1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-20 11:11:24 +00:00
freebsd/lib/libmemstat/memstat_uma.c
Robert Watson 10b037c1d9 Update copyright for 2006.
MFC after:	3 days
2006-02-11 19:21:39 +00:00

466 lines
12 KiB
C

/*-
* Copyright (c) 2005-2006 Robert N. M. Watson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/sysctl.h>
#define LIBMEMSTAT /* Cause vm_page.h not to include opt_vmpage.h */
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/uma.h>
#include <vm/uma_int.h>
#include <err.h>
#include <errno.h>
#include <kvm.h>
#include <nlist.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "memstat.h"
#include "memstat_internal.h"
static struct nlist namelist[] = {
#define X_UMA_KEGS 0
{ .n_name = "_uma_kegs" },
#define X_MP_MAXID 1
{ .n_name = "_mp_maxid" },
#define X_ALL_CPUS 2
{ .n_name = "_all_cpus" },
{ .n_name = "" },
};
/*
* Extract uma(9) statistics from the running kernel, and store all memory
* type information in the passed list. For each type, check the list for an
* existing entry with the right name/allocator -- if present, update that
* entry. Otherwise, add a new entry. On error, the entire list will be
* cleared, as entries will be in an inconsistent state.
*
* To reduce the level of work for a list that starts empty, we keep around a
* hint as to whether it was empty when we began, so we can avoid searching
* the list for entries to update. Updates are O(n^2) due to searching for
* each entry before adding it.
*/
int
memstat_sysctl_uma(struct memory_type_list *list, int flags)
{
struct uma_stream_header *ushp;
struct uma_type_header *uthp;
struct uma_percpu_stat *upsp;
struct memory_type *mtp;
int count, hint_dontsearch, i, j, maxcpus;
char *buffer, *p;
size_t size;
hint_dontsearch = LIST_EMPTY(&list->mtl_list);
/*
* Query the number of CPUs, number of malloc types so that we can
* guess an initial buffer size. We loop until we succeed or really
* fail. Note that the value of maxcpus we query using sysctl is not
* the version we use when processing the real data -- that is read
* from the header.
*/
retry:
size = sizeof(maxcpus);
if (sysctlbyname("kern.smp.maxcpus", &maxcpus, &size, NULL, 0) < 0) {
if (errno == EACCES || errno == EPERM)
list->mtl_error = MEMSTAT_ERROR_PERMISSION;
else
list->mtl_error = MEMSTAT_ERROR_DATAERROR;
return (-1);
}
if (size != sizeof(maxcpus)) {
list->mtl_error = MEMSTAT_ERROR_DATAERROR;
return (-1);
}
if (maxcpus > MEMSTAT_MAXCPU) {
list->mtl_error = MEMSTAT_ERROR_TOOMANYCPUS;
return (-1);
}
size = sizeof(count);
if (sysctlbyname("vm.zone_count", &count, &size, NULL, 0) < 0) {
if (errno == EACCES || errno == EPERM)
list->mtl_error = MEMSTAT_ERROR_PERMISSION;
else
list->mtl_error = MEMSTAT_ERROR_VERSION;
return (-1);
}
if (size != sizeof(count)) {
list->mtl_error = MEMSTAT_ERROR_DATAERROR;
return (-1);
}
size = sizeof(*uthp) + count * (sizeof(*uthp) + sizeof(*upsp) *
maxcpus);
buffer = malloc(size);
if (buffer == NULL) {
list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
return (-1);
}
if (sysctlbyname("vm.zone_stats", buffer, &size, NULL, 0) < 0) {
/*
* XXXRW: ENOMEM is an ambiguous return, we should bound the
* number of loops, perhaps.
*/
if (errno == ENOMEM) {
free(buffer);
goto retry;
}
if (errno == EACCES || errno == EPERM)
list->mtl_error = MEMSTAT_ERROR_PERMISSION;
else
list->mtl_error = MEMSTAT_ERROR_VERSION;
free(buffer);
return (-1);
}
if (size == 0) {
free(buffer);
return (0);
}
if (size < sizeof(*ushp)) {
list->mtl_error = MEMSTAT_ERROR_VERSION;
free(buffer);
return (-1);
}
p = buffer;
ushp = (struct uma_stream_header *)p;
p += sizeof(*ushp);
if (ushp->ush_version != UMA_STREAM_VERSION) {
list->mtl_error = MEMSTAT_ERROR_VERSION;
free(buffer);
return (-1);
}
if (ushp->ush_maxcpus > MEMSTAT_MAXCPU) {
list->mtl_error = MEMSTAT_ERROR_TOOMANYCPUS;
free(buffer);
return (-1);
}
/*
* For the remainder of this function, we are quite trusting about
* the layout of structures and sizes, since we've determined we have
* a matching version and acceptable CPU count.
*/
maxcpus = ushp->ush_maxcpus;
count = ushp->ush_count;
for (i = 0; i < count; i++) {
uthp = (struct uma_type_header *)p;
p += sizeof(*uthp);
if (hint_dontsearch == 0) {
mtp = memstat_mtl_find(list, ALLOCATOR_UMA,
uthp->uth_name);
} else
mtp = NULL;
if (mtp == NULL)
mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA,
uthp->uth_name);
if (mtp == NULL) {
_memstat_mtl_empty(list);
free(buffer);
list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
return (-1);
}
/*
* Reset the statistics on a current node.
*/
_memstat_mt_reset_stats(mtp);
mtp->mt_numallocs = uthp->uth_allocs;
mtp->mt_numfrees = uthp->uth_frees;
mtp->mt_failures = uthp->uth_fails;
for (j = 0; j < maxcpus; j++) {
upsp = (struct uma_percpu_stat *)p;
p += sizeof(*upsp);
mtp->mt_percpu_cache[j].mtp_free =
upsp->ups_cache_free;
mtp->mt_free += upsp->ups_cache_free;
mtp->mt_numallocs += upsp->ups_allocs;
mtp->mt_numfrees += upsp->ups_frees;
}
mtp->mt_size = uthp->uth_size;
mtp->mt_memalloced = mtp->mt_numallocs * uthp->uth_size;
mtp->mt_memfreed = mtp->mt_numfrees * uthp->uth_size;
mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
mtp->mt_countlimit = uthp->uth_limit;
mtp->mt_byteslimit = uthp->uth_limit * uthp->uth_size;
mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
mtp->mt_zonefree = uthp->uth_zone_free;
/*
* UMA secondary zones share a keg with the primary zone. To
* avoid double-reporting of free items, report keg free
* items only in the primary zone.
*/
if (!(uthp->uth_zone_flags & UTH_ZONE_SECONDARY)) {
mtp->mt_kegfree = uthp->uth_keg_free;
mtp->mt_free += mtp->mt_kegfree;
}
mtp->mt_free += mtp->mt_zonefree;
}
free(buffer);
return (0);
}
static int
kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size,
size_t offset)
{
ssize_t ret;
ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address,
size);
if (ret < 0)
return (MEMSTAT_ERROR_KVM);
if ((size_t)ret != size)
return (MEMSTAT_ERROR_KVM_SHORTREAD);
return (0);
}
static int
kread_string(kvm_t *kvm, void *kvm_pointer, char *buffer, int buflen)
{
ssize_t ret;
int i;
for (i = 0; i < buflen; i++) {
ret = kvm_read(kvm, (unsigned long)kvm_pointer + i,
&(buffer[i]), sizeof(char));
if (ret < 0)
return (MEMSTAT_ERROR_KVM);
if ((size_t)ret != sizeof(char))
return (MEMSTAT_ERROR_KVM_SHORTREAD);
if (buffer[i] == '\0')
return (0);
}
/* Truncate. */
buffer[i-1] = '\0';
return (0);
}
static int
kread_symbol(kvm_t *kvm, int index, void *address, size_t size,
size_t offset)
{
ssize_t ret;
ret = kvm_read(kvm, namelist[index].n_value + offset, address, size);
if (ret < 0)
return (MEMSTAT_ERROR_KVM);
if ((size_t)ret != size)
return (MEMSTAT_ERROR_KVM_SHORTREAD);
return (0);
}
/*
* memstat_kvm_uma() is similar to memstat_sysctl_uma(), only it extracts
* UMA(9) statistics from a kernel core/memory file.
*/
int
memstat_kvm_uma(struct memory_type_list *list, void *kvm_handle)
{
LIST_HEAD(, uma_keg) uma_kegs;
struct memory_type *mtp;
struct uma_bucket *ubp, ub;
struct uma_cache *ucp, *ucp_array;
struct uma_zone *uzp, uz;
struct uma_keg *kzp, kz;
int hint_dontsearch, i, mp_maxid, ret;
char name[MEMTYPE_MAXNAME];
__cpumask_t all_cpus;
kvm_t *kvm;
kvm = (kvm_t *)kvm_handle;
hint_dontsearch = LIST_EMPTY(&list->mtl_list);
if (kvm_nlist(kvm, namelist) != 0) {
list->mtl_error = MEMSTAT_ERROR_KVM;
return (-1);
}
if (namelist[X_UMA_KEGS].n_type == 0 ||
namelist[X_UMA_KEGS].n_value == 0) {
list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
return (-1);
}
ret = kread_symbol(kvm, X_MP_MAXID, &mp_maxid, sizeof(mp_maxid), 0);
if (ret != 0) {
list->mtl_error = ret;
return (-1);
}
ret = kread_symbol(kvm, X_UMA_KEGS, &uma_kegs, sizeof(uma_kegs), 0);
if (ret != 0) {
list->mtl_error = ret;
return (-1);
}
ret = kread_symbol(kvm, X_ALL_CPUS, &all_cpus, sizeof(all_cpus), 0);
if (ret != 0) {
list->mtl_error = ret;
return (-1);
}
ucp_array = malloc(sizeof(struct uma_cache) * (mp_maxid + 1));
if (ucp_array == NULL) {
list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
return (-1);
}
for (kzp = LIST_FIRST(&uma_kegs); kzp != NULL; kzp =
LIST_NEXT(&kz, uk_link)) {
ret = kread(kvm, kzp, &kz, sizeof(kz), 0);
if (ret != 0) {
free(ucp_array);
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
for (uzp = LIST_FIRST(&kz.uk_zones); uzp != NULL; uzp =
LIST_NEXT(&uz, uz_link)) {
ret = kread(kvm, uzp, &uz, sizeof(uz), 0);
if (ret != 0) {
free(ucp_array);
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
ret = kread(kvm, uzp, ucp_array,
sizeof(struct uma_cache) * (mp_maxid + 1),
offsetof(struct uma_zone, uz_cpu[0]));
if (ret != 0) {
free(ucp_array);
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
ret = kread_string(kvm, uz.uz_name, name,
MEMTYPE_MAXNAME);
if (ret != 0) {
free(ucp_array);
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
if (hint_dontsearch == 0) {
mtp = memstat_mtl_find(list, ALLOCATOR_UMA,
name);
} else
mtp = NULL;
if (mtp == NULL)
mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA,
name);
if (mtp == NULL) {
free(ucp_array);
_memstat_mtl_empty(list);
list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
return (-1);
}
/*
* Reset the statistics on a current node.
*/
_memstat_mt_reset_stats(mtp);
mtp->mt_numallocs = uz.uz_allocs;
mtp->mt_numfrees = uz.uz_frees;
mtp->mt_failures = uz.uz_fails;
if (kz.uk_flags & UMA_ZFLAG_INTERNAL)
goto skip_percpu;
for (i = 0; i < mp_maxid + 1; i++) {
if ((all_cpus & (1 << i)) == 0)
continue;
ucp = &ucp_array[i];
mtp->mt_numallocs += ucp->uc_allocs;
mtp->mt_numfrees += ucp->uc_frees;
if (ucp->uc_allocbucket != NULL) {
ret = kread(kvm, ucp->uc_allocbucket,
&ub, sizeof(ub), 0);
if (ret != 0) {
free(ucp_array);
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
mtp->mt_free += ub.ub_cnt;
}
if (ucp->uc_freebucket != NULL) {
ret = kread(kvm, ucp->uc_freebucket,
&ub, sizeof(ub), 0);
if (ret != 0) {
free(ucp_array);
_memstat_mtl_empty(list);
list->mtl_error = ret;
return (-1);
}
mtp->mt_free += ub.ub_cnt;
}
}
skip_percpu:
mtp->mt_size = kz.uk_size;
mtp->mt_memalloced = mtp->mt_numallocs * mtp->mt_size;
mtp->mt_memfreed = mtp->mt_numfrees * mtp->mt_size;
mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
if (kz.uk_ppera > 1)
mtp->mt_countlimit = kz.uk_maxpages /
kz.uk_ipers;
else
mtp->mt_countlimit = kz.uk_maxpages *
kz.uk_ipers;
mtp->mt_byteslimit = mtp->mt_countlimit * mtp->mt_size;
mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
for (ubp = LIST_FIRST(&uz.uz_full_bucket); ubp !=
NULL; ubp = LIST_NEXT(&ub, ub_link)) {
ret = kread(kvm, ubp, &ub, sizeof(ub), 0);
mtp->mt_zonefree += ub.ub_cnt;
}
if (!((kz.uk_flags & UMA_ZONE_SECONDARY) &&
LIST_FIRST(&kz.uk_zones) != uzp)) {
mtp->mt_kegfree = kz.uk_free;
mtp->mt_free += mtp->mt_kegfree;
}
mtp->mt_free += mtp->mt_zonefree;
}
}
free(ucp_array);
return (0);
}