRIE_MODIFIED bit is set here because the remove operation
|
|
* will always succeed.
|
|
*/
|
|
if ((rtree->rt_flags & RT_INSERT_INPROG) != 0)
|
|
rtree->rt_flags |= RT_TRIE_MODIFIED;
|
|
|
|
rnode = vm_radix_getroot(rtree);
|
|
if (vm_radix_isleaf(rnode)) {
|
|
m = vm_radix_topage(rnode);
|
|
if (m->pindex != index)
|
|
panic("%s: invalid key found", __func__);
|
|
vm_radix_setroot(rtree, NULL);
|
|
return;
|
|
}
|
|
parent = NULL;
|
|
for (;;) {
|
|
if (rnode == NULL)
|
|
panic("vm_radix_remove: impossible to locate the key");
|
|
slot = vm_radix_slot(index, rnode->rn_clev);
|
|
if (vm_radix_isleaf(rnode->rn_child[slot])) {
|
|
m = vm_radix_topage(rnode->rn_child[slot]);
|
|
if (m->pindex != index)
|
|
panic("%s: invalid key found", __func__);
|
|
rnode->rn_child[slot] = NULL;
|
|
rnode->rn_count--;
|
|
if (rnode->rn_count > 1)
|
|
break;
|
|
for (i = 0; i < VM_RADIX_COUNT; i++)
|
|
if (rnode->rn_child[i] != NULL)
|
|
break;
|
|
KASSERT(i != VM_RADIX_COUNT,
|
|
("%s: invalid node configuration", __func__));
|
|
if (parent == NULL)
|
|
vm_radix_setroot(rtree, rnode->rn_child[i]);
|
|
else {
|
|
slot = vm_radix_slot(index, parent->rn_clev);
|
|
KASSERT(parent->rn_child[slot] == rnode,
|
|
("%s: invalid child value", __func__));
|
|
parent->rn_child[slot] = rnode->rn_child[i];
|
|
}
|
|
rnode->rn_count--;
|
|
rnode->rn_child[i] = NULL;
|
|
vm_radix_node_put(rnode);
|
|
break;
|
|
}
|
|
parent = rnode;
|
|
rnode = rnode->rn_child[slot];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove and free all the nodes from the radix tree.
|
|
* This function is recursive but there is a tight control on it as the
|
|
* maximum depth of the tree is fixed.
|
|
*/
|
|
void
|
|
vm_radix_reclaim_allnodes(struct vm_radix *rtree)
|
|
{
|
|
struct vm_radix_node *root;
|
|
|
|
KASSERT((rtree->rt_flags & RT_INSERT_INPROG) == 0,
|
|
("vm_radix_reclaim_allnodes: unexpected trie recursion"));
|
|
|
|
root = vm_radix_getroot(rtree);
|
|
if (root == NULL)
|
|
return;
|
|
vm_radix_setroot(rtree, NULL);
|
|
if (!vm_radix_isleaf(root))
|
|
vm_radix_reclaim_allnodes_int(root);
|
|
}
|
|
|
|
/*
|
|
* Replace an existing page in the trie with another one.
|
|
* Panics if there is not an old page in the trie at the new page's index.
|
|
*/
|
|
vm_page_t
|
|
vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage)
|
|
{
|
|
struct vm_radix_node *rnode;
|
|
vm_page_t m;
|
|
vm_pindex_t index;
|
|
int slot;
|
|
|
|
index = newpage->pindex;
|
|
rnode = vm_radix_getroot(rtree);
|
|
if (rnode == NULL)
|
|
panic("%s: replacing page on an empty trie", __func__);
|
|
if (vm_radix_isleaf(rnode)) {
|
|
m = vm_radix_topage(rnode);
|
|
if (m->pindex != index)
|
|
panic("%s: original replacing root key not found",
|
|
__func__);
|
|
rtree->rt_root = (uintptr_t)newpage | VM_RADIX_ISLEAF;
|
|
return (m);
|
|
}
|
|
for (;;) {
|
|
slot = vm_radix_slot(index, rnode->rn_clev);
|
|
if (vm_radix_isleaf(rnode->rn_child[slot])) {
|
|
m = vm_radix_topage(rnode->rn_child[slot]);
|
|
if (m->pindex == index) {
|
|
rnode->rn_child[slot] =
|
|
(void *)((uintptr_t)newpage |
|
|
VM_RADIX_ISLEAF);
|
|
return (m);
|
|
} else
|
|
break;
|
|
} else if (rnode->rn_child[slot] == NULL ||
|
|
vm_radix_keybarr(rnode->rn_child[slot], index))
|
|
break;
|
|
rnode = rnode->rn_child[slot];
|
|
}
|
|
panic("%s: original replacing page not found", __func__);
|
|
}
|
|
|
|
#ifdef DDB
|
|
/*
|
|
* Show details about the given radix node.
|
|
*/
|
|
DB_SHOW_COMMAND(radixnode, db_show_radixnode)
|
|
{
|
|
struct vm_radix_node *rnode;
|
|
int i;
|
|
|
|
if (!have_addr)
|
|
return;
|
|
rnode = (struct vm_radix_node *)addr;
|
|
db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
|
|
(void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
|
|
rnode->rn_clev);
|
|
for (i = 0; i < VM_RADIX_COUNT; i++)
|
|
if (rnode->rn_child[i] != NULL)
|
|
db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
|
|
i, (void *)rnode->rn_child[i],
|
|
vm_radix_isleaf(rnode->rn_child[i]) ?
|
|
vm_radix_topage(rnode->rn_child[i]) : NULL,
|
|
rnode->rn_clev);
|
|
}
|
|
#endif /* DDB */
|