1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-11 14:10:34 +00:00
freebsd/sys/dev/gem/if_gem.c
Gleb Smirnoff 76039bc84f The r48589 promised to remove implicit inclusion of if_var.h soon. Prepare
to this event, adding if_var.h to files that do need it. Also, include
all includes that now are included due to implicit pollution via if_var.h

Sponsored by:	Netflix
Sponsored by:	Nginx, Inc.
2013-10-26 17:58:36 +00:00

2276 lines
61 KiB
C

/*-
* Copyright (C) 2001 Eduardo Horvath.
* Copyright (c) 2001-2003 Thomas Moestl
* Copyright (c) 2007 Marius Strobl <marius@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
*/
#if 0
#define GEM_DEBUG
#endif
#if 0 /* XXX: In case of emergency, re-enable this. */
#define GEM_RINT_TIMEOUT
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/rman.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <machine/bus.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/gem/if_gemreg.h>
#include <dev/gem/if_gemvar.h>
CTASSERT(powerof2(GEM_NRXDESC) && GEM_NRXDESC >= 32 && GEM_NRXDESC <= 8192);
CTASSERT(powerof2(GEM_NTXDESC) && GEM_NTXDESC >= 32 && GEM_NTXDESC <= 8192);
#define GEM_TRIES 10000
/*
* The hardware supports basic TCP/UDP checksum offloading. However,
* the hardware doesn't compensate the checksum for UDP datagram which
* can yield to 0x0. As a safe guard, UDP checksum offload is disabled
* by default. It can be reactivated by setting special link option
* link0 with ifconfig(8).
*/
#define GEM_CSUM_FEATURES (CSUM_TCP)
static int gem_add_rxbuf(struct gem_softc *sc, int idx);
static int gem_bitwait(struct gem_softc *sc, u_int bank, bus_addr_t r,
uint32_t clr, uint32_t set);
static void gem_cddma_callback(void *xsc, bus_dma_segment_t *segs,
int nsegs, int error);
static int gem_disable_rx(struct gem_softc *sc);
static int gem_disable_tx(struct gem_softc *sc);
static void gem_eint(struct gem_softc *sc, u_int status);
static void gem_init(void *xsc);
static void gem_init_locked(struct gem_softc *sc);
static void gem_init_regs(struct gem_softc *sc);
static int gem_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
static int gem_load_txmbuf(struct gem_softc *sc, struct mbuf **m_head);
static int gem_meminit(struct gem_softc *sc);
static void gem_mifinit(struct gem_softc *sc);
static void gem_reset(struct gem_softc *sc);
static int gem_reset_rx(struct gem_softc *sc);
static void gem_reset_rxdma(struct gem_softc *sc);
static int gem_reset_tx(struct gem_softc *sc);
static u_int gem_ringsize(u_int sz);
static void gem_rint(struct gem_softc *sc);
#ifdef GEM_RINT_TIMEOUT
static void gem_rint_timeout(void *arg);
#endif
static inline void gem_rxcksum(struct mbuf *m, uint64_t flags);
static void gem_rxdrain(struct gem_softc *sc);
static void gem_setladrf(struct gem_softc *sc);
static void gem_start(struct ifnet *ifp);
static void gem_start_locked(struct ifnet *ifp);
static void gem_stop(struct ifnet *ifp, int disable);
static void gem_tick(void *arg);
static void gem_tint(struct gem_softc *sc);
static inline void gem_txkick(struct gem_softc *sc);
static int gem_watchdog(struct gem_softc *sc);
devclass_t gem_devclass;
DRIVER_MODULE(miibus, gem, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(gem, miibus, 1, 1, 1);
#ifdef GEM_DEBUG
#include <sys/ktr.h>
#define KTR_GEM KTR_SPARE2
#endif
#define GEM_BANK1_BITWAIT(sc, r, clr, set) \
gem_bitwait((sc), GEM_RES_BANK1, (r), (clr), (set))
#define GEM_BANK2_BITWAIT(sc, r, clr, set) \
gem_bitwait((sc), GEM_RES_BANK2, (r), (clr), (set))
int
gem_attach(struct gem_softc *sc)
{
struct gem_txsoft *txs;
struct ifnet *ifp;
int error, i, phy;
uint32_t v;
if (bootverbose)
device_printf(sc->sc_dev, "flags=0x%x\n", sc->sc_flags);
/* Set up ifnet structure. */
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL)
return (ENOSPC);
sc->sc_csum_features = GEM_CSUM_FEATURES;
ifp->if_softc = sc;
if_initname(ifp, device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = gem_start;
ifp->if_ioctl = gem_ioctl;
ifp->if_init = gem_init;
IFQ_SET_MAXLEN(&ifp->if_snd, GEM_TXQUEUELEN);
ifp->if_snd.ifq_drv_maxlen = GEM_TXQUEUELEN;
IFQ_SET_READY(&ifp->if_snd);
callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
#ifdef GEM_RINT_TIMEOUT
callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0);
#endif
/* Make sure the chip is stopped. */
gem_reset(sc);
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL,
NULL, &sc->sc_pdmatag);
if (error != 0)
goto fail_ifnet;
error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_rdmatag);
if (error != 0)
goto fail_ptag;
error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES * GEM_NTXSEGS, GEM_NTXSEGS, MCLBYTES,
BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
if (error != 0)
goto fail_rtag;
error = bus_dma_tag_create(sc->sc_pdmatag, PAGE_SIZE, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct gem_control_data), 1,
sizeof(struct gem_control_data), 0,
NULL, NULL, &sc->sc_cdmatag);
if (error != 0)
goto fail_ttag;
/*
* Allocate the control data structures, create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
(void **)&sc->sc_control_data,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
&sc->sc_cddmamap)) != 0) {
device_printf(sc->sc_dev,
"unable to allocate control data, error = %d\n", error);
goto fail_ctag;
}
sc->sc_cddma = 0;
if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct gem_control_data),
gem_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
device_printf(sc->sc_dev,
"unable to load control data DMA map, error = %d\n",
error);
goto fail_cmem;
}
/*
* Initialize the transmit job descriptors.
*/
STAILQ_INIT(&sc->sc_txfreeq);
STAILQ_INIT(&sc->sc_txdirtyq);
/*
* Create the transmit buffer DMA maps.
*/
error = ENOMEM;
for (i = 0; i < GEM_TXQUEUELEN; i++) {
txs = &sc->sc_txsoft[i];
txs->txs_mbuf = NULL;
txs->txs_ndescs = 0;
if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
&txs->txs_dmamap)) != 0) {
device_printf(sc->sc_dev,
"unable to create TX DMA map %d, error = %d\n",
i, error);
goto fail_txd;
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < GEM_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_rdmatag, 0,
&sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
device_printf(sc->sc_dev,
"unable to create RX DMA map %d, error = %d\n",
i, error);
goto fail_rxd;
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
/* Bypass probing PHYs if we already know for sure to use a SERDES. */
if ((sc->sc_flags & GEM_SERDES) != 0)
goto serdes;
/* Bad things will happen when touching this register on ERI. */
if (sc->sc_variant != GEM_SUN_ERI) {
GEM_BANK1_WRITE_4(sc, GEM_MII_DATAPATH_MODE,
GEM_MII_DATAPATH_MII);
GEM_BANK1_BARRIER(sc, GEM_MII_DATAPATH_MODE, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
gem_mifinit(sc);
/*
* Look for an external PHY.
*/
error = ENXIO;
v = GEM_BANK1_READ_4(sc, GEM_MIF_CONFIG);
if ((v & GEM_MIF_CONFIG_MDI1) != 0) {
v |= GEM_MIF_CONFIG_PHY_SEL;
GEM_BANK1_WRITE_4(sc, GEM_MIF_CONFIG, v);
GEM_BANK1_BARRIER(sc, GEM_MIF_CONFIG, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
switch (sc->sc_variant) {
case GEM_SUN_ERI:
phy = GEM_PHYAD_EXTERNAL;
break;
default:
phy = MII_PHY_ANY;
break;
}
error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
gem_mediachange, gem_mediastatus, BMSR_DEFCAPMASK, phy,
MII_OFFSET_ANY, MIIF_DOPAUSE);
}
/*
* Fall back on an internal PHY if no external PHY was found.
* Note that with Apple (K2) GMACs GEM_MIF_CONFIG_MDI0 can't be
* trusted when the firmware has powered down the chip.
*/
if (error != 0 &&
((v & GEM_MIF_CONFIG_MDI0) != 0 || GEM_IS_APPLE(sc))) {
v &= ~GEM_MIF_CONFIG_PHY_SEL;
GEM_BANK1_WRITE_4(sc, GEM_MIF_CONFIG, v);
GEM_BANK1_BARRIER(sc, GEM_MIF_CONFIG, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
switch (sc->sc_variant) {
case GEM_SUN_ERI:
case GEM_APPLE_K2_GMAC:
phy = GEM_PHYAD_INTERNAL;
break;
case GEM_APPLE_GMAC:
phy = GEM_PHYAD_EXTERNAL;
break;
default:
phy = MII_PHY_ANY;
break;
}
error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
gem_mediachange, gem_mediastatus, BMSR_DEFCAPMASK, phy,
MII_OFFSET_ANY, MIIF_DOPAUSE);
}
/*
* Try the external PCS SERDES if we didn't find any PHYs.
*/
if (error != 0 && sc->sc_variant == GEM_SUN_GEM) {
serdes:
GEM_BANK1_WRITE_4(sc, GEM_MII_DATAPATH_MODE,
GEM_MII_DATAPATH_SERDES);
GEM_BANK1_BARRIER(sc, GEM_MII_DATAPATH_MODE, 4,
BUS_SPACE_BARRIER_WRITE);
GEM_BANK1_WRITE_4(sc, GEM_MII_SLINK_CONTROL,
GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_EN_SYNC_D);
GEM_BANK1_BARRIER(sc, GEM_MII_SLINK_CONTROL, 4,
BUS_SPACE_BARRIER_WRITE);
GEM_BANK1_WRITE_4(sc, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
GEM_BANK1_BARRIER(sc, GEM_MII_CONFIG, 4,
BUS_SPACE_BARRIER_WRITE);
sc->sc_flags |= GEM_SERDES;
error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
gem_mediachange, gem_mediastatus, BMSR_DEFCAPMASK,
GEM_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_DOPAUSE);
}
if (error != 0) {
device_printf(sc->sc_dev, "attaching PHYs failed\n");
goto fail_rxd;
}
sc->sc_mii = device_get_softc(sc->sc_miibus);
/*
* From this point forward, the attachment cannot fail. A failure
* before this point releases all resources that may have been
* allocated.
*/
/* Get RX FIFO size. */
sc->sc_rxfifosize = 64 *
GEM_BANK1_READ_4(sc, GEM_RX_FIFO_SIZE);
/* Get TX FIFO size. */
v = GEM_BANK1_READ_4(sc, GEM_TX_FIFO_SIZE);
device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n",
sc->sc_rxfifosize / 1024, v / 16);
/* Attach the interface. */
ether_ifattach(ifp, sc->sc_enaddr);
/*
* Tell the upper layer(s) we support long frames/checksum offloads.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_HWCSUM;
ifp->if_hwassist |= sc->sc_csum_features;
ifp->if_capenable |= IFCAP_VLAN_MTU | IFCAP_HWCSUM;
return (0);
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_rxd:
for (i = 0; i < GEM_NRXDESC; i++)
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_rdmatag,
sc->sc_rxsoft[i].rxs_dmamap);
fail_txd:
for (i = 0; i < GEM_TXQUEUELEN; i++)
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_tdmatag,
sc->sc_txsoft[i].txs_dmamap);
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
fail_cmem:
bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
sc->sc_cddmamap);
fail_ctag:
bus_dma_tag_destroy(sc->sc_cdmatag);
fail_ttag:
bus_dma_tag_destroy(sc->sc_tdmatag);
fail_rtag:
bus_dma_tag_destroy(sc->sc_rdmatag);
fail_ptag:
bus_dma_tag_destroy(sc->sc_pdmatag);
fail_ifnet:
if_free(ifp);
return (error);
}
void
gem_detach(struct gem_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
int i;
ether_ifdetach(ifp);
GEM_LOCK(sc);
gem_stop(ifp, 1);
GEM_UNLOCK(sc);
callout_drain(&sc->sc_tick_ch);
#ifdef GEM_RINT_TIMEOUT
callout_drain(&sc->sc_rx_ch);
#endif
if_free(ifp);
device_delete_child(sc->sc_dev, sc->sc_miibus);
for (i = 0; i < GEM_NRXDESC; i++)
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_rdmatag,
sc->sc_rxsoft[i].rxs_dmamap);
for (i = 0; i < GEM_TXQUEUELEN; i++)
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_tdmatag,
sc->sc_txsoft[i].txs_dmamap);
GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
sc->sc_cddmamap);
bus_dma_tag_destroy(sc->sc_cdmatag);
bus_dma_tag_destroy(sc->sc_tdmatag);
bus_dma_tag_destroy(sc->sc_rdmatag);
bus_dma_tag_destroy(sc->sc_pdmatag);
}
void
gem_suspend(struct gem_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
GEM_LOCK(sc);
gem_stop(ifp, 0);
GEM_UNLOCK(sc);
}
void
gem_resume(struct gem_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
GEM_LOCK(sc);
/*
* On resume all registers have to be initialized again like
* after power-on.
*/
sc->sc_flags &= ~GEM_INITED;
if (ifp->if_flags & IFF_UP)
gem_init_locked(sc);
GEM_UNLOCK(sc);
}
static inline void
gem_rxcksum(struct mbuf *m, uint64_t flags)
{
struct ether_header *eh;
struct ip *ip;
struct udphdr *uh;
uint16_t *opts;
int32_t hlen, len, pktlen;
uint32_t temp32;
uint16_t cksum;
pktlen = m->m_pkthdr.len;
if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
return;
eh = mtod(m, struct ether_header *);
if (eh->ether_type != htons(ETHERTYPE_IP))
return;
ip = (struct ip *)(eh + 1);
if (ip->ip_v != IPVERSION)
return;
hlen = ip->ip_hl << 2;
pktlen -= sizeof(struct ether_header);
if (hlen < sizeof(struct ip))
return;
if (ntohs(ip->ip_len) < hlen)
return;
if (ntohs(ip->ip_len) != pktlen)
return;
if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
return; /* Cannot handle fragmented packet. */
switch (ip->ip_p) {
case IPPROTO_TCP:
if (pktlen < (hlen + sizeof(struct tcphdr)))
return;
break;
case IPPROTO_UDP:
if (pktlen < (hlen + sizeof(struct udphdr)))
return;
uh = (struct udphdr *)((uint8_t *)ip + hlen);
if (uh->uh_sum == 0)
return; /* no checksum */
break;
default:
return;
}
cksum = ~(flags & GEM_RD_CHECKSUM);
/* checksum fixup for IP options */
len = hlen - sizeof(struct ip);
if (len > 0) {
opts = (uint16_t *)(ip + 1);
for (; len > 0; len -= sizeof(uint16_t), opts++) {
temp32 = cksum - *opts;
temp32 = (temp32 >> 16) + (temp32 & 65535);
cksum = temp32 & 65535;
}
}
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
m->m_pkthdr.csum_data = cksum;
}
static void
gem_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
{
struct gem_softc *sc = xsc;
if (error != 0)
return;
if (nsegs != 1)
panic("%s: bad control buffer segment count", __func__);
sc->sc_cddma = segs[0].ds_addr;
}
static void
gem_tick(void *arg)
{
struct gem_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t v;
GEM_LOCK_ASSERT(sc, MA_OWNED);
/*
* Unload collision and error counters.
*/
ifp->if_collisions +=
GEM_BANK1_READ_4(sc, GEM_MAC_NORM_COLL_CNT) +
GEM_BANK1_READ_4(sc, GEM_MAC_FIRST_COLL_CNT);
v = GEM_BANK1_READ_4(sc, GEM_MAC_EXCESS_COLL_CNT) +
GEM_BANK1_READ_4(sc, GEM_MAC_LATE_COLL_CNT);
ifp->if_collisions += v;
ifp->if_oerrors += v;
ifp->if_ierrors +=
GEM_BANK1_READ_4(sc, GEM_MAC_RX_LEN_ERR_CNT) +
GEM_BANK1_READ_4(sc, GEM_MAC_RX_ALIGN_ERR) +
GEM_BANK1_READ_4(sc, GEM_MAC_RX_CRC_ERR_CNT) +
GEM_BANK1_READ_4(sc, GEM_MAC_RX_CODE_VIOL);
/*
* Then clear the hardware counters.
*/
GEM_BANK1_WRITE_4(sc, GEM_MAC_NORM_COLL_CNT, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_FIRST_COLL_CNT, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_EXCESS_COLL_CNT, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_LATE_COLL_CNT, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_LEN_ERR_CNT, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_ALIGN_ERR, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_CRC_ERR_CNT, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_CODE_VIOL, 0);
mii_tick(sc->sc_mii);
if (gem_watchdog(sc) == EJUSTRETURN)
return;
callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
}
static int
gem_bitwait(struct gem_softc *sc, u_int bank, bus_addr_t r, uint32_t clr,
uint32_t set)
{
int i;
uint32_t reg;
for (i = GEM_TRIES; i--; DELAY(100)) {
reg = GEM_BANKN_READ_M(bank, 4, sc, r);
if ((reg & clr) == 0 && (reg & set) == set)
return (1);
}
return (0);
}
static void
gem_reset(struct gem_softc *sc)
{
#ifdef GEM_DEBUG
CTR2(KTR_GEM, "%s: %s", device_get_name(sc->sc_dev), __func__);
#endif
gem_reset_rx(sc);
gem_reset_tx(sc);
/* Do a full reset. */
GEM_BANK2_WRITE_4(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX |
(sc->sc_variant == GEM_SUN_ERI ? GEM_ERI_CACHE_LINE_SIZE <<
GEM_RESET_CLSZ_SHFT : 0));
GEM_BANK2_BARRIER(sc, GEM_RESET, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (!GEM_BANK2_BITWAIT(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
device_printf(sc->sc_dev, "cannot reset device\n");
}
static void
gem_rxdrain(struct gem_softc *sc)
{
struct gem_rxsoft *rxs;
int i;
for (i = 0; i < GEM_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
}
static void
gem_stop(struct ifnet *ifp, int disable)
{
struct gem_softc *sc = ifp->if_softc;
struct gem_txsoft *txs;
#ifdef GEM_DEBUG
CTR2(KTR_GEM, "%s: %s", device_get_name(sc->sc_dev), __func__);
#endif
callout_stop(&sc->sc_tick_ch);
#ifdef GEM_RINT_TIMEOUT
callout_stop(&sc->sc_rx_ch);
#endif
gem_reset_tx(sc);
gem_reset_rx(sc);
/*
* Release any queued transmit buffers.
*/
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
if (txs->txs_ndescs != 0) {
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
if (txs->txs_mbuf != NULL) {
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
if (disable)
gem_rxdrain(sc);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->sc_flags &= ~GEM_LINK;
sc->sc_wdog_timer = 0;
}
static int
gem_reset_rx(struct gem_softc *sc)
{
/*
* Resetting while DMA is in progress can cause a bus hang, so we
* disable DMA first.
*/
(void)gem_disable_rx(sc);
GEM_BANK1_WRITE_4(sc, GEM_RX_CONFIG, 0);
GEM_BANK1_BARRIER(sc, GEM_RX_CONFIG, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (!GEM_BANK1_BITWAIT(sc, GEM_RX_CONFIG, GEM_RX_CONFIG_RXDMA_EN, 0))
device_printf(sc->sc_dev, "cannot disable RX DMA\n");
/* Wait 5ms extra. */
DELAY(5000);
/* Reset the ERX. */
GEM_BANK2_WRITE_4(sc, GEM_RESET, GEM_RESET_RX |
(sc->sc_variant == GEM_SUN_ERI ? GEM_ERI_CACHE_LINE_SIZE <<
GEM_RESET_CLSZ_SHFT : 0));
GEM_BANK2_BARRIER(sc, GEM_RESET, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (!GEM_BANK2_BITWAIT(sc, GEM_RESET, GEM_RESET_RX, 0)) {
device_printf(sc->sc_dev, "cannot reset receiver\n");
return (1);
}
/* Finally, reset RX MAC. */
GEM_BANK1_WRITE_4(sc, GEM_MAC_RXRESET, 1);
GEM_BANK1_BARRIER(sc, GEM_MAC_RXRESET, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (!GEM_BANK1_BITWAIT(sc, GEM_MAC_RXRESET, 1, 0)) {
device_printf(sc->sc_dev, "cannot reset RX MAC\n");
return (1);
}
return (0);
}
/*
* Reset the receiver DMA engine.
*
* Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
* etc in order to reset the receiver DMA engine only and not do a full
* reset which amongst others also downs the link and clears the FIFOs.
*/
static void
gem_reset_rxdma(struct gem_softc *sc)
{
int i;
if (gem_reset_rx(sc) != 0) {
sc->sc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
return (gem_init_locked(sc));
}
for (i = 0; i < GEM_NRXDESC; i++)
if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
GEM_UPDATE_RXDESC(sc, i);
sc->sc_rxptr = 0;
GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* NOTE: we use only 32-bit DMA addresses here. */
GEM_BANK1_WRITE_4(sc, GEM_RX_RING_PTR_HI, 0);
GEM_BANK1_WRITE_4(sc, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
GEM_BANK1_WRITE_4(sc, GEM_RX_KICK, GEM_NRXDESC - 4);
GEM_BANK1_WRITE_4(sc, GEM_RX_CONFIG,
gem_ringsize(GEM_NRXDESC /* XXX */) |
((ETHER_HDR_LEN + sizeof(struct ip)) <<
GEM_RX_CONFIG_CXM_START_SHFT) |
(GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
(ETHER_ALIGN << GEM_RX_CONFIG_FBOFF_SHFT));
/* Adjusting for the SBus clock probably isn't worth the fuzz. */
GEM_BANK1_WRITE_4(sc, GEM_RX_BLANKING,
((6 * (sc->sc_flags & GEM_PCI66) != 0 ? 2 : 1) <<
GEM_RX_BLANKING_TIME_SHIFT) | 6);
GEM_BANK1_WRITE_4(sc, GEM_RX_PAUSE_THRESH,
(3 * sc->sc_rxfifosize / 256) |
((sc->sc_rxfifosize / 256) << 12));
GEM_BANK1_WRITE_4(sc, GEM_RX_CONFIG,
GEM_BANK1_READ_4(sc, GEM_RX_CONFIG) | GEM_RX_CONFIG_RXDMA_EN);
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_MASK,
GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
/*
* Clear the RX filter and reprogram it. This will also set the
* current RX MAC configuration and enable it.
*/
gem_setladrf(sc);
}
static int
gem_reset_tx(struct gem_softc *sc)
{
/*
* Resetting while DMA is in progress can cause a bus hang, so we
* disable DMA first.
*/
(void)gem_disable_tx(sc);
GEM_BANK1_WRITE_4(sc, GEM_TX_CONFIG, 0);
GEM_BANK1_BARRIER(sc, GEM_TX_CONFIG, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (!GEM_BANK1_BITWAIT(sc, GEM_TX_CONFIG, GEM_TX_CONFIG_TXDMA_EN, 0))
device_printf(sc->sc_dev, "cannot disable TX DMA\n");
/* Wait 5ms extra. */
DELAY(5000);
/* Finally, reset the ETX. */
GEM_BANK2_WRITE_4(sc, GEM_RESET, GEM_RESET_TX |
(sc->sc_variant == GEM_SUN_ERI ? GEM_ERI_CACHE_LINE_SIZE <<
GEM_RESET_CLSZ_SHFT : 0));
GEM_BANK2_BARRIER(sc, GEM_RESET, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (!GEM_BANK2_BITWAIT(sc, GEM_RESET, GEM_RESET_TX, 0)) {
device_printf(sc->sc_dev, "cannot reset transmitter\n");
return (1);
}
return (0);
}
static int
gem_disable_rx(struct gem_softc *sc)
{
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_CONFIG,
GEM_BANK1_READ_4(sc, GEM_MAC_RX_CONFIG) & ~GEM_MAC_RX_ENABLE);
GEM_BANK1_BARRIER(sc, GEM_MAC_RX_CONFIG, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (GEM_BANK1_BITWAIT(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
return (1);
device_printf(sc->sc_dev, "cannot disable RX MAC\n");
return (0);
}
static int
gem_disable_tx(struct gem_softc *sc)
{
GEM_BANK1_WRITE_4(sc, GEM_MAC_TX_CONFIG,
GEM_BANK1_READ_4(sc, GEM_MAC_TX_CONFIG) & ~GEM_MAC_TX_ENABLE);
GEM_BANK1_BARRIER(sc, GEM_MAC_TX_CONFIG, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (GEM_BANK1_BITWAIT(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
return (1);
device_printf(sc->sc_dev, "cannot disable TX MAC\n");
return (0);
}
static int
gem_meminit(struct gem_softc *sc)
{
struct gem_rxsoft *rxs;
int error, i;
GEM_LOCK_ASSERT(sc, MA_OWNED);
/*
* Initialize the transmit descriptor ring.
*/
for (i = 0; i < GEM_NTXDESC; i++) {
sc->sc_txdescs[i].gd_flags = 0;
sc->sc_txdescs[i].gd_addr = 0;
}
sc->sc_txfree = GEM_MAXTXFREE;
sc->sc_txnext = 0;
sc->sc_txwin = 0;
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < GEM_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL) {
if ((error = gem_add_rxbuf(sc, i)) != 0) {
device_printf(sc->sc_dev,
"unable to allocate or map RX buffer %d, "
"error = %d\n", i, error);
/*
* XXX we should attempt to run with fewer
* receive buffers instead of just failing.
*/
gem_rxdrain(sc);
return (1);
}
} else
GEM_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = 0;
GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static u_int
gem_ringsize(u_int sz)
{
switch (sz) {
case 32:
return (GEM_RING_SZ_32);
case 64:
return (GEM_RING_SZ_64);
case 128:
return (GEM_RING_SZ_128);
case 256:
return (GEM_RING_SZ_256);
case 512:
return (GEM_RING_SZ_512);
case 1024:
return (GEM_RING_SZ_1024);
case 2048:
return (GEM_RING_SZ_2048);
case 4096:
return (GEM_RING_SZ_4096);
case 8192:
return (GEM_RING_SZ_8192);
default:
printf("%s: invalid ring size %d\n", __func__, sz);
return (GEM_RING_SZ_32);
}
}
static void
gem_init(void *xsc)
{
struct gem_softc *sc = xsc;
GEM_LOCK(sc);
gem_init_locked(sc);
GEM_UNLOCK(sc);
}
/*
* Initialization of interface; set up initialization block
* and transmit/receive descriptor rings.
*/
static void
gem_init_locked(struct gem_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
uint32_t v;
GEM_LOCK_ASSERT(sc, MA_OWNED);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
#ifdef GEM_DEBUG
CTR2(KTR_GEM, "%s: %s: calling stop", device_get_name(sc->sc_dev),
__func__);
#endif
/*
* Initialization sequence. The numbered steps below correspond
* to the sequence outlined in section 6.3.5.1 in the Ethernet
* Channel Engine manual (part of the PCIO manual).
* See also the STP2002-STQ document from Sun Microsystems.
*/
/* step 1 & 2. Reset the Ethernet Channel. */
gem_stop(ifp, 0);
gem_reset(sc);
#ifdef GEM_DEBUG
CTR2(KTR_GEM, "%s: %s: restarting", device_get_name(sc->sc_dev),
__func__);
#endif
if ((sc->sc_flags & GEM_SERDES) == 0)
/* Re-initialize the MIF. */
gem_mifinit(sc);
/* step 3. Setup data structures in host memory. */
if (gem_meminit(sc) != 0)
return;
/* step 4. TX MAC registers & counters */
gem_init_regs(sc);
/* step 5. RX MAC registers & counters */
/* step 6 & 7. Program Descriptor Ring Base Addresses. */
/* NOTE: we use only 32-bit DMA addresses here. */
GEM_BANK1_WRITE_4(sc, GEM_TX_RING_PTR_HI, 0);
GEM_BANK1_WRITE_4(sc, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
GEM_BANK1_WRITE_4(sc, GEM_RX_RING_PTR_HI, 0);
GEM_BANK1_WRITE_4(sc, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "loading RX ring %lx, TX ring %lx, cddma %lx",
GEM_CDRXADDR(sc, 0), GEM_CDTXADDR(sc, 0), sc->sc_cddma);
#endif
/* step 8. Global Configuration & Interrupt Mask */
/*
* Set the internal arbitration to "infinite" bursts of the
* maximum length of 31 * 64 bytes so DMA transfers aren't
* split up in cache line size chunks. This greatly improves
* RX performance.
* Enable silicon bug workarounds for the Apple variants.
*/
GEM_BANK1_WRITE_4(sc, GEM_CONFIG,
GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
((sc->sc_flags & GEM_PCI) != 0 ? GEM_CONFIG_BURST_INF :
GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
GEM_BANK1_WRITE_4(sc, GEM_INTMASK,
~(GEM_INTR_TX_INTME | GEM_INTR_TX_EMPTY | GEM_INTR_RX_DONE |
GEM_INTR_RX_NOBUF | GEM_INTR_RX_TAG_ERR | GEM_INTR_PERR |
GEM_INTR_BERR
#ifdef GEM_DEBUG
| GEM_INTR_PCS | GEM_INTR_MIF
#endif
));
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_MASK,
GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
GEM_BANK1_WRITE_4(sc, GEM_MAC_TX_MASK,
GEM_MAC_TX_XMIT_DONE | GEM_MAC_TX_DEFER_EXP |
GEM_MAC_TX_PEAK_EXP);
#ifdef GEM_DEBUG
GEM_BANK1_WRITE_4(sc, GEM_MAC_CONTROL_MASK,
~(GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME));
#else
GEM_BANK1_WRITE_4(sc, GEM_MAC_CONTROL_MASK,
GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
#endif
/* step 9. ETX Configuration: use mostly default values. */
/* Enable DMA. */
v = gem_ringsize(GEM_NTXDESC);
/* Set TX FIFO threshold and enable DMA. */
v |= ((sc->sc_variant == GEM_SUN_ERI ? 0x100 : 0x4ff) << 10) &
GEM_TX_CONFIG_TXFIFO_TH;
GEM_BANK1_WRITE_4(sc, GEM_TX_CONFIG, v | GEM_TX_CONFIG_TXDMA_EN);
/* step 10. ERX Configuration */
/* Encode Receive Descriptor ring size. */
v = gem_ringsize(GEM_NRXDESC /* XXX */);
/* RX TCP/UDP checksum offset */
v |= ((ETHER_HDR_LEN + sizeof(struct ip)) <<
GEM_RX_CONFIG_CXM_START_SHFT);
/* Set RX FIFO threshold, set first byte offset and enable DMA. */
GEM_BANK1_WRITE_4(sc, GEM_RX_CONFIG,
v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
(ETHER_ALIGN << GEM_RX_CONFIG_FBOFF_SHFT) |
GEM_RX_CONFIG_RXDMA_EN);
/* Adjusting for the SBus clock probably isn't worth the fuzz. */
GEM_BANK1_WRITE_4(sc, GEM_RX_BLANKING,
((6 * (sc->sc_flags & GEM_PCI66) != 0 ? 2 : 1) <<
GEM_RX_BLANKING_TIME_SHIFT) | 6);
/*
* The following value is for an OFF Threshold of about 3/4 full
* and an ON Threshold of 1/4 full.
*/
GEM_BANK1_WRITE_4(sc, GEM_RX_PAUSE_THRESH,
(3 * sc->sc_rxfifosize / 256) |
((sc->sc_rxfifosize / 256) << 12));
/* step 11. Configure Media. */
/* step 12. RX_MAC Configuration Register */
v = GEM_BANK1_READ_4(sc, GEM_MAC_RX_CONFIG);
v &= ~GEM_MAC_RX_ENABLE;
v |= GEM_MAC_RX_STRIP_CRC;
sc->sc_mac_rxcfg = v;
/*
* Clear the RX filter and reprogram it. This will also set the
* current RX MAC configuration and enable it.
*/
gem_setladrf(sc);
/* step 13. TX_MAC Configuration Register */
v = GEM_BANK1_READ_4(sc, GEM_MAC_TX_CONFIG);
v |= GEM_MAC_TX_ENABLE;
(void)gem_disable_tx(sc);
GEM_BANK1_WRITE_4(sc, GEM_MAC_TX_CONFIG, v);
/* step 14. Issue Transmit Pending command. */
/* step 15. Give the receiver a swift kick. */
GEM_BANK1_WRITE_4(sc, GEM_RX_KICK, GEM_NRXDESC - 4);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
mii_mediachg(sc->sc_mii);
/* Start the one second timer. */
sc->sc_wdog_timer = 0;
callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
}
static int
gem_load_txmbuf(struct gem_softc *sc, struct mbuf **m_head)
{
bus_dma_segment_t txsegs[GEM_NTXSEGS];
struct gem_txsoft *txs;
struct ip *ip;
struct mbuf *m;
uint64_t cflags, flags;
int error, nexttx, nsegs, offset, seg;
GEM_LOCK_ASSERT(sc, MA_OWNED);
/* Get a work queue entry. */
if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
/* Ran out of descriptors. */
return (ENOBUFS);
}
cflags = 0;
if (((*m_head)->m_pkthdr.csum_flags & sc->sc_csum_features) != 0) {
if (M_WRITABLE(*m_head) == 0) {
m = m_dup(*m_head, M_NOWAIT);
m_freem(*m_head);
*m_head = m;
if (m == NULL)
return (ENOBUFS);
}
offset = sizeof(struct ether_header);
m = m_pullup(*m_head, offset + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, caddr_t) + offset);
offset += (ip->ip_hl << 2);
cflags = offset << GEM_TD_CXSUM_STARTSHFT |
((offset + m->m_pkthdr.csum_data) <<
GEM_TD_CXSUM_STUFFSHFT) | GEM_TD_CXSUM_ENABLE;
*m_head = m;
}
error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap,
*m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, GEM_NTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag,
txs->txs_dmamap, *m_head, txsegs, &nsegs,
BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
/* If nsegs is wrong then the stack is corrupt. */
KASSERT(nsegs <= GEM_NTXSEGS,
("%s: too many DMA segments (%d)", __func__, nsegs));
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/*
* Ensure we have enough descriptors free to describe
* the packet. Note, we always reserve one descriptor
* at the end of the ring as a termination point, in
* order to prevent wrap-around.
*/
if (nsegs > sc->sc_txfree - 1) {
txs->txs_ndescs = 0;
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
return (ENOBUFS);
}
txs->txs_ndescs = nsegs;
txs->txs_firstdesc = sc->sc_txnext;
nexttx = txs->txs_firstdesc;
for (seg = 0; seg < nsegs; seg++, nexttx = GEM_NEXTTX(nexttx)) {
#ifdef GEM_DEBUG
CTR6(KTR_GEM,
"%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)",
__func__, seg, nexttx, txsegs[seg].ds_len,
txsegs[seg].ds_addr,
GEM_DMA_WRITE(sc, txsegs[seg].ds_addr));
#endif
sc->sc_txdescs[nexttx].gd_addr =
GEM_DMA_WRITE(sc, txsegs[seg].ds_addr);
KASSERT(txsegs[seg].ds_len < GEM_TD_BUFSIZE,
("%s: segment size too large!", __func__));
flags = txsegs[seg].ds_len & GEM_TD_BUFSIZE;
sc->sc_txdescs[nexttx].gd_flags =
GEM_DMA_WRITE(sc, flags | cflags);
txs->txs_lastdesc = nexttx;
}
/* Set EOP on the last descriptor. */
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "%s: end of packet at segment %d, TX %d",
__func__, seg, nexttx);
#endif
sc->sc_txdescs[txs->txs_lastdesc].gd_flags |=
GEM_DMA_WRITE(sc, GEM_TD_END_OF_PACKET);
/* Lastly set SOP on the first descriptor. */
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "%s: start of packet at segment %d, TX %d",
__func__, seg, nexttx);
#endif
if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
sc->sc_txwin = 0;
sc->sc_txdescs[txs->txs_firstdesc].gd_flags |=
GEM_DMA_WRITE(sc, GEM_TD_INTERRUPT_ME |
GEM_TD_START_OF_PACKET);
} else
sc->sc_txdescs[txs->txs_firstdesc].gd_flags |=
GEM_DMA_WRITE(sc, GEM_TD_START_OF_PACKET);
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
BUS_DMASYNC_PREWRITE);
#ifdef GEM_DEBUG
CTR4(KTR_GEM, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d",
__func__, txs->txs_firstdesc, txs->txs_lastdesc,
txs->txs_ndescs);
#endif
STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
txs->txs_mbuf = *m_head;
sc->sc_txnext = GEM_NEXTTX(txs->txs_lastdesc);
sc->sc_txfree -= txs->txs_ndescs;
return (0);
}
static void
gem_init_regs(struct gem_softc *sc)
{
const u_char *laddr = IF_LLADDR(sc->sc_ifp);
GEM_LOCK_ASSERT(sc, MA_OWNED);
/* These registers are not cleared on reset. */
if ((sc->sc_flags & GEM_INITED) == 0) {
/* magic values */
GEM_BANK1_WRITE_4(sc, GEM_MAC_IPG0, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_IPG1, 8);
GEM_BANK1_WRITE_4(sc, GEM_MAC_IPG2, 4);
/* min frame length */
GEM_BANK1_WRITE_4(sc, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
/* max frame length and max burst size */
GEM_BANK1_WRITE_4(sc, GEM_MAC_MAC_MAX_FRAME,
(ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) | (0x2000 << 16));
/* more magic values */
GEM_BANK1_WRITE_4(sc, GEM_MAC_PREAMBLE_LEN, 0x7);
GEM_BANK1_WRITE_4(sc, GEM_MAC_JAM_SIZE, 0x4);
GEM_BANK1_WRITE_4(sc, GEM_MAC_ATTEMPT_LIMIT, 0x10);
GEM_BANK1_WRITE_4(sc, GEM_MAC_CONTROL_TYPE, 0x8808);
/* random number seed */
GEM_BANK1_WRITE_4(sc, GEM_MAC_RANDOM_SEED,
((laddr[5] << 8) | laddr[4]) & 0x3ff);
/* secondary MAC address: 0:0:0:0:0:0 */
GEM_BANK1_WRITE_4(sc, GEM_MAC_ADDR3, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_ADDR4, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_ADDR5, 0);
/* MAC control address: 01:80:c2:00:00:01 */
GEM_BANK1_WRITE_4(sc, GEM_MAC_ADDR6, 0x0001);
GEM_BANK1_WRITE_4(sc, GEM_MAC_ADDR7, 0xc200);
GEM_BANK1_WRITE_4(sc, GEM_MAC_ADDR8, 0x0180);
/* MAC filter address: 0:0:0:0:0:0 */
GEM_BANK1_WRITE_4(sc, GEM_MAC_ADDR_FILTER0, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_ADDR_FILTER1, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_ADDR_FILTER2, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_ADR_FLT_MASK1_2, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_ADR_FLT_MASK0, 0);
sc->sc_flags |= GEM_INITED;
}
/* Counters need to be zeroed. */
GEM_BANK1_WRITE_4(sc, GEM_MAC_NORM_COLL_CNT, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_FIRST_COLL_CNT, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_EXCESS_COLL_CNT, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_LATE_COLL_CNT, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_DEFER_TMR_CNT, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_PEAK_ATTEMPTS, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_FRAME_COUNT, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_LEN_ERR_CNT, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_ALIGN_ERR, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_CRC_ERR_CNT, 0);
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_CODE_VIOL, 0);
/* Set XOFF PAUSE time. */
GEM_BANK1_WRITE_4(sc, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
/* Set the station address. */
GEM_BANK1_WRITE_4(sc, GEM_MAC_ADDR0, (laddr[4] << 8) | laddr[5]);
GEM_BANK1_WRITE_4(sc, GEM_MAC_ADDR1, (laddr[2] << 8) | laddr[3]);
GEM_BANK1_WRITE_4(sc, GEM_MAC_ADDR2, (laddr[0] << 8) | laddr[1]);
/* Enable MII outputs. */
GEM_BANK1_WRITE_4(sc, GEM_MAC_XIF_CONFIG, GEM_MAC_XIF_TX_MII_ENA);
}
static void
gem_start(struct ifnet *ifp)
{
struct gem_softc *sc = ifp->if_softc;
GEM_LOCK(sc);
gem_start_locked(ifp);
GEM_UNLOCK(sc);
}
static inline void
gem_txkick(struct gem_softc *sc)
{
/*
* Update the TX kick register. This register has to point to the
* descriptor after the last valid one and for optimum performance
* should be incremented in multiples of 4 (the DMA engine fetches/
* updates descriptors in batches of 4).
*/
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "%s: %s: kicking TX %d",
device_get_name(sc->sc_dev), __func__, sc->sc_txnext);
#endif
GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
GEM_BANK1_WRITE_4(sc, GEM_TX_KICK, sc->sc_txnext);
}
static void
gem_start_locked(struct ifnet *ifp)
{
struct gem_softc *sc = ifp->if_softc;
struct mbuf *m;
int kicked, ntx;
GEM_LOCK_ASSERT(sc, MA_OWNED);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->sc_flags & GEM_LINK) == 0)
return;
#ifdef GEM_DEBUG
CTR4(KTR_GEM, "%s: %s: txfree %d, txnext %d",
device_get_name(sc->sc_dev), __func__, sc->sc_txfree,
sc->sc_txnext);
#endif
ntx = 0;
kicked = 0;
for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->sc_txfree > 1;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (gem_load_txmbuf(sc, &m) != 0) {
if (m == NULL)
break;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IFQ_DRV_PREPEND(&ifp->if_snd, m);
break;
}
if ((sc->sc_txnext % 4) == 0) {
gem_txkick(sc);
kicked = 1;
} else
kicked = 0;
ntx++;
BPF_MTAP(ifp, m);
}
if (ntx > 0) {
if (kicked == 0)
gem_txkick(sc);
#ifdef GEM_DEBUG
CTR2(KTR_GEM, "%s: packets enqueued, OWN on %d",
device_get_name(sc->sc_dev), sc->sc_txnext);
#endif
/* Set a watchdog timer in case the chip flakes out. */
sc->sc_wdog_timer = 5;
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "%s: %s: watchdog %d",
device_get_name(sc->sc_dev), __func__,
sc->sc_wdog_timer);
#endif
}
}
static void
gem_tint(struct gem_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct gem_txsoft *txs;
int progress;
uint32_t txlast;
#ifdef GEM_DEBUG
int i;
GEM_LOCK_ASSERT(sc, MA_OWNED);
CTR2(KTR_GEM, "%s: %s", device_get_name(sc->sc_dev), __func__);
#endif
/*
* Go through our TX list and free mbufs for those
* frames that have been transmitted.
*/
progress = 0;
GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
#ifdef GEM_DEBUG
if ((ifp->if_flags & IFF_DEBUG) != 0) {
printf(" txsoft %p transmit chain:\n", txs);
for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
printf("descriptor %d: ", i);
printf("gd_flags: 0x%016llx\t",
(long long)GEM_DMA_READ(sc,
sc->sc_txdescs[i].gd_flags));
printf("gd_addr: 0x%016llx\n",
(long long)GEM_DMA_READ(sc,
sc->sc_txdescs[i].gd_addr));
if (i == txs->txs_lastdesc)
break;
}
}
#endif
/*
* In theory, we could harvest some descriptors before
* the ring is empty, but that's a bit complicated.
*
* GEM_TX_COMPLETION points to the last descriptor
* processed + 1.
*/
txlast = GEM_BANK1_READ_4(sc, GEM_TX_COMPLETION);
#ifdef GEM_DEBUG
CTR4(KTR_GEM, "%s: txs->txs_firstdesc = %d, "
"txs->txs_lastdesc = %d, txlast = %d",
__func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast);
#endif
if (txs->txs_firstdesc <= txs->txs_lastdesc) {
if ((txlast >= txs->txs_firstdesc) &&
(txlast <= txs->txs_lastdesc))
break;
} else {
/* Ick -- this command wraps. */
if ((txlast >= txs->txs_firstdesc) ||
(txlast <= txs->txs_lastdesc))
break;
}
#ifdef GEM_DEBUG
CTR1(KTR_GEM, "%s: releasing a descriptor", __func__);
#endif
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
sc->sc_txfree += txs->txs_ndescs;
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
if (txs->txs_mbuf != NULL) {
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
ifp->if_opackets++;
progress = 1;
}
#ifdef GEM_DEBUG
CTR4(KTR_GEM, "%s: GEM_TX_STATE_MACHINE %x GEM_TX_DATA_PTR %llx "
"GEM_TX_COMPLETION %x",
__func__, GEM_BANK1_READ_4(sc, GEM_TX_STATE_MACHINE),
((long long)GEM_BANK1_READ_4(sc, GEM_TX_DATA_PTR_HI) << 32) |
GEM_BANK1_READ_4(sc, GEM_TX_DATA_PTR_LO),
GEM_BANK1_READ_4(sc, GEM_TX_COMPLETION));
#endif
if (progress) {
if (sc->sc_txfree == GEM_NTXDESC - 1)
sc->sc_txwin = 0;
/*
* We freed some descriptors, so reset IFF_DRV_OACTIVE
* and restart.
*/
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (STAILQ_EMPTY(&sc->sc_txdirtyq))
sc->sc_wdog_timer = 0;
gem_start_locked(ifp);
}
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "%s: %s: watchdog %d",
device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer);
#endif
}
#ifdef GEM_RINT_TIMEOUT
static void
gem_rint_timeout(void *arg)
{
struct gem_softc *sc = arg;
GEM_LOCK_ASSERT(sc, MA_OWNED);
gem_rint(sc);
}
#endif
static void
gem_rint(struct gem_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct mbuf *m;
uint64_t rxstat;
uint32_t rxcomp;
GEM_LOCK_ASSERT(sc, MA_OWNED);
#ifdef GEM_RINT_TIMEOUT
callout_stop(&sc->sc_rx_ch);
#endif
#ifdef GEM_DEBUG
CTR2(KTR_GEM, "%s: %s", device_get_name(sc->sc_dev), __func__);
#endif
/*
* Read the completion register once. This limits
* how long the following loop can execute.
*/
rxcomp = GEM_BANK1_READ_4(sc, GEM_RX_COMPLETION);
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "%s: sc->sc_rxptr %d, complete %d",
__func__, sc->sc_rxptr, rxcomp);
#endif
GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (; sc->sc_rxptr != rxcomp;) {
m = sc->sc_rxsoft[sc->sc_rxptr].rxs_mbuf;
rxstat = GEM_DMA_READ(sc,
sc->sc_rxdescs[sc->sc_rxptr].gd_flags);
if (rxstat & GEM_RD_OWN) {
#ifdef GEM_RINT_TIMEOUT
/*
* The descriptor is still marked as owned, although
* it is supposed to have completed. This has been
* observed on some machines. Just exiting here
* might leave the packet sitting around until another
* one arrives to trigger a new interrupt, which is
* generally undesirable, so set up a timeout.
*/
callout_reset(&sc->sc_rx_ch, GEM_RXOWN_TICKS,
gem_rint_timeout, sc);
#endif
m = NULL;
goto kickit;
}
if (rxstat & GEM_RD_BAD_CRC) {
ifp->if_ierrors++;
device_printf(sc->sc_dev, "receive error: CRC error\n");
GEM_INIT_RXDESC(sc, sc->sc_rxptr);
m = NULL;
goto kickit;
}
#ifdef GEM_DEBUG
if ((ifp->if_flags & IFF_DEBUG) != 0) {
printf(" rxsoft %p descriptor %d: ",
&sc->sc_rxsoft[sc->sc_rxptr], sc->sc_rxptr);
printf("gd_flags: 0x%016llx\t",
(long long)GEM_DMA_READ(sc,
sc->sc_rxdescs[sc->sc_rxptr].gd_flags));
printf("gd_addr: 0x%016llx\n",
(long long)GEM_DMA_READ(sc,
sc->sc_rxdescs[sc->sc_rxptr].gd_addr));
}
#endif
/*
* Allocate a new mbuf cluster. If that fails, we are
* out of memory, and must drop the packet and recycle
* the buffer that's already attached to this descriptor.
*/
if (gem_add_rxbuf(sc, sc->sc_rxptr) != 0) {
ifp->if_iqdrops++;
GEM_INIT_RXDESC(sc, sc->sc_rxptr);
m = NULL;
}
kickit:
/*
* Update the RX kick register. This register has to point
* to the descriptor after the last valid one (before the
* current batch) and for optimum performance should be
* incremented in multiples of 4 (the DMA engine fetches/
* updates descriptors in batches of 4).
*/
sc->sc_rxptr = GEM_NEXTRX(sc->sc_rxptr);
if ((sc->sc_rxptr % 4) == 0) {
GEM_CDSYNC(sc,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
GEM_BANK1_WRITE_4(sc, GEM_RX_KICK,
(sc->sc_rxptr + GEM_NRXDESC - 4) &
GEM_NRXDESC_MASK);
}
if (m == NULL) {
if (rxstat & GEM_RD_OWN)
break;
continue;
}
ifp->if_ipackets++;
m->m_data += ETHER_ALIGN; /* first byte offset */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = GEM_RD_BUFLEN(rxstat);
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
gem_rxcksum(m, rxstat);
/* Pass it on. */
GEM_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
GEM_LOCK(sc);
}
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "%s: done sc->sc_rxptr %d, complete %d", __func__,
sc->sc_rxptr, GEM_BANK1_READ_4(sc, GEM_RX_COMPLETION));
#endif
}
static int
gem_add_rxbuf(struct gem_softc *sc, int idx)
{
struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
bus_dma_segment_t segs[1];
int error, nsegs;
GEM_LOCK_ASSERT(sc, MA_OWNED);
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
#ifdef GEM_DEBUG
/* Bzero the packet to check DMA. */
memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
#endif
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap);
}
error = bus_dmamap_load_mbuf_sg(sc->sc_rdmatag, rxs->rxs_dmamap,
m, segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"cannot load RS DMA map %d, error = %d\n", idx, error);
m_freem(m);
return (error);
}
/* If nsegs is wrong then the stack is corrupt. */
KASSERT(nsegs == 1,
("%s: too many DMA segments (%d)", __func__, nsegs));
rxs->rxs_mbuf = m;
rxs->rxs_paddr = segs[0].ds_addr;
bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap,
BUS_DMASYNC_PREREAD);
GEM_INIT_RXDESC(sc, idx);
return (0);
}
static void
gem_eint(struct gem_softc *sc, u_int status)
{
sc->sc_ifp->if_ierrors++;
if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
gem_reset_rxdma(sc);
return;
}
device_printf(sc->sc_dev, "%s: status 0x%x", __func__, status);
if ((status & GEM_INTR_BERR) != 0) {
if ((sc->sc_flags & GEM_PCI) != 0)
printf(", PCI bus error 0x%x\n",
GEM_BANK1_READ_4(sc, GEM_PCI_ERROR_STATUS));
else
printf(", SBus error 0x%x\n",
GEM_BANK1_READ_4(sc, GEM_SBUS_STATUS));
}
}
void
gem_intr(void *v)
{
struct gem_softc *sc = v;
uint32_t status, status2;
GEM_LOCK(sc);
status = GEM_BANK1_READ_4(sc, GEM_STATUS);
#ifdef GEM_DEBUG
CTR4(KTR_GEM, "%s: %s: cplt %x, status %x",
device_get_name(sc->sc_dev), __func__,
(status >> GEM_STATUS_TX_COMPLETION_SHFT), (u_int)status);
/*
* PCS interrupts must be cleared, otherwise no traffic is passed!
*/
if ((status & GEM_INTR_PCS) != 0) {
status2 =
GEM_BANK1_READ_4(sc, GEM_MII_INTERRUP_STATUS) |
GEM_BANK1_READ_4(sc, GEM_MII_INTERRUP_STATUS);
if ((status2 & GEM_MII_INTERRUP_LINK) != 0)
device_printf(sc->sc_dev,
"%s: PCS link status changed\n", __func__);
}
if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
status2 = GEM_BANK1_READ_4(sc, GEM_MAC_CONTROL_STATUS);
if ((status2 & GEM_MAC_PAUSED) != 0)
device_printf(sc->sc_dev,
"%s: PAUSE received (PAUSE time %d slots)\n",
__func__, GEM_MAC_PAUSE_TIME(status2));
if ((status2 & GEM_MAC_PAUSE) != 0)
device_printf(sc->sc_dev,
"%s: transited to PAUSE state\n", __func__);
if ((status2 & GEM_MAC_RESUME) != 0)
device_printf(sc->sc_dev,
"%s: transited to non-PAUSE state\n", __func__);
}
if ((status & GEM_INTR_MIF) != 0)
device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__);
#endif
if (__predict_false(status &
(GEM_INTR_RX_TAG_ERR | GEM_INTR_PERR | GEM_INTR_BERR)) != 0)
gem_eint(sc, status);
if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
gem_rint(sc);
if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0)
gem_tint(sc);
if (__predict_false((status & GEM_INTR_TX_MAC) != 0)) {
status2 = GEM_BANK1_READ_4(sc, GEM_MAC_TX_STATUS);
if ((status2 &
~(GEM_MAC_TX_XMIT_DONE | GEM_MAC_TX_DEFER_EXP |
GEM_MAC_TX_PEAK_EXP)) != 0)
device_printf(sc->sc_dev,
"MAC TX fault, status %x\n", status2);
if ((status2 &
(GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG)) != 0) {
sc->sc_ifp->if_oerrors++;
sc->sc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
gem_init_locked(sc);
}
}
if (__predict_false((status & GEM_INTR_RX_MAC) != 0)) {
status2 = GEM_BANK1_READ_4(sc, GEM_MAC_RX_STATUS);
/*
* At least with GEM_SUN_GEM and some GEM_SUN_ERI
* revisions GEM_MAC_RX_OVERFLOW happen often due to a
* silicon bug so handle them silently. Moreover, it's
* likely that the receiver has hung so we reset it.
*/
if ((status2 & GEM_MAC_RX_OVERFLOW) != 0) {
sc->sc_ifp->if_ierrors++;
gem_reset_rxdma(sc);
} else if ((status2 &
~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT)) != 0)
device_printf(sc->sc_dev,
"MAC RX fault, status %x\n", status2);
}
GEM_UNLOCK(sc);
}
static int
gem_watchdog(struct gem_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
GEM_LOCK_ASSERT(sc, MA_OWNED);
#ifdef GEM_DEBUG
CTR4(KTR_GEM,
"%s: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x GEM_MAC_RX_CONFIG %x",
__func__, GEM_BANK1_READ_4(sc, GEM_RX_CONFIG),
GEM_BANK1_READ_4(sc, GEM_MAC_RX_STATUS),
GEM_BANK1_READ_4(sc, GEM_MAC_RX_CONFIG));
CTR4(KTR_GEM,
"%s: GEM_TX_CONFIG %x GEM_MAC_TX_STATUS %x GEM_MAC_TX_CONFIG %x",
__func__, GEM_BANK1_READ_4(sc, GEM_TX_CONFIG),
GEM_BANK1_READ_4(sc, GEM_MAC_TX_STATUS),
GEM_BANK1_READ_4(sc, GEM_MAC_TX_CONFIG));
#endif
if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
return (0);
if ((sc->sc_flags & GEM_LINK) != 0)
device_printf(sc->sc_dev, "device timeout\n");
else if (bootverbose)
device_printf(sc->sc_dev, "device timeout (no link)\n");
++ifp->if_oerrors;
/* Try to get more packets going. */
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
gem_init_locked(sc);
gem_start_locked(ifp);
return (EJUSTRETURN);
}
static void
gem_mifinit(struct gem_softc *sc)
{
/* Configure the MIF in frame mode. */
GEM_BANK1_WRITE_4(sc, GEM_MIF_CONFIG,
GEM_BANK1_READ_4(sc, GEM_MIF_CONFIG) & ~GEM_MIF_CONFIG_BB_ENA);
GEM_BANK1_BARRIER(sc, GEM_MIF_CONFIG, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
/*
* MII interface
*
* The MII interface supports at least three different operating modes:
*
* Bitbang mode is implemented using data, clock and output enable registers.
*
* Frame mode is implemented by loading a complete frame into the frame
* register and polling the valid bit for completion.
*
* Polling mode uses the frame register but completion is indicated by
* an interrupt.
*
*/
int
gem_mii_readreg(device_t dev, int phy, int reg)
{
struct gem_softc *sc;
int n;
uint32_t v;
#ifdef GEM_DEBUG_PHY
printf("%s: phy %d reg %d\n", __func__, phy, reg);
#endif
sc = device_get_softc(dev);
if ((sc->sc_flags & GEM_SERDES) != 0) {
switch (reg) {
case MII_BMCR:
reg = GEM_MII_CONTROL;
break;
case MII_BMSR:
reg = GEM_MII_STATUS;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
return (0);
case MII_ANAR:
reg = GEM_MII_ANAR;
break;
case MII_ANLPAR:
reg = GEM_MII_ANLPAR;
break;
case MII_EXTSR:
return (EXTSR_1000XFDX | EXTSR_1000XHDX);
default:
device_printf(sc->sc_dev,
"%s: unhandled register %d\n", __func__, reg);
return (0);
}
return (GEM_BANK1_READ_4(sc, reg));
}
/* Construct the frame command. */
v = GEM_MIF_FRAME_READ |
(phy << GEM_MIF_PHY_SHIFT) |
(reg << GEM_MIF_REG_SHIFT);
GEM_BANK1_WRITE_4(sc, GEM_MIF_FRAME, v);
GEM_BANK1_BARRIER(sc, GEM_MIF_FRAME, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
for (n = 0; n < 100; n++) {
DELAY(1);
v = GEM_BANK1_READ_4(sc, GEM_MIF_FRAME);
if (v & GEM_MIF_FRAME_TA0)
return (v & GEM_MIF_FRAME_DATA);
}
device_printf(sc->sc_dev, "%s: timed out\n", __func__);
return (0);
}
int
gem_mii_writereg(device_t dev, int phy, int reg, int val)
{
struct gem_softc *sc;
int n;
uint32_t v;
#ifdef GEM_DEBUG_PHY
printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__);
#endif
sc = device_get_softc(dev);
if ((sc->sc_flags & GEM_SERDES) != 0) {
switch (reg) {
case MII_BMSR:
reg = GEM_MII_STATUS;
break;
case MII_BMCR:
reg = GEM_MII_CONTROL;
if ((val & GEM_MII_CONTROL_RESET) == 0)
break;
GEM_BANK1_WRITE_4(sc, GEM_MII_CONTROL, val);
GEM_BANK1_BARRIER(sc, GEM_MII_CONTROL, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (!GEM_BANK1_BITWAIT(sc, GEM_MII_CONTROL,
GEM_MII_CONTROL_RESET, 0))
device_printf(sc->sc_dev,
"cannot reset PCS\n");
/* FALLTHROUGH */
case MII_ANAR:
GEM_BANK1_WRITE_4(sc, GEM_MII_CONFIG, 0);
GEM_BANK1_BARRIER(sc, GEM_MII_CONFIG, 4,
BUS_SPACE_BARRIER_WRITE);
GEM_BANK1_WRITE_4(sc, GEM_MII_ANAR, val);
GEM_BANK1_BARRIER(sc, GEM_MII_ANAR, 4,
BUS_SPACE_BARRIER_WRITE);
GEM_BANK1_WRITE_4(sc, GEM_MII_SLINK_CONTROL,
GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_EN_SYNC_D);
GEM_BANK1_BARRIER(sc, GEM_MII_SLINK_CONTROL, 4,
BUS_SPACE_BARRIER_WRITE);
GEM_BANK1_WRITE_4(sc, GEM_MII_CONFIG,
GEM_MII_CONFIG_ENABLE);
GEM_BANK1_BARRIER(sc, GEM_MII_CONFIG, 4,
BUS_SPACE_BARRIER_WRITE);
return (0);
case MII_ANLPAR:
reg = GEM_MII_ANLPAR;
break;
default:
device_printf(sc->sc_dev,
"%s: unhandled register %d\n", __func__, reg);
return (0);
}
GEM_BANK1_WRITE_4(sc, reg, val);
GEM_BANK1_BARRIER(sc, reg, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (0);
}
/* Construct the frame command. */
v = GEM_MIF_FRAME_WRITE |
(phy << GEM_MIF_PHY_SHIFT) |
(reg << GEM_MIF_REG_SHIFT) |
(val & GEM_MIF_FRAME_DATA);
GEM_BANK1_WRITE_4(sc, GEM_MIF_FRAME, v);
GEM_BANK1_BARRIER(sc, GEM_MIF_FRAME, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
for (n = 0; n < 100; n++) {
DELAY(1);
v = GEM_BANK1_READ_4(sc, GEM_MIF_FRAME);
if (v & GEM_MIF_FRAME_TA0)
return (1);
}
device_printf(sc->sc_dev, "%s: timed out\n", __func__);
return (0);
}
void
gem_mii_statchg(device_t dev)
{
struct gem_softc *sc;
int gigabit;
uint32_t rxcfg, txcfg, v;
sc = device_get_softc(dev);
GEM_LOCK_ASSERT(sc, MA_OWNED);
#ifdef GEM_DEBUG
if ((sc->sc_ifp->if_flags & IFF_DEBUG) != 0)
device_printf(sc->sc_dev, "%s: status change\n", __func__);
#endif
if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 &&
IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE)
sc->sc_flags |= GEM_LINK;
else
sc->sc_flags &= ~GEM_LINK;
switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) {
case IFM_1000_SX:
case IFM_1000_LX:
case IFM_1000_CX:
case IFM_1000_T:
gigabit = 1;
break;
default:
gigabit = 0;
}
/*
* The configuration done here corresponds to the steps F) and
* G) and as far as enabling of RX and TX MAC goes also step H)
* of the initialization sequence outlined in section 3.2.1 of
* the GEM Gigabit Ethernet ASIC Specification.
*/
rxcfg = sc->sc_mac_rxcfg;
rxcfg &= ~GEM_MAC_RX_CARR_EXTEND;
txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
else if (gigabit != 0) {
rxcfg |= GEM_MAC_RX_CARR_EXTEND;
txcfg |= GEM_MAC_TX_CARR_EXTEND;
}
(void)gem_disable_tx(sc);
GEM_BANK1_WRITE_4(sc, GEM_MAC_TX_CONFIG, txcfg);
(void)gem_disable_rx(sc);
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_CONFIG, rxcfg);
v = GEM_BANK1_READ_4(sc, GEM_MAC_CONTROL_CONFIG) &
~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
IFM_ETH_RXPAUSE) != 0)
v |= GEM_MAC_CC_RX_PAUSE;
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
IFM_ETH_TXPAUSE) != 0)
v |= GEM_MAC_CC_TX_PAUSE;
GEM_BANK1_WRITE_4(sc, GEM_MAC_CONTROL_CONFIG, v);
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 &&
gigabit != 0)
GEM_BANK1_WRITE_4(sc, GEM_MAC_SLOT_TIME,
GEM_MAC_SLOT_TIME_CARR_EXTEND);
else
GEM_BANK1_WRITE_4(sc, GEM_MAC_SLOT_TIME,
GEM_MAC_SLOT_TIME_NORMAL);
/* XIF Configuration */
v = GEM_MAC_XIF_LINK_LED;
v |= GEM_MAC_XIF_TX_MII_ENA;
if ((sc->sc_flags & GEM_SERDES) == 0) {
if ((GEM_BANK1_READ_4(sc, GEM_MIF_CONFIG) &
GEM_MIF_CONFIG_PHY_SEL) != 0) {
/* External MII needs echo disable if half duplex. */
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
IFM_FDX) == 0)
v |= GEM_MAC_XIF_ECHO_DISABL;
} else
/*
* Internal MII needs buffer enable.
* XXX buffer enable makes only sense for an
* external PHY.
*/
v |= GEM_MAC_XIF_MII_BUF_ENA;
}
if (gigabit != 0)
v |= GEM_MAC_XIF_GMII_MODE;
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
v |= GEM_MAC_XIF_FDPLX_LED;
GEM_BANK1_WRITE_4(sc, GEM_MAC_XIF_CONFIG, v);
sc->sc_mac_rxcfg = rxcfg;
if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
(sc->sc_flags & GEM_LINK) != 0) {
GEM_BANK1_WRITE_4(sc, GEM_MAC_TX_CONFIG,
txcfg | GEM_MAC_TX_ENABLE);
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_CONFIG,
rxcfg | GEM_MAC_RX_ENABLE);
}
}
int
gem_mediachange(struct ifnet *ifp)
{
struct gem_softc *sc = ifp->if_softc;
int error;
/* XXX add support for serial media. */
GEM_LOCK(sc);
error = mii_mediachg(sc->sc_mii);
GEM_UNLOCK(sc);
return (error);
}
void
gem_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct gem_softc *sc = ifp->if_softc;
GEM_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
GEM_UNLOCK(sc);
return;
}
mii_pollstat(sc->sc_mii);
ifmr->ifm_active = sc->sc_mii->mii_media_active;
ifmr->ifm_status = sc->sc_mii->mii_media_status;
GEM_UNLOCK(sc);
}
static int
gem_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct gem_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int error;
error = 0;
switch (cmd) {
case SIOCSIFFLAGS:
GEM_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->sc_ifflags) &
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
gem_setladrf(sc);
else
gem_init_locked(sc);
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
gem_stop(ifp, 0);
if ((ifp->if_flags & IFF_LINK0) != 0)
sc->sc_csum_features |= CSUM_UDP;
else
sc->sc_csum_features &= ~CSUM_UDP;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist = sc->sc_csum_features;
sc->sc_ifflags = ifp->if_flags;
GEM_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
GEM_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
gem_setladrf(sc);
GEM_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
break;
case SIOCSIFCAP:
GEM_LOCK(sc);
ifp->if_capenable = ifr->ifr_reqcap;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist = sc->sc_csum_features;
else
ifp->if_hwassist = 0;
GEM_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
gem_setladrf(struct gem_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ifmultiaddr *inm;
int i;
uint32_t hash[16];
uint32_t crc, v;
GEM_LOCK_ASSERT(sc, MA_OWNED);
/*
* Turn off the RX MAC and the hash filter as required by the Sun GEM
* programming restrictions.
*/
v = sc->sc_mac_rxcfg & ~GEM_MAC_RX_HASH_FILTER;
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_CONFIG, v);
GEM_BANK1_BARRIER(sc, GEM_MAC_RX_CONFIG, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (!GEM_BANK1_BITWAIT(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_HASH_FILTER |
GEM_MAC_RX_ENABLE, 0))
device_printf(sc->sc_dev,
"cannot disable RX MAC or hash filter\n");
v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_PROMISC_GRP);
if ((ifp->if_flags & IFF_PROMISC) != 0) {
v |= GEM_MAC_RX_PROMISCUOUS;
goto chipit;
}
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
v |= GEM_MAC_RX_PROMISC_GRP;
goto chipit;
}
/*
* Set up multicast address filter by passing all multicast
* addresses through a crc generator, and then using the high
* order 8 bits as an index into the 256 bit logical address
* filter. The high order 4 bits selects the word, while the
* other 4 bits select the bit within the word (where bit 0
* is the MSB).
*/
/* Clear the hash table. */
memset(hash, 0, sizeof(hash));
if_maddr_rlock(ifp);
TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) {
if (inm->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
inm->ifma_addr), ETHER_ADDR_LEN);
/* We just want the 8 most significant bits. */
crc >>= 24;
/* Set the corresponding bit in the filter. */
hash[crc >> 4] |= 1 << (15 - (crc & 15));
}
if_maddr_runlock(ifp);
v |= GEM_MAC_RX_HASH_FILTER;
/* Now load the hash table into the chip (if we are using it). */
for (i = 0; i < 16; i++)
GEM_BANK1_WRITE_4(sc,
GEM_MAC_HASH0 + i * (GEM_MAC_HASH1 - GEM_MAC_HASH0),
hash[i]);
chipit:
sc->sc_mac_rxcfg = v;
GEM_BANK1_WRITE_4(sc, GEM_MAC_RX_CONFIG, v | GEM_MAC_RX_ENABLE);
}