mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-04 12:52:15 +00:00
2446e4f02c
This allocator uses a binary buddy system with a twist. First and foremost, this allocator is required to support the implementation of superpages. As a side effect, it enables a more robust implementation of contigmalloc(9). Moreover, this reimplementation of contigmalloc(9) eliminates the acquisition of Giant by contigmalloc(..., M_NOWAIT, ...). The twist is that this allocator tries to reduce the number of TLB misses incurred by accesses through a direct map to small, UMA-managed objects and page table pages. Roughly speaking, the physical pages that are allocated for such purposes are clustered together in the physical address space. The performance benefits vary. In the most extreme case, a uniprocessor kernel running on an Opteron, I measured an 18% reduction in system time during a buildworld. This allocator does not implement page coloring. The reason is that superpages have much the same effect. The contiguous physical memory allocation necessary for a superpage is inherently colored. Finally, the one caveat is that this allocator does not effectively support prezeroed pages. I hope this is temporary. On i386, this is a slight pessimization. However, on amd64, the beneficial effects of the direct-map optimization outweigh the ill effects. I speculate that this is true in general of machines with a direct map. Approved by: re
292 lines
8.1 KiB
C
292 lines
8.1 KiB
C
/*-
|
|
* Copyright (c) 1991 Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/linker_set.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/vnode.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/vm_phys.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
static int
|
|
vm_contig_launder_page(vm_page_t m)
|
|
{
|
|
vm_object_t object;
|
|
vm_page_t m_tmp;
|
|
struct vnode *vp;
|
|
struct mount *mp;
|
|
int vfslocked;
|
|
|
|
object = m->object;
|
|
if (!VM_OBJECT_TRYLOCK(object))
|
|
return (EAGAIN);
|
|
if (vm_page_sleep_if_busy(m, TRUE, "vpctw0")) {
|
|
VM_OBJECT_UNLOCK(object);
|
|
vm_page_lock_queues();
|
|
return (EBUSY);
|
|
}
|
|
vm_page_test_dirty(m);
|
|
if (m->dirty == 0 && m->hold_count == 0)
|
|
pmap_remove_all(m);
|
|
if (m->dirty) {
|
|
if ((object->flags & OBJ_DEAD) != 0) {
|
|
VM_OBJECT_UNLOCK(object);
|
|
return (EAGAIN);
|
|
}
|
|
if (object->type == OBJT_VNODE) {
|
|
vm_page_unlock_queues();
|
|
vp = object->handle;
|
|
vm_object_reference_locked(object);
|
|
VM_OBJECT_UNLOCK(object);
|
|
(void) vn_start_write(vp, &mp, V_WAIT);
|
|
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
|
|
VM_OBJECT_LOCK(object);
|
|
vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
|
|
VM_OBJECT_UNLOCK(object);
|
|
VOP_UNLOCK(vp, 0, curthread);
|
|
VFS_UNLOCK_GIANT(vfslocked);
|
|
vm_object_deallocate(object);
|
|
vn_finished_write(mp);
|
|
vm_page_lock_queues();
|
|
return (0);
|
|
} else if (object->type == OBJT_SWAP ||
|
|
object->type == OBJT_DEFAULT) {
|
|
m_tmp = m;
|
|
vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC);
|
|
VM_OBJECT_UNLOCK(object);
|
|
return (0);
|
|
}
|
|
} else if (m->hold_count == 0)
|
|
vm_page_cache(m);
|
|
VM_OBJECT_UNLOCK(object);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vm_contig_launder(int queue)
|
|
{
|
|
vm_page_t m, next;
|
|
int error;
|
|
|
|
for (m = TAILQ_FIRST(&vm_page_queues[queue].pl); m != NULL; m = next) {
|
|
next = TAILQ_NEXT(m, pageq);
|
|
|
|
/* Skip marker pages */
|
|
if ((m->flags & PG_MARKER) != 0)
|
|
continue;
|
|
|
|
KASSERT(VM_PAGE_INQUEUE2(m, queue),
|
|
("vm_contig_launder: page %p's queue is not %d", m, queue));
|
|
error = vm_contig_launder_page(m);
|
|
if (error == 0)
|
|
return (TRUE);
|
|
if (error == EBUSY)
|
|
return (FALSE);
|
|
}
|
|
return (FALSE);
|
|
}
|
|
|
|
static void
|
|
vm_page_release_contigl(vm_page_t m, vm_pindex_t count)
|
|
{
|
|
while (count--) {
|
|
vm_page_free_toq(m);
|
|
m++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vm_page_release_contig(vm_page_t m, vm_pindex_t count)
|
|
{
|
|
vm_page_lock_queues();
|
|
vm_page_release_contigl(m, count);
|
|
vm_page_unlock_queues();
|
|
}
|
|
|
|
static void *
|
|
contigmalloc2(vm_page_t m, vm_pindex_t npages, int flags)
|
|
{
|
|
vm_object_t object = kernel_object;
|
|
vm_map_t map = kernel_map;
|
|
vm_offset_t addr, tmp_addr;
|
|
vm_pindex_t i;
|
|
|
|
/*
|
|
* Allocate kernel VM, unfree and assign the physical pages to
|
|
* it and return kernel VM pointer.
|
|
*/
|
|
vm_map_lock(map);
|
|
if (vm_map_findspace(map, vm_map_min(map), npages << PAGE_SHIFT, &addr)
|
|
!= KERN_SUCCESS) {
|
|
vm_map_unlock(map);
|
|
return (NULL);
|
|
}
|
|
vm_object_reference(object);
|
|
vm_map_insert(map, object, addr - VM_MIN_KERNEL_ADDRESS,
|
|
addr, addr + (npages << PAGE_SHIFT), VM_PROT_ALL, VM_PROT_ALL, 0);
|
|
vm_map_unlock(map);
|
|
tmp_addr = addr;
|
|
VM_OBJECT_LOCK(object);
|
|
for (i = 0; i < npages; i++) {
|
|
vm_page_insert(&m[i], object,
|
|
OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
|
|
if ((flags & M_ZERO) && !(m[i].flags & PG_ZERO))
|
|
pmap_zero_page(&m[i]);
|
|
tmp_addr += PAGE_SIZE;
|
|
}
|
|
VM_OBJECT_UNLOCK(object);
|
|
vm_map_wire(map, addr, addr + (npages << PAGE_SHIFT),
|
|
VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
|
|
return ((void *)addr);
|
|
}
|
|
|
|
void *
|
|
contigmalloc(
|
|
unsigned long size, /* should be size_t here and for malloc() */
|
|
struct malloc_type *type,
|
|
int flags,
|
|
vm_paddr_t low,
|
|
vm_paddr_t high,
|
|
unsigned long alignment,
|
|
unsigned long boundary)
|
|
{
|
|
void * ret;
|
|
vm_object_t object;
|
|
vm_page_t m, m_next, pages;
|
|
unsigned long npgs;
|
|
int actl, actmax, inactl, inactmax, tries;
|
|
|
|
npgs = round_page(size) >> PAGE_SHIFT;
|
|
tries = 0;
|
|
retry:
|
|
pages = vm_phys_alloc_contig(npgs, low, high, alignment, boundary);
|
|
if (pages == NULL) {
|
|
if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
|
|
vm_page_lock_queues();
|
|
inactl = 0;
|
|
inactmax = tries < 1 ? 0 : cnt.v_inactive_count;
|
|
actl = 0;
|
|
actmax = tries < 2 ? 0 : cnt.v_active_count;
|
|
again:
|
|
if (inactl < inactmax &&
|
|
vm_contig_launder(PQ_INACTIVE)) {
|
|
inactl++;
|
|
goto again;
|
|
}
|
|
if (actl < actmax &&
|
|
vm_contig_launder(PQ_ACTIVE)) {
|
|
actl++;
|
|
goto again;
|
|
}
|
|
TAILQ_FOREACH_SAFE(m, &vm_page_queues[PQ_CACHE].pl,
|
|
pageq, m_next) {
|
|
if (m->hold_count == 0 &&
|
|
VM_OBJECT_TRYLOCK(object = m->object)) {
|
|
vm_page_free(m);
|
|
VM_OBJECT_UNLOCK(object);
|
|
}
|
|
}
|
|
vm_page_unlock_queues();
|
|
tries++;
|
|
goto retry;
|
|
}
|
|
ret = NULL;
|
|
} else {
|
|
ret = contigmalloc2(pages, npgs, flags);
|
|
if (ret == NULL)
|
|
vm_page_release_contig(pages, npgs);
|
|
}
|
|
malloc_type_allocated(type, ret == NULL ? 0 : npgs << PAGE_SHIFT);
|
|
return (ret);
|
|
}
|
|
|
|
void
|
|
contigfree(void *addr, unsigned long size, struct malloc_type *type)
|
|
{
|
|
vm_pindex_t npgs;
|
|
|
|
npgs = round_page(size) >> PAGE_SHIFT;
|
|
kmem_free(kernel_map, (vm_offset_t)addr, size);
|
|
malloc_type_freed(type, npgs << PAGE_SHIFT);
|
|
}
|