1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-14 10:09:48 +00:00
freebsd/sys/dev/dpt/dpt_control.c
Archie Cobbs 2127f26023 Examine all occurrences of sprintf(), strcat(), and str[n]cpy()
for possible buffer overflow problems. Replaced most sprintf()'s
with snprintf(); for others cases, added terminating NUL bytes where
appropriate, replaced constants like "16" with sizeof(), etc.

These changes include several bug fixes, but most changes are for
maintainability's sake. Any instance where it wasn't "immediately
obvious" that a buffer overflow could not occur was made safer.

Reviewed by:	Bruce Evans <bde@zeta.org.au>
Reviewed by:	Matthew Dillon <dillon@apollo.backplane.com>
Reviewed by:	Mike Spengler <mks@networkcs.com>
1998-12-04 22:54:57 +00:00

855 lines
23 KiB
C

/**
* Copyright (c) 1997 by Simon Shapiro
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/**
* dpt_control.c: Control Functions and /dev entry points for /dev/dpt*
*
* Caveat Emptor! This is work in progress. The interfaces and
* functionality of this code will change (possibly radically) in the
* future.
*/
#ident "$Id: dpt_control.c,v 1.9 1998/09/15 08:33:31 gibbs Exp $"
#include "opt_dpt.h"
#include <i386/include/cputypes.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/buf.h>
#include <sys/uio.h>
#include <sys/conf.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <scsi/scsiconf.h>
#include <dev/dpt/dpt.h>
#define INLINE __inline
extern char osrelease[];
static dpt_sysinfo_t dpt_sysinfo;
/* Entry points and other prototypes */
static vm_offset_t dpt_physmap(u_int32_t paddr, vm_size_t size);
static void dpt_unphysmap(u_int8_t * vaddr, vm_size_t size);
static void dpt_get_sysinfo(void);
static int dpt_open(dev_t dev, int flags, int fmt, struct proc * p);
static int dpt_close(dev_t dev, int flags, int fmt, struct proc * p);
static int dpt_write(dev_t dev, struct uio * uio, int ioflag);
static int dpt_read(dev_t dev, struct uio * uio, int ioflag);
static int dpt_ioctl(dev_t dev, u_long cmd, caddr_t cmdarg, int flags, struct proc * p);
/* This has to be modified as the processor and CPU are not known yet */
static dpt_sig_t dpt_sig = {
'd', 'P', 't', 'S', 'i', 'G',
SIG_VERSION, PROC_INTEL, PROC_386,
FT_HBADRVR, FTF_PROTECTED,
OEM_DPT, OS_FREEBSD,
CAP_PASS | CAP_OVERLAP | CAP_RAID0 | CAP_RAID1 | CAP_RAID5 | CAP_ASPI,
DEV_ALL, ADF_SC4_PCI | ADF_SC3_PCI, 0, 0,
DPT_RELEASE, DPT_VERSION, DPT_PATCH,
DPT_MONTH, DPT_DAY, DPT_YEAR,
"DPT FreeBSD Driver (c) 1997 Simon Shapiro"
};
#define CDEV_MAJOR DPT_CDEV_MAJOR
/* Normally, this is a static structure. But we need it in pci/dpt_pci.c */
struct cdevsw dpt_cdevsw = {
dpt_open, dpt_close, dpt_read, dpt_write,
dpt_ioctl, nostop, nullreset, nodevtotty,
seltrue, nommap, NULL, "dpt",
NULL, -1};
static struct buf *dpt_inbuf[DPT_MAX_ADAPTERS];
static char dpt_rw_command[DPT_MAX_ADAPTERS][DPT_RW_CMD_LEN + 1];
/*
* Given a minor device number,
* return the pointer to its softc structure
*/
dpt_softc_t *
dpt_minor2softc(int minor_no)
{
dpt_softc_t *dpt;
if (dpt_minor2unit(minor_no & ~SCSI_CONTROL_MASK) == -1)
return (NULL);
for (dpt = TAILQ_FIRST(&dpt_softc_list);
(dpt != NULL) && (dpt->unit != (minor_no & ~SCSI_CONTROL_MASK));
dpt = TAILQ_NEXT(dpt, links));
return (dpt);
}
/**
* Map a physical address to virtual one.
* This is a first cut, experimental thing
*
* Paddr is the physical address to map
* size is the size of the region, in bytes.
* Because of alignment problems, we actually round up the size requested to
* the next page count.
*/
static vm_offset_t
dpt_physmap(u_int32_t req_paddr, vm_size_t req_size)
{
vm_offset_t va;
int ndx;
vm_size_t size;
u_int32_t paddr;
u_int32_t offset;
size = (req_size / PAGE_SIZE + 1) * PAGE_SIZE;
paddr = req_paddr & 0xfffff000;
offset = req_paddr - paddr;
va = kmem_alloc_pageable(kernel_map, size);
if (va == (vm_offset_t) 0)
return (va);
for (ndx = 0; ndx < size; ndx += PAGE_SIZE) {
pmap_kenter(va + ndx, paddr + ndx);
invltlb();
}
return (va + offset);
}
/*
* Release virtual space allocated by physmap We ASSUME that the correct
* srart address and the correct LENGTH are given.
*
* Disaster will follow if these assumptions are false!
*/
static void
dpt_unphysmap(u_int8_t * vaddr, vm_size_t size)
{
int ndx;
for (ndx = 0; ndx < size; ndx += PAGE_SIZE) {
pmap_kremove((vm_offset_t) vaddr + ndx);
}
kmem_free(kernel_map, (vm_offset_t) vaddr, size);
}
/**
* Collect interesting system information
* The following is one of the worst hacks I have ever allowed my
* name to be associated with.
* There MUST be a system structure that provides this data.
*/
static void
dpt_get_sysinfo(void)
{
int i;
int j;
int ospl;
char *addr;
bzero(&dpt_sysinfo, sizeof(dpt_sysinfo_t));
/**
* This is really silly, but we better run this in splhigh as we
* have no clue what we bump into.
* Let's hope anyone else who does this sort of things protects them
* with splhigh too.
*/
ospl = splhigh();
switch (cpu_class) {
case CPUCLASS_386:
dpt_sig.Processor = dpt_sysinfo.processorType = PROC_386;
break;
case CPUCLASS_486:
dpt_sig.Processor = dpt_sysinfo.processorType = PROC_486;
break;
case CPUCLASS_586:
dpt_sig.Processor = dpt_sysinfo.processorType = PROC_PENTIUM;
break;
case CPUCLASS_686:
dpt_sig.Processor = dpt_sysinfo.processorType = PROC_P6;
break;
default:
dpt_sig.Processor = dpt_sysinfo.flags &= ~SI_ProcessorValid;
break;
}
/* Get The First Drive Type From CMOS */
outb(0x70, 0x12);
i = inb(0x71);
j = i >> 4;
if (i == 0x0f) {
outb(0x70, 0x19);
j = inb(0x71);
}
dpt_sysinfo.drive0CMOS = j;
/* Get The Second Drive Type From CMOS */
j = i & 0x0f;
if (i == 0x0f) {
outb(0x70, 0x1a);
j = inb(0x71);
}
dpt_sysinfo.drive1CMOS = j;
/* Get The Number Of Drives From The Bios Data Area */
if ((addr = (char *) dpt_physmap(0x0475, 1024)) == NULL) {
printf("DPT: Cannot map BIOS address 0x0475. No sysinfo... :-(\n");
return;
}
dpt_sysinfo.numDrives = *addr;
dpt_unphysmap(addr, 1024);
/* Get the processor fields from the SIG structure, and set the flags */
dpt_sysinfo.processorFamily = dpt_sig.ProcessorFamily;
dpt_sysinfo.flags = SI_CMOS_Valid | SI_NumDrivesValid;
/* Go out and look for SmartROM */
for (i = 0; i < 3; ++i) {
switch (i) {
case 0:
addr = (char *) dpt_physmap(0xC8000, 1024);
case 1:
addr = (char *) dpt_physmap(0xD8000, 1024);
default:
addr = (char *) dpt_physmap(0xDC000, 1024);
}
if (addr == NULL)
continue;
if (*((u_int16_t *) addr) == 0xaa55) {
if ((*((u_int32_t *) (addr + 6)) == 0x00202053)
&& (*((u_int32_t *) (addr + 10)) == 0x00545044)) {
break;
}
}
dpt_unphysmap(addr, 1024);
addr = NULL;
}
/**
* If i < 3, we founday it so set up a pointer to the starting
* version digit by searching for it.
*/
if (addr != NULL) {
addr += 0x15;
for (i = 0; i < 64; ++i)
if ((addr[i] == ' ') && (addr[i + 1] == 'v'))
break;
if (i < 64) {
addr += (i + 4);
} else {
dpt_unphysmap(addr, 1024);
addr = NULL;
}
}
/* If all is well, set up the SmartROM version fields */
if (addr != NULL) {
dpt_sysinfo.smartROMMajorVersion = *addr - '0'; /* Assumes ASCII */
dpt_sysinfo.smartROMMinorVersion = *(addr + 2);
dpt_sysinfo.smartROMRevision = *(addr + 3);
dpt_sysinfo.flags |= SI_SmartROMverValid;
} else {
dpt_sysinfo.flags |= SI_NO_SmartROM;
}
/* Get the conventional memory size from CMOS */
outb(0x70, 0x16);
j = inb(0x71);
j <<= 8;
outb(0x70, 0x15);
j |= inb(0x71);
dpt_sysinfo.conventionalMemSize = j;
/**
* Get the extended memory found at power on from CMOS
*/
outb(0x70, 0x31);
j = inb(0x71);
j <<= 8;
outb(0x70, 0x30);
j |= inb(0x71);
dpt_sysinfo.extendedMemSize = j;
dpt_sysinfo.flags |= SI_MemorySizeValid;
/* If there is 1 or 2 drives found, set up the drive parameters */
if (dpt_sysinfo.numDrives > 0) {
/* Get the pointer from int 41 for the first drive parameters */
addr = (char *) dpt_physmap(0x0104, 1024);
if (addr != NULL) {
j = *((ushort *) (addr + 2));
j *= 16;
j += *((ushort *) (addr));
dpt_unphysmap(addr, 1024);
addr = (char *) dpt_physmap(j, 1024);
if (addr != NULL) {
dpt_sysinfo.drives[0].cylinders = *((ushort *) addr);
dpt_sysinfo.drives[0].heads = *(addr + 2);
dpt_sysinfo.drives[0].sectors = *(addr + 14);
dpt_unphysmap(addr, 1024);
}
}
if (dpt_sysinfo.numDrives > 1) {
/*
* Get the pointer from Int 46 for the second drive
* parameters
*/
addr = (char *) dpt_physmap(0x01118, 1024);
j = *((ushort *) (addr + 2));
j *= 16;
j += *((ushort *) (addr));
dpt_unphysmap(addr, 1024);
addr = (char *) dpt_physmap(j, 1024);
if (addr != NULL) {
dpt_sysinfo.drives[1].cylinders = *((ushort *) addr);
dpt_sysinfo.drives[1].heads = *(addr + 2);
dpt_sysinfo.drives[1].sectors = *(addr + 14);
dpt_unphysmap(addr, 1024);
}
}
dpt_sysinfo.flags |= SI_DriveParamsValid;
}
splx(ospl);
/* Get the processor information */
dpt_sysinfo.flags |= SI_ProcessorValid;
/* Get the bus I/O bus information */
dpt_sysinfo.flags |= SI_BusTypeValid;
dpt_sysinfo.busType = HBA_BUS_PCI;
/* XXX Use _FreeBSD_Version_ */
dpt_sysinfo.osType = OS_FREEBSD;
dpt_sysinfo.osMajorVersion = osrelease[0] - '0';
if (osrelease[1] == '.')
dpt_sysinfo.osMinorVersion = osrelease[2] - '0';
else
dpt_sysinfo.osMinorVersion = 0;
if (osrelease[3] == '.')
dpt_sysinfo.osRevision = osrelease[4] - '0';
else
dpt_sysinfo.osMinorVersion = 0;
if (osrelease[5] == '.')
dpt_sysinfo.osSubRevision = osrelease[6] - '0';
else
dpt_sysinfo.osMinorVersion = 0;
dpt_sysinfo.flags |= SI_OSversionValid;
}
static int
dpt_open(dev_t dev, int flags, int fmt, struct proc * p)
{
int minor_no;
int ospl;
dpt_softc_t *dpt;
minor_no = minor(dev);
if (dpt_minor2unit(minor_no) == -1)
return (ENXIO);
else
dpt = dpt_minor2softc(minor_no);
if (dpt == NULL)
return (ENXIO);
ospl = splbio();
if (dpt->state & DPT_HA_CONTROL_ACTIVE) {
splx(ospl);
return (EBUSY);
} else {
if ((dpt_inbuf[minor_no & ~SCSI_CONTROL_MASK] = geteblk(PAGE_SIZE))
== NULL) {
#ifdef DPT_DEBUG_CONTROL
printf("dpt%d: Failed to obtain an I/O buffer\n",
minor_no & ~SCSI_CONTROL_MASK);
#endif
return (EINVAL);
}
}
dpt->state |= DPT_HA_CONTROL_ACTIVE;
splx(ospl);
return (0);
}
static int
dpt_close(dev_t dev, int flags, int fmt, struct proc * p)
{
int minor_no;
dpt_softc_t *dpt;
minor_no = minor(dev);
dpt = dpt_minor2softc(minor_no);
if ((dpt_minor2unit(minor_no) == -1) || (dpt == NULL))
return (ENXIO);
else {
brelse(dpt_inbuf[minor_no & ~SCSI_CONTROL_MASK]);
dpt->state &= ~DPT_HA_CONTROL_ACTIVE;
return (0);
}
}
static int
dpt_write(dev_t dev, struct uio * uio, int ioflag)
{
int minor_no;
int unit;
int error;
minor_no = minor(dev);
if (minor_no & SCSI_CONTROL_MASK) {
#ifdef DPT_DEBUG_CONTROL
printf("dpt%d: I/O attempted to control channel (%x)\n",
dpt_minor2unit(minor_no), minor_no);
#endif
return (ENXIO);
}
unit = dpt_minor2unit(minor_no);
if (unit == -1) {
return (ENXIO);
} else if (uio->uio_resid > DPT_RW_CMD_LEN) {
return (E2BIG);
} else {
char *cp;
int length;
cp = dpt_inbuf[minor_no]->b_data;
length = uio->uio_resid; /* uiomove will change it! */
if ((error = uiomove(cp, length, uio) != 0)) {
#ifdef DPT_DEBUG_CONTROL
printf("dpt%d: uiomove(%x, %d, %x) failed (%d)\n",
minor_no, cp, length, uio, error);
#endif
return (error);
} else {
cp[length] = '\0';
/* A real kludge, to allow plain echo(1) to work */
if (cp[length - 1] == '\n')
cp[length - 1] = '\0';
strncpy(dpt_rw_command[unit], cp, DPT_RW_CMD_LEN);
#ifdef DPT_DEBUG_CONTROL
/**
* For lack of anything better to do;
* For now, dump the data so we can look at it and rejoice
*/
printf("dpt%d: Command \"%s\" arrived\n",
unit, dpt_rw_command[unit]);
#endif
}
}
return (error);
}
static int
dpt_read(dev_t dev, struct uio * uio, int ioflag)
{
dpt_softc_t *dpt;
int error;
int minor_no;
int ospl;
minor_no = minor(dev);
error = 0;
#ifdef DPT_DEBUG_CONTROL
printf("dpt%d: read, count = %d, dev = %08x\n",
minor_no, uio->uio_resid, dev);
#endif
if (minor_no & SCSI_CONTROL_MASK) {
#ifdef DPT_DEBUG_CONTROL
printf("dpt%d: I/O attempted to control channel (%x)\n",
dpt_minor2unit(minor_no), minor_no);
#endif
return (ENXIO);
}
if (dpt_minor2unit(minor_no) == -1) {
return (ENXIO);
}
/*
* else if ( uio->uio_resid > PAGE_SIZE ) { return(E2BIG); }
*/
else {
char *work_buffer;
char *wbp;
char *command;
int work_size;
int ndx;
int x;
if ((dpt = dpt_minor2softc(minor_no)) == NULL)
return (ENXIO);
work_buffer = (u_int8_t *) malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
wbp = work_buffer;
work_size = 0;
ospl = splbio();
command = dpt_rw_command[dpt->unit];
if (strcmp(command, DPT_RW_CMD_DUMP_SOFTC) == 0) {
x = sprintf(wbp, "dpt%d:%s:%s:%s:%s:%x\n",
dpt->unit,
dpt->board_data.vendor,
dpt->board_data.modelNum,
dpt->board_data.firmware,
dpt->board_data.protocol,
dpt->EATA_revision);
work_size += x;
wbp += x;
} else if (strcmp(command, DPT_RW_CMD_DUMP_SYSINFO) == 0) {
x = sprintf(wbp, "dpt%d:%d:%d:%d:%d:%d:%d:%d:%d:%s:"
"%d:%d:%d:%d:%d:%d:%d:%d\n",
dpt->unit,
dpt_sysinfo.drive0CMOS,
dpt_sysinfo.drive1CMOS,
dpt_sysinfo.numDrives,
dpt_sysinfo.processorFamily,
dpt_sysinfo.processorType,
dpt_sysinfo.smartROMMajorVersion,
dpt_sysinfo.smartROMMinorVersion,
dpt_sysinfo.smartROMRevision,
i2bin(dpt_sysinfo.flags,
sizeof(dpt->queue_status) * 8),
dpt_sysinfo.conventionalMemSize,
dpt_sysinfo.extendedMemSize,
dpt_sysinfo.osType, dpt_sysinfo.osMajorVersion,
dpt_sysinfo.osMinorVersion, dpt_sysinfo.osRevision,
dpt_sysinfo.osSubRevision, dpt_sysinfo.busType);
work_size += x;
wbp += x;
for (ndx = 0; ndx < 16; ndx++) {
if (dpt_sysinfo.drives[ndx].cylinders != 0) {
x = sprintf(wbp, "dpt%d:d%dc%dh%ds%d\n",
dpt->unit,
ndx,
dpt_sysinfo.drives[ndx].cylinders,
dpt_sysinfo.drives[ndx].heads,
dpt_sysinfo.drives[ndx].sectors);
work_size += x;
wbp += x;
}
}
} else if (strcmp(command, DPT_RW_CMD_DUMP_METRICS) == 0) {
x = sprintf(wbp,
"dpt%d: No metrics available.\n"
"Run the dpt_dm command, or use the\n"
"DPT_IOCTL_INTERNAL_METRICS ioctl system call\n",
dpt->unit);
work_size += x;
wbp += x;
} else if (strcmp(command, DPT_RW_CMD_CLEAR_METRICS) == 0) {
#ifdef DPT_MEASURE_PERFORMANCE
dpt_reset_performance(dpt);
#endif /* DPT_MEASURE_PERFORMANCE */
x = sprintf(wbp, "dpt%d: Metrics have been cleared\n",
dpt->unit);
work_size += x;
wbp += x;
} else if (strcmp(command, DPT_RW_CMD_SHOW_LED) == 0) {
x = sprintf(wbp, "dpt%d:%s\n",
dpt->unit, i2bin(dpt_blinking_led(dpt), 8));
work_size += x;
wbp += x;
} else {
#ifdef DPT_DEBUG_CONTROL
printf("dpt%d: Bad READ state (%s)\n", minor_no, command);
#endif
splx(ospl);
error = EINVAL;
}
if (error == 0) {
work_buffer[work_size++] = '\0';
error = uiomove(work_buffer, work_size, uio);
uio->uio_resid = 0;
#ifdef DPT_DEBUG_CONTROL
if (error) {
printf("dpt%d: READ uimove failed (%d)\n", dpt->unit, error);
}
#endif
}
}
splx(ospl);
return (error);
}
/**
* This is the control syscall interface.
* It should be binary compatible with UnixWare,
* if not totally syntatically so.
*/
static int
dpt_ioctl(dev_t dev, u_long cmd, caddr_t cmdarg, int flags, struct proc * p)
{
int minor_no;
dpt_softc_t *dpt;
dpt_user_softc_t udpt;
int result;
int ndx;
eata_pt_t *eata_pass_thru;
minor_no = minor(dev);
result = 0;
if (!(minor_no & SCSI_CONTROL_MASK)) {
#ifdef DPT_DEBUG_CONTROL
printf("dpt%d: Control attempted to I/O channel (%x)\n",
dpt_minor2unit(minor_no), minor_no);
#endif /* DEBUG */
return (ENXIO);
} else
minor_no &= ~SCSI_CONTROL_MASK;
#ifdef DPT_DEBUG_CONTROL
printf("dpt%d: IOCTL(%x, %x, %p, %x, %p)\n",
minor_no, dev, cmd, cmdarg, flags, p);
#endif /* DEBUG */
if ((dpt = dpt_minor2softc(minor_no)) == NULL)
return (result);
switch (cmd) {
#ifdef DPT_MEASURE_PERFORMANCE
case DPT_IOCTL_INTERNAL_METRICS:
memcpy(cmdarg, &dpt->performance, sizeof(dpt->performance));
return (0);
#endif /* DPT_MEASURE_PERFORMANCE */
case DPT_IOCTL_SOFTC:
udpt.unit = dpt->unit;
udpt.handle_interrupts = dpt->handle_interrupts;
udpt.target_mode_enabled = dpt->target_mode_enabled;
udpt.spare = dpt->spare;
udpt.total_ccbs_count = dpt->total_ccbs_count;
udpt.free_ccbs_count = dpt->free_ccbs_count;
udpt.waiting_ccbs_count = dpt->waiting_ccbs_count;
udpt.submitted_ccbs_count = dpt->submitted_ccbs_count;
udpt.completed_ccbs_count = dpt->completed_ccbs_count;
udpt.queue_status = dpt->queue_status;
udpt.free_lock = dpt->free_lock;
udpt.waiting_lock = dpt->waiting_lock;
udpt.submitted_lock = dpt->submitted_lock;
udpt.completed_lock = dpt->completed_lock;
udpt.commands_processed = dpt->commands_processed;
udpt.lost_interrupts = dpt->lost_interrupts;
udpt.channels = dpt->channels;
udpt.max_id = dpt->max_id;
udpt.max_lun = dpt->max_lun;
udpt.io_base = dpt->io_base;
udpt.v_membase = (u_int8_t *) dpt->v_membase;
udpt.p_membase = (u_int8_t *) dpt->p_membase;
udpt.irq = dpt->irq;
udpt.dma_channel = dpt->dma_channel;
udpt.board_data = dpt->board_data;
udpt.EATA_revision = dpt->EATA_revision;
udpt.bustype = dpt->bustype;
udpt.state = dpt->state;
udpt.primary = dpt->primary;
udpt.more_support = dpt->more_support;
udpt.immediate_support = dpt->immediate_support;
udpt.broken_INQUIRY = dpt->broken_INQUIRY;
udpt.spare2 = dpt->spare2;
for (ndx = 0; ndx < MAX_CHANNELS; ndx++) {
udpt.resetlevel[ndx] = dpt->resetlevel[ndx];
udpt.hostid[ndx] = dpt->hostid[ndx];
}
udpt.last_ccb = dpt->last_ccb;
udpt.cplen = dpt->cplen;
udpt.cppadlen = dpt->cppadlen;
udpt.queuesize = dpt->queuesize;
udpt.sgsize = dpt->sgsize;
udpt.cache_type = dpt->cache_type;
udpt.cache_size = dpt->cache_size;
memcpy(cmdarg, &udpt, sizeof(dpt_user_softc_t));
return (0);
case SDI_SEND:
case DPT_IOCTL_SEND:
eata_pass_thru = (eata_pt_t *) cmdarg;
if ((eata_pass_thru->eataID[0] != 'E')
|| (eata_pass_thru->eataID[1] != 'A')
|| (eata_pass_thru->eataID[2] != 'T')
|| (eata_pass_thru->eataID[3] != 'A')) {
return (EFAULT);
}
switch (eata_pass_thru->command) {
case DPT_SIGNATURE:
return (copyout((char *) &dpt_sig,
(caddr_t *) eata_pass_thru->command_buffer,
sizeof(dpt_sig)));
case DPT_NUMCTRLS:
return (copyout((char *) &dpt_controllers_present,
(caddr_t *) eata_pass_thru->command_buffer,
sizeof(dpt_controllers_present)));
case DPT_CTRLINFO:
{
dpt_compat_ha_t compat_softc;
int ndx;
compat_softc.ha_state = dpt->state; /* Different Meaning! */
for (ndx = 0; ndx < MAX_CHANNELS; ndx++)
compat_softc.ha_id[ndx] = dpt->hostid[ndx];
compat_softc.ha_vect = dpt->irq;
compat_softc.ha_base = BaseRegister(dpt);
compat_softc.ha_max_jobs = dpt->total_ccbs_count;
compat_softc.ha_cache = dpt->cache_type;
compat_softc.ha_cachesize = dpt->cache_size;
compat_softc.ha_nbus = dpt->dma_channel + 1;
compat_softc.ha_ntargets = dpt->max_id + 1;
compat_softc.ha_nluns = dpt->max_lun + 1;
compat_softc.ha_tshift = (dpt->max_id == 7) ? 3 : 4;
compat_softc.ha_bshift = 2;
compat_softc.ha_npend = dpt->submitted_ccbs_count;
compat_softc.ha_active_jobs = dpt->waiting_ccbs_count;
strncpy(compat_softc.ha_fw_version,
dpt->board_data.firmware,
sizeof(compat_softc.ha_fw_version));
compat_softc.ha_ccb = NULL;
compat_softc.ha_cblist = NULL;
compat_softc.ha_dev = NULL;
compat_softc.ha_StPkt_lock = NULL;
compat_softc.ha_ccb_lock = NULL;
compat_softc.ha_LuQWaiting = NULL;
compat_softc.ha_QWait_lock = NULL;
compat_softc.ha_QWait_opri = NULL;
return (copyout((char *) &compat_softc,
(caddr_t *) eata_pass_thru->command_buffer,
sizeof(dpt_compat_ha_t)));
}
break;
case DPT_SYSINFO:
return (copyout((char *) &dpt_sysinfo,
(caddr_t *) eata_pass_thru->command_buffer,
sizeof(dpt_sysinfo)));
case EATAUSRCMD:
result = dpt_user_cmd(dpt, eata_pass_thru, cmdarg, minor_no);
return (result);
case DPT_BLINKLED:
result = dpt_blinking_led(dpt);
return (copyout((caddr_t) & result,
(caddr_t *) eata_pass_thru->command_buffer,
sizeof(result)));
default:
printf("dpt%d: Invalid (%x) pass-throu command\n",
dpt->unit, eata_pass_thru->command);
result = EINVAL;
}
default:
printf("dpt%d: Invalid (%lx) IOCTL\n", dpt->unit, cmd);
return (EINVAL);
}
return (result);
}
static dpt_devsw_installed = 0;
static void
dpt_drvinit(void *unused)
{
dev_t dev;
if (!dpt_devsw_installed) {
if (bootverbose)
printf("DPT: RAID Manager driver, Version %d.%d.%d\n",
DPT_CTL_RELEASE, DPT_CTL_VERSION, DPT_CTL_PATCH);
/* Add the I/O (data) channel */
dev = makedev(CDEV_MAJOR, 0);
cdevsw_add(&dev, &dpt_cdevsw, NULL);
/* Add the Control (IOCTL) channel */
dev = makedev(CDEV_MAJOR, SCSI_CONTROL_MASK);
cdevsw_add(&dev, &dpt_cdevsw, NULL);
dpt_devsw_installed = 1;
}
dpt_get_sysinfo();
}
SYSINIT(dpt_dev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR, dpt_drvinit, NULL)
/* End of the dpt_control driver */