1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-27 16:39:08 +00:00
freebsd/sys/kern/kern_poll.c
Jeff Roberson 29bcc4514f - Add a flags parameter to mi_switch. The value of flags may be SW_VOL or
SW_INVOL.  Assert that one of these is set in mi_switch() and propery
   adjust the rusage statistics.  This is to simplify the large number of
   users of this interface which were previously all required to adjust the
   proper counter prior to calling mi_switch().  This also facilitates more
   switch and locking optimizations.
 - Change all callers of mi_switch() to pass the appropriate paramter and
   remove direct references to the process statistics.
2004-01-25 03:54:52 +00:00

523 lines
16 KiB
C

/*-
* Copyright (c) 2001-2002 Luigi Rizzo
*
* Supported by: the Xorp Project (www.xorp.org)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/socket.h> /* needed by net/if.h */
#include <sys/sysctl.h>
#include <net/if.h> /* for IFF_* flags */
#include <net/netisr.h> /* for NETISR_POLL */
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/kthread.h>
#ifdef SMP
#ifndef COMPILING_LINT
#error DEVICE_POLLING is not compatible with SMP
#endif
#endif
static void netisr_poll(void); /* the two netisr handlers */
static void netisr_pollmore(void);
void hardclock_device_poll(void); /* hook from hardclock */
void ether_poll(int); /* polling while in trap */
/*
* Polling support for [network] device drivers.
*
* Drivers which support this feature try to register with the
* polling code.
*
* If registration is successful, the driver must disable interrupts,
* and further I/O is performed through the handler, which is invoked
* (at least once per clock tick) with 3 arguments: the "arg" passed at
* register time (a struct ifnet pointer), a command, and a "count" limit.
*
* The command can be one of the following:
* POLL_ONLY: quick move of "count" packets from input/output queues.
* POLL_AND_CHECK_STATUS: as above, plus check status registers or do
* other more expensive operations. This command is issued periodically
* but less frequently than POLL_ONLY.
* POLL_DEREGISTER: deregister and return to interrupt mode.
*
* The first two commands are only issued if the interface is marked as
* 'IFF_UP and IFF_RUNNING', the last one only if IFF_RUNNING is set.
*
* The count limit specifies how much work the handler can do during the
* call -- typically this is the number of packets to be received, or
* transmitted, etc. (drivers are free to interpret this number, as long
* as the max time spent in the function grows roughly linearly with the
* count).
*
* Deregistration can be requested by the driver itself (typically in the
* *_stop() routine), or by the polling code, by invoking the handler.
*
* Polling can be globally enabled or disabled with the sysctl variable
* kern.polling.enable (default is 0, disabled)
*
* A second variable controls the sharing of CPU between polling/kernel
* network processing, and other activities (typically userlevel tasks):
* kern.polling.user_frac (between 0 and 100, default 50) sets the share
* of CPU allocated to user tasks. CPU is allocated proportionally to the
* shares, by dynamically adjusting the "count" (poll_burst).
*
* Other parameters can should be left to their default values.
* The following constraints hold
*
* 1 <= poll_each_burst <= poll_burst <= poll_burst_max
* 0 <= poll_in_trap <= poll_each_burst
* MIN_POLL_BURST_MAX <= poll_burst_max <= MAX_POLL_BURST_MAX
*/
#define MIN_POLL_BURST_MAX 10
#define MAX_POLL_BURST_MAX 1000
SYSCTL_NODE(_kern, OID_AUTO, polling, CTLFLAG_RW, 0,
"Device polling parameters");
static u_int32_t poll_burst = 5;
SYSCTL_UINT(_kern_polling, OID_AUTO, burst, CTLFLAG_RW,
&poll_burst, 0, "Current polling burst size");
static u_int32_t poll_each_burst = 5;
SYSCTL_UINT(_kern_polling, OID_AUTO, each_burst, CTLFLAG_RW,
&poll_each_burst, 0, "Max size of each burst");
static u_int32_t poll_burst_max = 150; /* good for 100Mbit net and HZ=1000 */
SYSCTL_UINT(_kern_polling, OID_AUTO, burst_max, CTLFLAG_RW,
&poll_burst_max, 0, "Max Polling burst size");
static u_int32_t poll_in_idle_loop=0; /* do we poll in idle loop ? */
SYSCTL_UINT(_kern_polling, OID_AUTO, idle_poll, CTLFLAG_RW,
&poll_in_idle_loop, 0, "Enable device polling in idle loop");
u_int32_t poll_in_trap; /* used in trap.c */
SYSCTL_UINT(_kern_polling, OID_AUTO, poll_in_trap, CTLFLAG_RW,
&poll_in_trap, 0, "Poll burst size during a trap");
static u_int32_t user_frac = 50;
SYSCTL_UINT(_kern_polling, OID_AUTO, user_frac, CTLFLAG_RW,
&user_frac, 0, "Desired user fraction of cpu time");
static u_int32_t reg_frac = 20 ;
SYSCTL_UINT(_kern_polling, OID_AUTO, reg_frac, CTLFLAG_RW,
&reg_frac, 0, "Every this many cycles poll register");
static u_int32_t short_ticks;
SYSCTL_UINT(_kern_polling, OID_AUTO, short_ticks, CTLFLAG_RW,
&short_ticks, 0, "Hardclock ticks shorter than they should be");
static u_int32_t lost_polls;
SYSCTL_UINT(_kern_polling, OID_AUTO, lost_polls, CTLFLAG_RW,
&lost_polls, 0, "How many times we would have lost a poll tick");
static u_int32_t pending_polls;
SYSCTL_UINT(_kern_polling, OID_AUTO, pending_polls, CTLFLAG_RW,
&pending_polls, 0, "Do we need to poll again");
static int residual_burst = 0;
SYSCTL_INT(_kern_polling, OID_AUTO, residual_burst, CTLFLAG_RW,
&residual_burst, 0, "# of residual cycles in burst");
static u_int32_t poll_handlers; /* next free entry in pr[]. */
SYSCTL_UINT(_kern_polling, OID_AUTO, handlers, CTLFLAG_RD,
&poll_handlers, 0, "Number of registered poll handlers");
static int polling = 0; /* global polling enable */
SYSCTL_UINT(_kern_polling, OID_AUTO, enable, CTLFLAG_RW,
&polling, 0, "Polling enabled");
static u_int32_t phase;
SYSCTL_UINT(_kern_polling, OID_AUTO, phase, CTLFLAG_RW,
&phase, 0, "Polling phase");
static u_int32_t suspect;
SYSCTL_UINT(_kern_polling, OID_AUTO, suspect, CTLFLAG_RW,
&suspect, 0, "suspect event");
static u_int32_t stalled;
SYSCTL_UINT(_kern_polling, OID_AUTO, stalled, CTLFLAG_RW,
&stalled, 0, "potential stalls");
static u_int32_t idlepoll_sleeping; /* idlepoll is sleeping */
SYSCTL_UINT(_kern_polling, OID_AUTO, idlepoll_sleeping, CTLFLAG_RD,
&idlepoll_sleeping, 0, "idlepoll is sleeping");
#define POLL_LIST_LEN 128
struct pollrec {
poll_handler_t *handler;
struct ifnet *ifp;
};
static struct pollrec pr[POLL_LIST_LEN];
static void
init_device_poll(void)
{
netisr_register(NETISR_POLL, (netisr_t *)netisr_poll, NULL, 0);
netisr_register(NETISR_POLLMORE, (netisr_t *)netisr_pollmore, NULL, 0);
}
SYSINIT(device_poll, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, init_device_poll, NULL)
/*
* Hook from hardclock. Tries to schedule a netisr, but keeps track
* of lost ticks due to the previous handler taking too long.
* Normally, this should not happen, because polling handler should
* run for a short time. However, in some cases (e.g. when there are
* changes in link status etc.) the drivers take a very long time
* (even in the order of milliseconds) to reset and reconfigure the
* device, causing apparent lost polls.
*
* The first part of the code is just for debugging purposes, and tries
* to count how often hardclock ticks are shorter than they should,
* meaning either stray interrupts or delayed events.
*/
void
hardclock_device_poll(void)
{
static struct timeval prev_t, t;
int delta;
if (poll_handlers == 0)
return;
microuptime(&t);
delta = (t.tv_usec - prev_t.tv_usec) +
(t.tv_sec - prev_t.tv_sec)*1000000;
if (delta * hz < 500000)
short_ticks++;
else
prev_t = t;
if (pending_polls > 100) {
/*
* Too much, assume it has stalled (not always true
* see comment above).
*/
stalled++;
pending_polls = 0;
phase = 0;
}
if (phase <= 2) {
if (phase != 0)
suspect++;
phase = 1;
schednetisrbits(1 << NETISR_POLL | 1 << NETISR_POLLMORE);
phase = 2;
}
if (pending_polls++ > 0)
lost_polls++;
}
/*
* ether_poll is called from the idle loop or from the trap handler.
*/
void
ether_poll(int count)
{
int i;
mtx_lock(&Giant);
if (count > poll_each_burst)
count = poll_each_burst;
for (i = 0 ; i < poll_handlers ; i++)
if (pr[i].handler && (IFF_UP|IFF_RUNNING) ==
(pr[i].ifp->if_flags & (IFF_UP|IFF_RUNNING)) )
pr[i].handler(pr[i].ifp, 0, count); /* quick check */
mtx_unlock(&Giant);
}
/*
* netisr_pollmore is called after other netisr's, possibly scheduling
* another NETISR_POLL call, or adapting the burst size for the next cycle.
*
* It is very bad to fetch large bursts of packets from a single card at once,
* because the burst could take a long time to be completely processed, or
* could saturate the intermediate queue (ipintrq or similar) leading to
* losses or unfairness. To reduce the problem, and also to account better for
* time spent in network-related processing, we split the burst in smaller
* chunks of fixed size, giving control to the other netisr's between chunks.
* This helps in improving the fairness, reducing livelock (because we
* emulate more closely the "process to completion" that we have with
* fastforwarding) and accounting for the work performed in low level
* handling and forwarding.
*/
static struct timeval poll_start_t;
void
netisr_pollmore()
{
struct timeval t;
int kern_load;
/* XXX run at splhigh() or equivalent */
phase = 5;
if (residual_burst > 0) {
schednetisrbits(1 << NETISR_POLL | 1 << NETISR_POLLMORE);
/* will run immediately on return, followed by netisrs */
return;
}
/* here we can account time spent in netisr's in this tick */
microuptime(&t);
kern_load = (t.tv_usec - poll_start_t.tv_usec) +
(t.tv_sec - poll_start_t.tv_sec)*1000000; /* us */
kern_load = (kern_load * hz) / 10000; /* 0..100 */
if (kern_load > (100 - user_frac)) { /* try decrease ticks */
if (poll_burst > 1)
poll_burst--;
} else {
if (poll_burst < poll_burst_max)
poll_burst++;
}
pending_polls--;
if (pending_polls == 0) /* we are done */
phase = 0;
else {
/*
* Last cycle was long and caused us to miss one or more
* hardclock ticks. Restart processing again, but slightly
* reduce the burst size to prevent that this happens again.
*/
poll_burst -= (poll_burst / 8);
if (poll_burst < 1)
poll_burst = 1;
schednetisrbits(1 << NETISR_POLL | 1 << NETISR_POLLMORE);
phase = 6;
}
}
/*
* netisr_poll is scheduled by schednetisr when appropriate, typically once
* per tick. It is called at splnet() so first thing to do is to upgrade to
* splimp(), and call all registered handlers.
*/
static void
netisr_poll(void)
{
static int reg_frac_count;
int i, cycles;
enum poll_cmd arg = POLL_ONLY;
mtx_lock(&Giant);
phase = 3;
if (residual_burst == 0) { /* first call in this tick */
microuptime(&poll_start_t);
/*
* Check that paremeters are consistent with runtime
* variables. Some of these tests could be done at sysctl
* time, but the savings would be very limited because we
* still have to check against reg_frac_count and
* poll_each_burst. So, instead of writing separate sysctl
* handlers, we do all here.
*/
if (reg_frac > hz)
reg_frac = hz;
else if (reg_frac < 1)
reg_frac = 1;
if (reg_frac_count > reg_frac)
reg_frac_count = reg_frac - 1;
if (reg_frac_count-- == 0) {
arg = POLL_AND_CHECK_STATUS;
reg_frac_count = reg_frac - 1;
}
if (poll_burst_max < MIN_POLL_BURST_MAX)
poll_burst_max = MIN_POLL_BURST_MAX;
else if (poll_burst_max > MAX_POLL_BURST_MAX)
poll_burst_max = MAX_POLL_BURST_MAX;
if (poll_each_burst < 1)
poll_each_burst = 1;
else if (poll_each_burst > poll_burst_max)
poll_each_burst = poll_burst_max;
residual_burst = poll_burst;
}
cycles = (residual_burst < poll_each_burst) ?
residual_burst : poll_each_burst;
residual_burst -= cycles;
if (polling) {
for (i = 0 ; i < poll_handlers ; i++)
if (pr[i].handler && (IFF_UP|IFF_RUNNING) ==
(pr[i].ifp->if_flags & (IFF_UP|IFF_RUNNING)) )
pr[i].handler(pr[i].ifp, arg, cycles);
} else { /* unregister */
for (i = 0 ; i < poll_handlers ; i++) {
if (pr[i].handler &&
pr[i].ifp->if_flags & IFF_RUNNING) {
pr[i].ifp->if_flags &= ~IFF_POLLING;
pr[i].handler(pr[i].ifp, POLL_DEREGISTER, 1);
}
pr[i].handler=NULL;
}
residual_burst = 0;
poll_handlers = 0;
}
/* on -stable, schednetisr(NETISR_POLLMORE); */
phase = 4;
mtx_unlock(&Giant);
}
/*
* Try to register routine for polling. Returns 1 if successful
* (and polling should be enabled), 0 otherwise.
* A device is not supposed to register itself multiple times.
*
* This is called from within the *_intr() functions, so we do not need
* further locking.
*/
int
ether_poll_register(poll_handler_t *h, struct ifnet *ifp)
{
int s;
if (polling == 0) /* polling disabled, cannot register */
return 0;
if (h == NULL || ifp == NULL) /* bad arguments */
return 0;
if ( !(ifp->if_flags & IFF_UP) ) /* must be up */
return 0;
if (ifp->if_flags & IFF_POLLING) /* already polling */
return 0;
s = splhigh();
if (poll_handlers >= POLL_LIST_LEN) {
/*
* List full, cannot register more entries.
* This should never happen; if it does, it is probably a
* broken driver trying to register multiple times. Checking
* this at runtime is expensive, and won't solve the problem
* anyways, so just report a few times and then give up.
*/
static int verbose = 10 ;
splx(s);
if (verbose >0) {
printf("poll handlers list full, "
"maybe a broken driver ?\n");
verbose--;
}
return 0; /* no polling for you */
}
pr[poll_handlers].handler = h;
pr[poll_handlers].ifp = ifp;
poll_handlers++;
ifp->if_flags |= IFF_POLLING;
splx(s);
if (idlepoll_sleeping)
wakeup(&idlepoll_sleeping);
return 1; /* polling enabled in next call */
}
/*
* Remove interface from the polling list. Normally called by *_stop().
* It is not an error to call it with IFF_POLLING clear, the call is
* sufficiently rare to be preferable to save the space for the extra
* test in each driver in exchange of one additional function call.
*/
int
ether_poll_deregister(struct ifnet *ifp)
{
int i;
mtx_lock(&Giant);
if ( !ifp || !(ifp->if_flags & IFF_POLLING) ) {
mtx_unlock(&Giant);
return 0;
}
for (i = 0 ; i < poll_handlers ; i++)
if (pr[i].ifp == ifp) /* found it */
break;
ifp->if_flags &= ~IFF_POLLING; /* found or not... */
if (i == poll_handlers) {
mtx_unlock(&Giant);
printf("ether_poll_deregister: ifp not found!!!\n");
return 0;
}
poll_handlers--;
if (i < poll_handlers) { /* Last entry replaces this one. */
pr[i].handler = pr[poll_handlers].handler;
pr[i].ifp = pr[poll_handlers].ifp;
}
mtx_unlock(&Giant);
return 1;
}
static void
poll_idle(void)
{
struct thread *td = curthread;
struct rtprio rtp;
int pri;
rtp.prio = RTP_PRIO_MAX; /* lowest priority */
rtp.type = RTP_PRIO_IDLE;
mtx_lock_spin(&sched_lock);
rtp_to_pri(&rtp, td->td_ksegrp);
pri = td->td_priority;
mtx_unlock_spin(&sched_lock);
for (;;) {
if (poll_in_idle_loop && poll_handlers > 0) {
idlepoll_sleeping = 0;
mtx_lock(&Giant);
ether_poll(poll_each_burst);
mtx_unlock(&Giant);
mtx_assert(&Giant, MA_NOTOWNED);
mtx_lock_spin(&sched_lock);
mi_switch(SW_VOL);
mtx_unlock_spin(&sched_lock);
} else {
idlepoll_sleeping = 1;
tsleep(&idlepoll_sleeping, pri, "pollid", hz * 3);
}
}
}
static struct proc *idlepoll;
static struct kproc_desc idlepoll_kp = {
"idlepoll",
poll_idle,
&idlepoll
};
SYSINIT(idlepoll, SI_SUB_KTHREAD_VM, SI_ORDER_ANY, kproc_start, &idlepoll_kp)