mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-21 15:45:02 +00:00
e9a3f7852d
Also, express this new maximum as a fraction of the kernel's address space size rather than a constant so that increasing KVA_PAGES will automatically increase this maximum. As a side-effect of this change, kern.maxvnodes will automatically increase by a proportional amount. While I'm here ensure that this change doesn't result in an unintended increase in maxpipekva on i386. Calculate maxpipekva based upon the size of the kernel address space and the amount of physical memory instead of the size of the kmem map. The memory backing pipes is not allocated from the kmem map. It is allocated from its own submap of the kernel map. In short, it has no real connection to the kmem map. (In fact, the commit messages for the maxpipekva auto-sizing talk about using the kernel map size, cf. r117325 and r117391, even though the implementation actually used the kmem map size.) Although the calculation is now done differently, the resulting value for maxpipekva should remain almost the same on i386. However, on amd64, the value will be reduced by 2/3. This is intentional. The recent change to VM_KMEM_SIZE_SCALE on amd64 for the benefit of ZFS also had the unnecessary side-effect of increasing maxpipekva. This change is effectively restoring maxpipekva on amd64 to its prior value. Eliminate init_param3() since it is no longer used.
1049 lines
27 KiB
C
1049 lines
27 KiB
C
/*-
|
|
* Copyright (c) 1987, 1991, 1993
|
|
* The Regents of the University of California.
|
|
* Copyright (c) 2005-2009 Robert N. M. Watson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
|
|
*/
|
|
|
|
/*
|
|
* Kernel malloc(9) implementation -- general purpose kernel memory allocator
|
|
* based on memory types. Back end is implemented using the UMA(9) zone
|
|
* allocator. A set of fixed-size buckets are used for smaller allocations,
|
|
* and a special UMA allocation interface is used for larger allocations.
|
|
* Callers declare memory types, and statistics are maintained independently
|
|
* for each memory type. Statistics are maintained per-CPU for performance
|
|
* reasons. See malloc(9) and comments in malloc.h for a detailed
|
|
* description.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_kdtrace.h"
|
|
#include "opt_vm.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/time.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/uma.h>
|
|
#include <vm/uma_int.h>
|
|
#include <vm/uma_dbg.h>
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
#include <vm/memguard.h>
|
|
#endif
|
|
#ifdef DEBUG_REDZONE
|
|
#include <vm/redzone.h>
|
|
#endif
|
|
|
|
#if defined(INVARIANTS) && defined(__i386__)
|
|
#include <machine/cpu.h>
|
|
#endif
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
#include <sys/dtrace_bsd.h>
|
|
|
|
dtrace_malloc_probe_func_t dtrace_malloc_probe;
|
|
#endif
|
|
|
|
/*
|
|
* When realloc() is called, if the new size is sufficiently smaller than
|
|
* the old size, realloc() will allocate a new, smaller block to avoid
|
|
* wasting memory. 'Sufficiently smaller' is defined as: newsize <=
|
|
* oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
|
|
*/
|
|
#ifndef REALLOC_FRACTION
|
|
#define REALLOC_FRACTION 1 /* new block if <= half the size */
|
|
#endif
|
|
|
|
/*
|
|
* Centrally define some common malloc types.
|
|
*/
|
|
MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
|
|
MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
|
|
MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
|
|
|
|
MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
|
|
MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
|
|
|
|
static void kmeminit(void *);
|
|
SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL);
|
|
|
|
static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
|
|
|
|
static struct malloc_type *kmemstatistics;
|
|
static vm_offset_t kmembase;
|
|
static vm_offset_t kmemlimit;
|
|
static int kmemcount;
|
|
|
|
#define KMEM_ZSHIFT 4
|
|
#define KMEM_ZBASE 16
|
|
#define KMEM_ZMASK (KMEM_ZBASE - 1)
|
|
|
|
#define KMEM_ZMAX PAGE_SIZE
|
|
#define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT)
|
|
static uint8_t kmemsize[KMEM_ZSIZE + 1];
|
|
|
|
#ifndef MALLOC_DEBUG_MAXZONES
|
|
#define MALLOC_DEBUG_MAXZONES 1
|
|
#endif
|
|
static int numzones = MALLOC_DEBUG_MAXZONES;
|
|
|
|
/*
|
|
* Small malloc(9) memory allocations are allocated from a set of UMA buckets
|
|
* of various sizes.
|
|
*
|
|
* XXX: The comment here used to read "These won't be powers of two for
|
|
* long." It's possible that a significant amount of wasted memory could be
|
|
* recovered by tuning the sizes of these buckets.
|
|
*/
|
|
struct {
|
|
int kz_size;
|
|
char *kz_name;
|
|
uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
|
|
} kmemzones[] = {
|
|
{16, "16", },
|
|
{32, "32", },
|
|
{64, "64", },
|
|
{128, "128", },
|
|
{256, "256", },
|
|
{512, "512", },
|
|
{1024, "1024", },
|
|
{2048, "2048", },
|
|
{4096, "4096", },
|
|
#if PAGE_SIZE > 4096
|
|
{8192, "8192", },
|
|
#if PAGE_SIZE > 8192
|
|
{16384, "16384", },
|
|
#if PAGE_SIZE > 16384
|
|
{32768, "32768", },
|
|
#if PAGE_SIZE > 32768
|
|
{65536, "65536", },
|
|
#if PAGE_SIZE > 65536
|
|
#error "Unsupported PAGE_SIZE"
|
|
#endif /* 65536 */
|
|
#endif /* 32768 */
|
|
#endif /* 16384 */
|
|
#endif /* 8192 */
|
|
#endif /* 4096 */
|
|
{0, NULL},
|
|
};
|
|
|
|
/*
|
|
* Zone to allocate malloc type descriptions from. For ABI reasons, memory
|
|
* types are described by a data structure passed by the declaring code, but
|
|
* the malloc(9) implementation has its own data structure describing the
|
|
* type and statistics. This permits the malloc(9)-internal data structures
|
|
* to be modified without breaking binary-compiled kernel modules that
|
|
* declare malloc types.
|
|
*/
|
|
static uma_zone_t mt_zone;
|
|
|
|
u_long vm_kmem_size;
|
|
SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
|
|
"Size of kernel memory");
|
|
|
|
static u_long vm_kmem_size_min;
|
|
SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
|
|
"Minimum size of kernel memory");
|
|
|
|
static u_long vm_kmem_size_max;
|
|
SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
|
|
"Maximum size of kernel memory");
|
|
|
|
static u_int vm_kmem_size_scale;
|
|
SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
|
|
"Scale factor for kernel memory size");
|
|
|
|
static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
|
|
SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
|
|
CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
|
|
sysctl_kmem_map_size, "LU", "Current kmem_map allocation size");
|
|
|
|
static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
|
|
SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
|
|
CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
|
|
sysctl_kmem_map_free, "LU", "Largest contiguous free range in kmem_map");
|
|
|
|
/*
|
|
* The malloc_mtx protects the kmemstatistics linked list.
|
|
*/
|
|
struct mtx malloc_mtx;
|
|
|
|
#ifdef MALLOC_PROFILE
|
|
uint64_t krequests[KMEM_ZSIZE + 1];
|
|
|
|
static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
|
|
#endif
|
|
|
|
static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
|
|
|
|
/*
|
|
* time_uptime of the last malloc(9) failure (induced or real).
|
|
*/
|
|
static time_t t_malloc_fail;
|
|
|
|
#if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
|
|
SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
|
|
"Kernel malloc debugging options");
|
|
#endif
|
|
|
|
/*
|
|
* malloc(9) fault injection -- cause malloc failures every (n) mallocs when
|
|
* the caller specifies M_NOWAIT. If set to 0, no failures are caused.
|
|
*/
|
|
#ifdef MALLOC_MAKE_FAILURES
|
|
static int malloc_failure_rate;
|
|
static int malloc_nowait_count;
|
|
static int malloc_failure_count;
|
|
SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
|
|
&malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
|
|
TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
|
|
SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
|
|
&malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
|
|
#endif
|
|
|
|
static int
|
|
sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
u_long size;
|
|
|
|
size = kmem_map->size;
|
|
return (sysctl_handle_long(oidp, &size, 0, req));
|
|
}
|
|
|
|
static int
|
|
sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
u_long size;
|
|
|
|
vm_map_lock_read(kmem_map);
|
|
size = kmem_map->root != NULL ?
|
|
kmem_map->root->max_free : kmem_map->size;
|
|
vm_map_unlock_read(kmem_map);
|
|
return (sysctl_handle_long(oidp, &size, 0, req));
|
|
}
|
|
|
|
/*
|
|
* malloc(9) uma zone separation -- sub-page buffer overruns in one
|
|
* malloc type will affect only a subset of other malloc types.
|
|
*/
|
|
#if MALLOC_DEBUG_MAXZONES > 1
|
|
static void
|
|
tunable_set_numzones(void)
|
|
{
|
|
|
|
TUNABLE_INT_FETCH("debug.malloc.numzones",
|
|
&numzones);
|
|
|
|
/* Sanity check the number of malloc uma zones. */
|
|
if (numzones <= 0)
|
|
numzones = 1;
|
|
if (numzones > MALLOC_DEBUG_MAXZONES)
|
|
numzones = MALLOC_DEBUG_MAXZONES;
|
|
}
|
|
SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
|
|
SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN,
|
|
&numzones, 0, "Number of malloc uma subzones");
|
|
|
|
/*
|
|
* Any number that changes regularly is an okay choice for the
|
|
* offset. Build numbers are pretty good of you have them.
|
|
*/
|
|
static u_int zone_offset = __FreeBSD_version;
|
|
TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
|
|
SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
|
|
&zone_offset, 0, "Separate malloc types by examining the "
|
|
"Nth character in the malloc type short description.");
|
|
|
|
static u_int
|
|
mtp_get_subzone(const char *desc)
|
|
{
|
|
size_t len;
|
|
u_int val;
|
|
|
|
if (desc == NULL || (len = strlen(desc)) == 0)
|
|
return (0);
|
|
val = desc[zone_offset % len];
|
|
return (val % numzones);
|
|
}
|
|
#elif MALLOC_DEBUG_MAXZONES == 0
|
|
#error "MALLOC_DEBUG_MAXZONES must be positive."
|
|
#else
|
|
static inline u_int
|
|
mtp_get_subzone(const char *desc)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
#endif /* MALLOC_DEBUG_MAXZONES > 1 */
|
|
|
|
int
|
|
malloc_last_fail(void)
|
|
{
|
|
|
|
return (time_uptime - t_malloc_fail);
|
|
}
|
|
|
|
/*
|
|
* An allocation has succeeded -- update malloc type statistics for the
|
|
* amount of bucket size. Occurs within a critical section so that the
|
|
* thread isn't preempted and doesn't migrate while updating per-PCU
|
|
* statistics.
|
|
*/
|
|
static void
|
|
malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
|
|
int zindx)
|
|
{
|
|
struct malloc_type_internal *mtip;
|
|
struct malloc_type_stats *mtsp;
|
|
|
|
critical_enter();
|
|
mtip = mtp->ks_handle;
|
|
mtsp = &mtip->mti_stats[curcpu];
|
|
if (size > 0) {
|
|
mtsp->mts_memalloced += size;
|
|
mtsp->mts_numallocs++;
|
|
}
|
|
if (zindx != -1)
|
|
mtsp->mts_size |= 1 << zindx;
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
if (dtrace_malloc_probe != NULL) {
|
|
uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
|
|
if (probe_id != 0)
|
|
(dtrace_malloc_probe)(probe_id,
|
|
(uintptr_t) mtp, (uintptr_t) mtip,
|
|
(uintptr_t) mtsp, size, zindx);
|
|
}
|
|
#endif
|
|
|
|
critical_exit();
|
|
}
|
|
|
|
void
|
|
malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
|
|
{
|
|
|
|
if (size > 0)
|
|
malloc_type_zone_allocated(mtp, size, -1);
|
|
}
|
|
|
|
/*
|
|
* A free operation has occurred -- update malloc type statistics for the
|
|
* amount of the bucket size. Occurs within a critical section so that the
|
|
* thread isn't preempted and doesn't migrate while updating per-CPU
|
|
* statistics.
|
|
*/
|
|
void
|
|
malloc_type_freed(struct malloc_type *mtp, unsigned long size)
|
|
{
|
|
struct malloc_type_internal *mtip;
|
|
struct malloc_type_stats *mtsp;
|
|
|
|
critical_enter();
|
|
mtip = mtp->ks_handle;
|
|
mtsp = &mtip->mti_stats[curcpu];
|
|
mtsp->mts_memfreed += size;
|
|
mtsp->mts_numfrees++;
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
if (dtrace_malloc_probe != NULL) {
|
|
uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
|
|
if (probe_id != 0)
|
|
(dtrace_malloc_probe)(probe_id,
|
|
(uintptr_t) mtp, (uintptr_t) mtip,
|
|
(uintptr_t) mtsp, size, 0);
|
|
}
|
|
#endif
|
|
|
|
critical_exit();
|
|
}
|
|
|
|
/*
|
|
* malloc:
|
|
*
|
|
* Allocate a block of memory.
|
|
*
|
|
* If M_NOWAIT is set, this routine will not block and return NULL if
|
|
* the allocation fails.
|
|
*/
|
|
void *
|
|
malloc(unsigned long size, struct malloc_type *mtp, int flags)
|
|
{
|
|
int indx;
|
|
struct malloc_type_internal *mtip;
|
|
caddr_t va;
|
|
uma_zone_t zone;
|
|
#if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
|
|
unsigned long osize = size;
|
|
#endif
|
|
|
|
#ifdef INVARIANTS
|
|
KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
|
|
/*
|
|
* Check that exactly one of M_WAITOK or M_NOWAIT is specified.
|
|
*/
|
|
indx = flags & (M_WAITOK | M_NOWAIT);
|
|
if (indx != M_NOWAIT && indx != M_WAITOK) {
|
|
static struct timeval lasterr;
|
|
static int curerr, once;
|
|
if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
|
|
printf("Bad malloc flags: %x\n", indx);
|
|
kdb_backtrace();
|
|
flags |= M_WAITOK;
|
|
once++;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef MALLOC_MAKE_FAILURES
|
|
if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
|
|
atomic_add_int(&malloc_nowait_count, 1);
|
|
if ((malloc_nowait_count % malloc_failure_rate) == 0) {
|
|
atomic_add_int(&malloc_failure_count, 1);
|
|
t_malloc_fail = time_uptime;
|
|
return (NULL);
|
|
}
|
|
}
|
|
#endif
|
|
if (flags & M_WAITOK)
|
|
KASSERT(curthread->td_intr_nesting_level == 0,
|
|
("malloc(M_WAITOK) in interrupt context"));
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
if (memguard_cmp(mtp, size)) {
|
|
va = memguard_alloc(size, flags);
|
|
if (va != NULL)
|
|
return (va);
|
|
/* This is unfortunate but should not be fatal. */
|
|
}
|
|
#endif
|
|
|
|
#ifdef DEBUG_REDZONE
|
|
size = redzone_size_ntor(size);
|
|
#endif
|
|
|
|
if (size <= KMEM_ZMAX) {
|
|
mtip = mtp->ks_handle;
|
|
if (size & KMEM_ZMASK)
|
|
size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
|
|
indx = kmemsize[size >> KMEM_ZSHIFT];
|
|
KASSERT(mtip->mti_zone < numzones,
|
|
("mti_zone %u out of range %d",
|
|
mtip->mti_zone, numzones));
|
|
zone = kmemzones[indx].kz_zone[mtip->mti_zone];
|
|
#ifdef MALLOC_PROFILE
|
|
krequests[size >> KMEM_ZSHIFT]++;
|
|
#endif
|
|
va = uma_zalloc(zone, flags);
|
|
if (va != NULL)
|
|
size = zone->uz_size;
|
|
malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
|
|
} else {
|
|
size = roundup(size, PAGE_SIZE);
|
|
zone = NULL;
|
|
va = uma_large_malloc(size, flags);
|
|
malloc_type_allocated(mtp, va == NULL ? 0 : size);
|
|
}
|
|
if (flags & M_WAITOK)
|
|
KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
|
|
else if (va == NULL)
|
|
t_malloc_fail = time_uptime;
|
|
#ifdef DIAGNOSTIC
|
|
if (va != NULL && !(flags & M_ZERO)) {
|
|
memset(va, 0x70, osize);
|
|
}
|
|
#endif
|
|
#ifdef DEBUG_REDZONE
|
|
if (va != NULL)
|
|
va = redzone_setup(va, osize);
|
|
#endif
|
|
return ((void *) va);
|
|
}
|
|
|
|
/*
|
|
* free:
|
|
*
|
|
* Free a block of memory allocated by malloc.
|
|
*
|
|
* This routine may not block.
|
|
*/
|
|
void
|
|
free(void *addr, struct malloc_type *mtp)
|
|
{
|
|
uma_slab_t slab;
|
|
u_long size;
|
|
|
|
KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
|
|
|
|
/* free(NULL, ...) does nothing */
|
|
if (addr == NULL)
|
|
return;
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
if (is_memguard_addr(addr)) {
|
|
memguard_free(addr);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#ifdef DEBUG_REDZONE
|
|
redzone_check(addr);
|
|
addr = redzone_addr_ntor(addr);
|
|
#endif
|
|
|
|
slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
|
|
|
|
if (slab == NULL)
|
|
panic("free: address %p(%p) has not been allocated.\n",
|
|
addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
|
|
|
|
|
|
if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
|
|
#ifdef INVARIANTS
|
|
struct malloc_type **mtpp = addr;
|
|
#endif
|
|
size = slab->us_keg->uk_size;
|
|
#ifdef INVARIANTS
|
|
/*
|
|
* Cache a pointer to the malloc_type that most recently freed
|
|
* this memory here. This way we know who is most likely to
|
|
* have stepped on it later.
|
|
*
|
|
* This code assumes that size is a multiple of 8 bytes for
|
|
* 64 bit machines
|
|
*/
|
|
mtpp = (struct malloc_type **)
|
|
((unsigned long)mtpp & ~UMA_ALIGN_PTR);
|
|
mtpp += (size - sizeof(struct malloc_type *)) /
|
|
sizeof(struct malloc_type *);
|
|
*mtpp = mtp;
|
|
#endif
|
|
uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
|
|
} else {
|
|
size = slab->us_size;
|
|
uma_large_free(slab);
|
|
}
|
|
malloc_type_freed(mtp, size);
|
|
}
|
|
|
|
/*
|
|
* realloc: change the size of a memory block
|
|
*/
|
|
void *
|
|
realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
|
|
{
|
|
uma_slab_t slab;
|
|
unsigned long alloc;
|
|
void *newaddr;
|
|
|
|
KASSERT(mtp->ks_magic == M_MAGIC,
|
|
("realloc: bad malloc type magic"));
|
|
|
|
/* realloc(NULL, ...) is equivalent to malloc(...) */
|
|
if (addr == NULL)
|
|
return (malloc(size, mtp, flags));
|
|
|
|
/*
|
|
* XXX: Should report free of old memory and alloc of new memory to
|
|
* per-CPU stats.
|
|
*/
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
if (is_memguard_addr(addr))
|
|
return (memguard_realloc(addr, size, mtp, flags));
|
|
#endif
|
|
|
|
#ifdef DEBUG_REDZONE
|
|
slab = NULL;
|
|
alloc = redzone_get_size(addr);
|
|
#else
|
|
slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
|
|
|
|
/* Sanity check */
|
|
KASSERT(slab != NULL,
|
|
("realloc: address %p out of range", (void *)addr));
|
|
|
|
/* Get the size of the original block */
|
|
if (!(slab->us_flags & UMA_SLAB_MALLOC))
|
|
alloc = slab->us_keg->uk_size;
|
|
else
|
|
alloc = slab->us_size;
|
|
|
|
/* Reuse the original block if appropriate */
|
|
if (size <= alloc
|
|
&& (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
|
|
return (addr);
|
|
#endif /* !DEBUG_REDZONE */
|
|
|
|
/* Allocate a new, bigger (or smaller) block */
|
|
if ((newaddr = malloc(size, mtp, flags)) == NULL)
|
|
return (NULL);
|
|
|
|
/* Copy over original contents */
|
|
bcopy(addr, newaddr, min(size, alloc));
|
|
free(addr, mtp);
|
|
return (newaddr);
|
|
}
|
|
|
|
/*
|
|
* reallocf: same as realloc() but free memory on failure.
|
|
*/
|
|
void *
|
|
reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
|
|
{
|
|
void *mem;
|
|
|
|
if ((mem = realloc(addr, size, mtp, flags)) == NULL)
|
|
free(addr, mtp);
|
|
return (mem);
|
|
}
|
|
|
|
/*
|
|
* Initialize the kernel memory allocator
|
|
*/
|
|
/* ARGSUSED*/
|
|
static void
|
|
kmeminit(void *dummy)
|
|
{
|
|
uint8_t indx;
|
|
u_long mem_size, tmp;
|
|
int i;
|
|
|
|
mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
|
|
|
|
/*
|
|
* Try to auto-tune the kernel memory size, so that it is
|
|
* more applicable for a wider range of machine sizes.
|
|
* On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
|
|
* a VM_KMEM_SIZE of 12MB is a fair compromise. The
|
|
* VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
|
|
* available, and on an X86 with a total KVA space of 256MB,
|
|
* try to keep VM_KMEM_SIZE_MAX at 80MB or below.
|
|
*
|
|
* Note that the kmem_map is also used by the zone allocator,
|
|
* so make sure that there is enough space.
|
|
*/
|
|
vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE;
|
|
mem_size = cnt.v_page_count;
|
|
|
|
#if defined(VM_KMEM_SIZE_SCALE)
|
|
vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
|
|
#endif
|
|
TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale);
|
|
if (vm_kmem_size_scale > 0 &&
|
|
(mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE))
|
|
vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
|
|
|
|
#if defined(VM_KMEM_SIZE_MIN)
|
|
vm_kmem_size_min = VM_KMEM_SIZE_MIN;
|
|
#endif
|
|
TUNABLE_ULONG_FETCH("vm.kmem_size_min", &vm_kmem_size_min);
|
|
if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) {
|
|
vm_kmem_size = vm_kmem_size_min;
|
|
}
|
|
|
|
#if defined(VM_KMEM_SIZE_MAX)
|
|
vm_kmem_size_max = VM_KMEM_SIZE_MAX;
|
|
#endif
|
|
TUNABLE_ULONG_FETCH("vm.kmem_size_max", &vm_kmem_size_max);
|
|
if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
|
|
vm_kmem_size = vm_kmem_size_max;
|
|
|
|
/* Allow final override from the kernel environment */
|
|
TUNABLE_ULONG_FETCH("vm.kmem_size", &vm_kmem_size);
|
|
|
|
/*
|
|
* Limit kmem virtual size to twice the physical memory.
|
|
* This allows for kmem map sparseness, but limits the size
|
|
* to something sane. Be careful to not overflow the 32bit
|
|
* ints while doing the check.
|
|
*/
|
|
if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count)
|
|
vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
tmp = memguard_fudge(vm_kmem_size, vm_kmem_size_max);
|
|
#else
|
|
tmp = vm_kmem_size;
|
|
#endif
|
|
kmem_map = kmem_suballoc(kernel_map, &kmembase, &kmemlimit,
|
|
tmp, TRUE);
|
|
kmem_map->system_map = 1;
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
/*
|
|
* Initialize MemGuard if support compiled in. MemGuard is a
|
|
* replacement allocator used for detecting tamper-after-free
|
|
* scenarios as they occur. It is only used for debugging.
|
|
*/
|
|
memguard_init(kmem_map);
|
|
#endif
|
|
|
|
uma_startup2();
|
|
|
|
mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
|
|
#ifdef INVARIANTS
|
|
mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
|
|
#else
|
|
NULL, NULL, NULL, NULL,
|
|
#endif
|
|
UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
|
|
for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
|
|
int size = kmemzones[indx].kz_size;
|
|
char *name = kmemzones[indx].kz_name;
|
|
int subzone;
|
|
|
|
for (subzone = 0; subzone < numzones; subzone++) {
|
|
kmemzones[indx].kz_zone[subzone] =
|
|
uma_zcreate(name, size,
|
|
#ifdef INVARIANTS
|
|
mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
|
|
#else
|
|
NULL, NULL, NULL, NULL,
|
|
#endif
|
|
UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
|
|
}
|
|
for (;i <= size; i+= KMEM_ZBASE)
|
|
kmemsize[i >> KMEM_ZSHIFT] = indx;
|
|
|
|
}
|
|
}
|
|
|
|
void
|
|
malloc_init(void *data)
|
|
{
|
|
struct malloc_type_internal *mtip;
|
|
struct malloc_type *mtp;
|
|
|
|
KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init"));
|
|
|
|
mtp = data;
|
|
if (mtp->ks_magic != M_MAGIC)
|
|
panic("malloc_init: bad malloc type magic");
|
|
|
|
mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
|
|
mtp->ks_handle = mtip;
|
|
mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
|
|
|
|
mtx_lock(&malloc_mtx);
|
|
mtp->ks_next = kmemstatistics;
|
|
kmemstatistics = mtp;
|
|
kmemcount++;
|
|
mtx_unlock(&malloc_mtx);
|
|
}
|
|
|
|
void
|
|
malloc_uninit(void *data)
|
|
{
|
|
struct malloc_type_internal *mtip;
|
|
struct malloc_type_stats *mtsp;
|
|
struct malloc_type *mtp, *temp;
|
|
uma_slab_t slab;
|
|
long temp_allocs, temp_bytes;
|
|
int i;
|
|
|
|
mtp = data;
|
|
KASSERT(mtp->ks_magic == M_MAGIC,
|
|
("malloc_uninit: bad malloc type magic"));
|
|
KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
|
|
|
|
mtx_lock(&malloc_mtx);
|
|
mtip = mtp->ks_handle;
|
|
mtp->ks_handle = NULL;
|
|
if (mtp != kmemstatistics) {
|
|
for (temp = kmemstatistics; temp != NULL;
|
|
temp = temp->ks_next) {
|
|
if (temp->ks_next == mtp) {
|
|
temp->ks_next = mtp->ks_next;
|
|
break;
|
|
}
|
|
}
|
|
KASSERT(temp,
|
|
("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
|
|
} else
|
|
kmemstatistics = mtp->ks_next;
|
|
kmemcount--;
|
|
mtx_unlock(&malloc_mtx);
|
|
|
|
/*
|
|
* Look for memory leaks.
|
|
*/
|
|
temp_allocs = temp_bytes = 0;
|
|
for (i = 0; i < MAXCPU; i++) {
|
|
mtsp = &mtip->mti_stats[i];
|
|
temp_allocs += mtsp->mts_numallocs;
|
|
temp_allocs -= mtsp->mts_numfrees;
|
|
temp_bytes += mtsp->mts_memalloced;
|
|
temp_bytes -= mtsp->mts_memfreed;
|
|
}
|
|
if (temp_allocs > 0 || temp_bytes > 0) {
|
|
printf("Warning: memory type %s leaked memory on destroy "
|
|
"(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
|
|
temp_allocs, temp_bytes);
|
|
}
|
|
|
|
slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
|
|
uma_zfree_arg(mt_zone, mtip, slab);
|
|
}
|
|
|
|
struct malloc_type *
|
|
malloc_desc2type(const char *desc)
|
|
{
|
|
struct malloc_type *mtp;
|
|
|
|
mtx_assert(&malloc_mtx, MA_OWNED);
|
|
for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
|
|
if (strcmp(mtp->ks_shortdesc, desc) == 0)
|
|
return (mtp);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct malloc_type_stream_header mtsh;
|
|
struct malloc_type_internal *mtip;
|
|
struct malloc_type_header mth;
|
|
struct malloc_type *mtp;
|
|
int error, i;
|
|
struct sbuf sbuf;
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
|
|
mtx_lock(&malloc_mtx);
|
|
|
|
/*
|
|
* Insert stream header.
|
|
*/
|
|
bzero(&mtsh, sizeof(mtsh));
|
|
mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
|
|
mtsh.mtsh_maxcpus = MAXCPU;
|
|
mtsh.mtsh_count = kmemcount;
|
|
(void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
|
|
|
|
/*
|
|
* Insert alternating sequence of type headers and type statistics.
|
|
*/
|
|
for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
|
|
mtip = (struct malloc_type_internal *)mtp->ks_handle;
|
|
|
|
/*
|
|
* Insert type header.
|
|
*/
|
|
bzero(&mth, sizeof(mth));
|
|
strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
|
|
(void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
|
|
|
|
/*
|
|
* Insert type statistics for each CPU.
|
|
*/
|
|
for (i = 0; i < MAXCPU; i++) {
|
|
(void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
|
|
sizeof(mtip->mti_stats[i]));
|
|
}
|
|
}
|
|
mtx_unlock(&malloc_mtx);
|
|
error = sbuf_finish(&sbuf);
|
|
sbuf_delete(&sbuf);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
|
|
0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
|
|
"Return malloc types");
|
|
|
|
SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
|
|
"Count of kernel malloc types");
|
|
|
|
void
|
|
malloc_type_list(malloc_type_list_func_t *func, void *arg)
|
|
{
|
|
struct malloc_type *mtp, **bufmtp;
|
|
int count, i;
|
|
size_t buflen;
|
|
|
|
mtx_lock(&malloc_mtx);
|
|
restart:
|
|
mtx_assert(&malloc_mtx, MA_OWNED);
|
|
count = kmemcount;
|
|
mtx_unlock(&malloc_mtx);
|
|
|
|
buflen = sizeof(struct malloc_type *) * count;
|
|
bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
|
|
|
|
mtx_lock(&malloc_mtx);
|
|
|
|
if (count < kmemcount) {
|
|
free(bufmtp, M_TEMP);
|
|
goto restart;
|
|
}
|
|
|
|
for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
|
|
bufmtp[i] = mtp;
|
|
|
|
mtx_unlock(&malloc_mtx);
|
|
|
|
for (i = 0; i < count; i++)
|
|
(func)(bufmtp[i], arg);
|
|
|
|
free(bufmtp, M_TEMP);
|
|
}
|
|
|
|
#ifdef DDB
|
|
DB_SHOW_COMMAND(malloc, db_show_malloc)
|
|
{
|
|
struct malloc_type_internal *mtip;
|
|
struct malloc_type *mtp;
|
|
uint64_t allocs, frees;
|
|
uint64_t alloced, freed;
|
|
int i;
|
|
|
|
db_printf("%18s %12s %12s %12s\n", "Type", "InUse", "MemUse",
|
|
"Requests");
|
|
for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
|
|
mtip = (struct malloc_type_internal *)mtp->ks_handle;
|
|
allocs = 0;
|
|
frees = 0;
|
|
alloced = 0;
|
|
freed = 0;
|
|
for (i = 0; i < MAXCPU; i++) {
|
|
allocs += mtip->mti_stats[i].mts_numallocs;
|
|
frees += mtip->mti_stats[i].mts_numfrees;
|
|
alloced += mtip->mti_stats[i].mts_memalloced;
|
|
freed += mtip->mti_stats[i].mts_memfreed;
|
|
}
|
|
db_printf("%18s %12ju %12juK %12ju\n",
|
|
mtp->ks_shortdesc, allocs - frees,
|
|
(alloced - freed + 1023) / 1024, allocs);
|
|
}
|
|
}
|
|
|
|
#if MALLOC_DEBUG_MAXZONES > 1
|
|
DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
|
|
{
|
|
struct malloc_type_internal *mtip;
|
|
struct malloc_type *mtp;
|
|
u_int subzone;
|
|
|
|
if (!have_addr) {
|
|
db_printf("Usage: show multizone_matches <malloc type/addr>\n");
|
|
return;
|
|
}
|
|
mtp = (void *)addr;
|
|
if (mtp->ks_magic != M_MAGIC) {
|
|
db_printf("Magic %lx does not match expected %x\n",
|
|
mtp->ks_magic, M_MAGIC);
|
|
return;
|
|
}
|
|
|
|
mtip = mtp->ks_handle;
|
|
subzone = mtip->mti_zone;
|
|
|
|
for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
|
|
mtip = mtp->ks_handle;
|
|
if (mtip->mti_zone != subzone)
|
|
continue;
|
|
db_printf("%s\n", mtp->ks_shortdesc);
|
|
}
|
|
}
|
|
#endif /* MALLOC_DEBUG_MAXZONES > 1 */
|
|
#endif /* DDB */
|
|
|
|
#ifdef MALLOC_PROFILE
|
|
|
|
static int
|
|
sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sbuf sbuf;
|
|
uint64_t count;
|
|
uint64_t waste;
|
|
uint64_t mem;
|
|
int error;
|
|
int rsize;
|
|
int size;
|
|
int i;
|
|
|
|
waste = 0;
|
|
mem = 0;
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
|
|
sbuf_printf(&sbuf,
|
|
"\n Size Requests Real Size\n");
|
|
for (i = 0; i < KMEM_ZSIZE; i++) {
|
|
size = i << KMEM_ZSHIFT;
|
|
rsize = kmemzones[kmemsize[i]].kz_size;
|
|
count = (long long unsigned)krequests[i];
|
|
|
|
sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
|
|
(unsigned long long)count, rsize);
|
|
|
|
if ((rsize * count) > (size * count))
|
|
waste += (rsize * count) - (size * count);
|
|
mem += (rsize * count);
|
|
}
|
|
sbuf_printf(&sbuf,
|
|
"\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
|
|
(unsigned long long)mem, (unsigned long long)waste);
|
|
error = sbuf_finish(&sbuf);
|
|
sbuf_delete(&sbuf);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
|
|
NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
|
|
#endif /* MALLOC_PROFILE */
|