mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-15 10:17:20 +00:00
46b370ef71
Move FreeBSD specific flag variables from c-decl.c here.
6693 lines
198 KiB
C
6693 lines
198 KiB
C
/* Subroutines shared by all languages that are variants of C.
|
||
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
||
2001, 2002 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "tree.h"
|
||
#include "real.h"
|
||
#include "flags.h"
|
||
#include "toplev.h"
|
||
#include "output.h"
|
||
#include "c-pragma.h"
|
||
#include "rtl.h"
|
||
#include "ggc.h"
|
||
#include "expr.h"
|
||
#include "c-common.h"
|
||
#include "diagnostic.h"
|
||
#include "tm_p.h"
|
||
#include "obstack.h"
|
||
#include "cpplib.h"
|
||
#include "target.h"
|
||
#include "langhooks.h"
|
||
#include "except.h" /* For USING_SJLJ_EXCEPTIONS. */
|
||
#include "tree-inline.h"
|
||
#include "c-tree.h"
|
||
|
||
cpp_reader *parse_in; /* Declared in c-pragma.h. */
|
||
|
||
/* We let tm.h override the types used here, to handle trivial differences
|
||
such as the choice of unsigned int or long unsigned int for size_t.
|
||
When machines start needing nontrivial differences in the size type,
|
||
it would be best to do something here to figure out automatically
|
||
from other information what type to use. */
|
||
|
||
#ifndef SIZE_TYPE
|
||
#define SIZE_TYPE "long unsigned int"
|
||
#endif
|
||
|
||
#ifndef WCHAR_TYPE
|
||
#define WCHAR_TYPE "int"
|
||
#endif
|
||
|
||
/* WCHAR_TYPE gets overridden by -fshort-wchar. */
|
||
#define MODIFIED_WCHAR_TYPE \
|
||
(flag_short_wchar ? "short unsigned int" : WCHAR_TYPE)
|
||
|
||
#ifndef PTRDIFF_TYPE
|
||
#define PTRDIFF_TYPE "long int"
|
||
#endif
|
||
|
||
#ifndef WINT_TYPE
|
||
#define WINT_TYPE "unsigned int"
|
||
#endif
|
||
|
||
#ifndef INTMAX_TYPE
|
||
#define INTMAX_TYPE ((INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
|
||
? "int" \
|
||
: ((LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
|
||
? "long int" \
|
||
: "long long int"))
|
||
#endif
|
||
|
||
#ifndef UINTMAX_TYPE
|
||
#define UINTMAX_TYPE ((INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
|
||
? "unsigned int" \
|
||
: ((LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
|
||
? "long unsigned int" \
|
||
: "long long unsigned int"))
|
||
#endif
|
||
|
||
#ifndef REGISTER_PREFIX
|
||
#define REGISTER_PREFIX ""
|
||
#endif
|
||
|
||
/* The variant of the C language being processed. */
|
||
|
||
enum c_language_kind c_language;
|
||
|
||
/* The following symbols are subsumed in the c_global_trees array, and
|
||
listed here individually for documentation purposes.
|
||
|
||
INTEGER_TYPE and REAL_TYPE nodes for the standard data types.
|
||
|
||
tree short_integer_type_node;
|
||
tree long_integer_type_node;
|
||
tree long_long_integer_type_node;
|
||
|
||
tree short_unsigned_type_node;
|
||
tree long_unsigned_type_node;
|
||
tree long_long_unsigned_type_node;
|
||
|
||
tree boolean_type_node;
|
||
tree boolean_false_node;
|
||
tree boolean_true_node;
|
||
|
||
tree ptrdiff_type_node;
|
||
|
||
tree unsigned_char_type_node;
|
||
tree signed_char_type_node;
|
||
tree wchar_type_node;
|
||
tree signed_wchar_type_node;
|
||
tree unsigned_wchar_type_node;
|
||
|
||
tree float_type_node;
|
||
tree double_type_node;
|
||
tree long_double_type_node;
|
||
|
||
tree complex_integer_type_node;
|
||
tree complex_float_type_node;
|
||
tree complex_double_type_node;
|
||
tree complex_long_double_type_node;
|
||
|
||
tree intQI_type_node;
|
||
tree intHI_type_node;
|
||
tree intSI_type_node;
|
||
tree intDI_type_node;
|
||
tree intTI_type_node;
|
||
|
||
tree unsigned_intQI_type_node;
|
||
tree unsigned_intHI_type_node;
|
||
tree unsigned_intSI_type_node;
|
||
tree unsigned_intDI_type_node;
|
||
tree unsigned_intTI_type_node;
|
||
|
||
tree widest_integer_literal_type_node;
|
||
tree widest_unsigned_literal_type_node;
|
||
|
||
Nodes for types `void *' and `const void *'.
|
||
|
||
tree ptr_type_node, const_ptr_type_node;
|
||
|
||
Nodes for types `char *' and `const char *'.
|
||
|
||
tree string_type_node, const_string_type_node;
|
||
|
||
Type `char[SOMENUMBER]'.
|
||
Used when an array of char is needed and the size is irrelevant.
|
||
|
||
tree char_array_type_node;
|
||
|
||
Type `int[SOMENUMBER]' or something like it.
|
||
Used when an array of int needed and the size is irrelevant.
|
||
|
||
tree int_array_type_node;
|
||
|
||
Type `wchar_t[SOMENUMBER]' or something like it.
|
||
Used when a wide string literal is created.
|
||
|
||
tree wchar_array_type_node;
|
||
|
||
Type `int ()' -- used for implicit declaration of functions.
|
||
|
||
tree default_function_type;
|
||
|
||
A VOID_TYPE node, packaged in a TREE_LIST.
|
||
|
||
tree void_list_node;
|
||
|
||
The lazily created VAR_DECLs for __FUNCTION__, __PRETTY_FUNCTION__,
|
||
and __func__. (C doesn't generate __FUNCTION__ and__PRETTY_FUNCTION__
|
||
VAR_DECLS, but C++ does.)
|
||
|
||
tree function_name_decl_node;
|
||
tree pretty_function_name_decl_node;
|
||
tree c99_function_name_decl_node;
|
||
|
||
Stack of nested function name VAR_DECLs.
|
||
|
||
tree saved_function_name_decls;
|
||
|
||
*/
|
||
|
||
tree c_global_trees[CTI_MAX];
|
||
|
||
/* Switches common to the C front ends. */
|
||
|
||
/* Nonzero if prepreprocessing only. */
|
||
int flag_preprocess_only;
|
||
|
||
/* Nonzero if an ISO standard was selected. It rejects macros in the
|
||
user's namespace. */
|
||
int flag_iso;
|
||
|
||
/* Nonzero whenever Objective-C functionality is being used. */
|
||
int flag_objc;
|
||
|
||
/* Nonzero if -undef was given. It suppresses target built-in macros
|
||
and assertions. */
|
||
int flag_undef;
|
||
|
||
/* Nonzero means don't recognize the non-ANSI builtin functions. */
|
||
|
||
int flag_no_builtin;
|
||
|
||
/* Nonzero means don't recognize the non-ANSI builtin functions.
|
||
-ansi sets this. */
|
||
|
||
int flag_no_nonansi_builtin;
|
||
|
||
/* Nonzero means give `double' the same size as `float'. */
|
||
|
||
int flag_short_double;
|
||
|
||
/* Nonzero means give `wchar_t' the same size as `short'. */
|
||
|
||
int flag_short_wchar;
|
||
|
||
/* Nonzero means allow Microsoft extensions without warnings or errors. */
|
||
int flag_ms_extensions;
|
||
|
||
/* Nonzero means don't recognize the keyword `asm'. */
|
||
|
||
int flag_no_asm;
|
||
|
||
/* Nonzero means give string constants the type `const char *', as mandated
|
||
by the standard. */
|
||
|
||
int flag_const_strings;
|
||
|
||
/* Nonzero means `$' can be in an identifier. */
|
||
|
||
#ifndef DOLLARS_IN_IDENTIFIERS
|
||
#define DOLLARS_IN_IDENTIFIERS 1
|
||
#endif
|
||
int dollars_in_ident = DOLLARS_IN_IDENTIFIERS;
|
||
|
||
/* Nonzero means to treat bitfields as signed unless they say `unsigned'. */
|
||
|
||
int flag_signed_bitfields = 1;
|
||
int explicit_flag_signed_bitfields;
|
||
|
||
/* Nonzero means warn about pointer casts that can drop a type qualifier
|
||
from the pointer target type. */
|
||
|
||
int warn_cast_qual;
|
||
|
||
/* Warn about functions which might be candidates for format attributes. */
|
||
|
||
int warn_missing_format_attribute;
|
||
|
||
/* Nonzero means warn about sizeof(function) or addition/subtraction
|
||
of function pointers. */
|
||
|
||
int warn_pointer_arith;
|
||
|
||
/* Nonzero means do not warn that K&R style main() is not a function prototype. */
|
||
|
||
int flag_bsd_no_warn_kr_main;
|
||
|
||
/* Nonzero means warn for any global function def
|
||
without separate previous prototype decl. */
|
||
|
||
int warn_missing_prototypes;
|
||
|
||
/* Warn if adding () is suggested. */
|
||
|
||
int warn_parentheses;
|
||
|
||
/* Warn if initializer is not completely bracketed. */
|
||
|
||
int warn_missing_braces;
|
||
|
||
/* Warn about comparison of signed and unsigned values.
|
||
If -1, neither -Wsign-compare nor -Wno-sign-compare has been specified. */
|
||
|
||
int warn_sign_compare;
|
||
|
||
/* Nonzero means warn about usage of long long when `-pedantic'. */
|
||
|
||
int warn_long_long = 1;
|
||
|
||
/* Nonzero means warn about deprecated conversion from string constant to
|
||
`char *'. */
|
||
|
||
int warn_write_strings;
|
||
|
||
/* Nonzero means warn about multiple (redundant) decls for the same single
|
||
variable or function. */
|
||
|
||
int warn_redundant_decls;
|
||
|
||
/* Warn about testing equality of floating point numbers. */
|
||
|
||
int warn_float_equal;
|
||
|
||
/* Warn about a subscript that has type char. */
|
||
|
||
int warn_char_subscripts;
|
||
|
||
/* Warn if a type conversion is done that might have confusing results. */
|
||
|
||
int warn_conversion;
|
||
|
||
/* Warn about #pragma directives that are not recognized. */
|
||
|
||
int warn_unknown_pragmas; /* Tri state variable. */
|
||
|
||
/* Warn about format/argument anomalies in calls to formatted I/O functions
|
||
(*printf, *scanf, strftime, strfmon, etc.). */
|
||
|
||
int warn_format;
|
||
|
||
/* Warn about Y2K problems with strftime formats. */
|
||
|
||
int warn_format_y2k;
|
||
|
||
/* Warn about excess arguments to formats. */
|
||
|
||
int warn_format_extra_args;
|
||
|
||
/* Warn about zero-length formats. */
|
||
|
||
int warn_format_zero_length;
|
||
|
||
/* Warn about non-literal format arguments. */
|
||
|
||
int warn_format_nonliteral;
|
||
|
||
/* Warn about possible security problems with calls to format functions. */
|
||
|
||
int warn_format_security;
|
||
|
||
|
||
/* C/ObjC language option variables. */
|
||
|
||
|
||
/* Nonzero means message about use of implicit function declarations;
|
||
1 means warning; 2 means error. */
|
||
|
||
int mesg_implicit_function_declaration = -1;
|
||
|
||
/* Nonzero means allow type mismatches in conditional expressions;
|
||
just make their values `void'. */
|
||
|
||
int flag_cond_mismatch;
|
||
|
||
/* Nonzero means enable C89 Amendment 1 features. */
|
||
|
||
int flag_isoc94;
|
||
|
||
/* Nonzero means use the ISO C99 dialect of C. */
|
||
|
||
int flag_isoc99;
|
||
|
||
/* Nonzero means allow the BSD kernel printf enhancements. */
|
||
|
||
int flag_bsd_format;
|
||
|
||
/* Nonzero means that we have builtin functions, and main is an int */
|
||
|
||
int flag_hosted = 1;
|
||
|
||
/* Nonzero means add default format_arg attributes for functions not
|
||
in ISO C. */
|
||
|
||
int flag_noniso_default_format_attributes = 1;
|
||
|
||
/* Nonzero means warn when casting a function call to a type that does
|
||
not match the return type (e.g. (float)sqrt() or (anything*)malloc()
|
||
when there is no previous declaration of sqrt or malloc. */
|
||
|
||
int warn_bad_function_cast;
|
||
|
||
/* Warn about traditional constructs whose meanings changed in ANSI C. */
|
||
|
||
int warn_traditional;
|
||
|
||
/* Nonzero means warn for non-prototype function decls
|
||
or non-prototyped defs without previous prototype. */
|
||
|
||
int warn_strict_prototypes;
|
||
|
||
/* Nonzero means warn for any global function def
|
||
without separate previous decl. */
|
||
|
||
int warn_missing_declarations;
|
||
|
||
/* Nonzero means warn about declarations of objects not at
|
||
file-scope level and about *all* declarations of functions (whether
|
||
or static) not at file-scope level. Note that we exclude
|
||
implicit function declarations. To get warnings about those, use
|
||
-Wimplicit. */
|
||
|
||
int warn_nested_externs;
|
||
|
||
/* Warn if main is suspicious. */
|
||
|
||
int warn_main;
|
||
|
||
/* Nonzero means warn about possible violations of sequence point rules. */
|
||
|
||
int warn_sequence_point;
|
||
|
||
/* Nonzero means to warn about compile-time division by zero. */
|
||
int warn_div_by_zero = 1;
|
||
|
||
/* Nonzero means warn about use of implicit int. */
|
||
|
||
int warn_implicit_int;
|
||
|
||
/* Warn about NULL being passed to argument slots marked as requiring
|
||
non-NULL. */
|
||
|
||
int warn_nonnull;
|
||
|
||
|
||
/* ObjC language option variables. */
|
||
|
||
|
||
/* Open and close the file for outputting class declarations, if
|
||
requested (ObjC). */
|
||
|
||
int flag_gen_declaration;
|
||
|
||
/* Generate code for GNU or NeXT runtime environment. */
|
||
|
||
#ifdef NEXT_OBJC_RUNTIME
|
||
int flag_next_runtime = 1;
|
||
#else
|
||
int flag_next_runtime = 0;
|
||
#endif
|
||
|
||
/* Tells the compiler that this is a special run. Do not perform any
|
||
compiling, instead we are to test some platform dependent features
|
||
and output a C header file with appropriate definitions. */
|
||
|
||
int print_struct_values;
|
||
|
||
/* ???. Undocumented. */
|
||
|
||
const char *constant_string_class_name;
|
||
|
||
/* Warn if multiple methods are seen for the same selector, but with
|
||
different argument types. Performs the check on the whole selector
|
||
table at the end of compilation. */
|
||
|
||
int warn_selector;
|
||
|
||
/* Warn if a @selector() is found, and no method with that selector
|
||
has been previously declared. The check is done on each
|
||
@selector() as soon as it is found - so it warns about forward
|
||
declarations. */
|
||
|
||
int warn_undeclared_selector;
|
||
|
||
/* Warn if methods required by a protocol are not implemented in the
|
||
class adopting it. When turned off, methods inherited to that
|
||
class are also considered implemented. */
|
||
|
||
int warn_protocol = 1;
|
||
|
||
|
||
/* C++ language option variables. */
|
||
|
||
|
||
/* Nonzero means don't recognize any extension keywords. */
|
||
|
||
int flag_no_gnu_keywords;
|
||
|
||
/* Nonzero means do emit exported implementations of functions even if
|
||
they can be inlined. */
|
||
|
||
int flag_implement_inlines = 1;
|
||
|
||
/* Nonzero means do emit exported implementations of templates, instead of
|
||
multiple static copies in each file that needs a definition. */
|
||
|
||
int flag_external_templates;
|
||
|
||
/* Nonzero means that the decision to emit or not emit the implementation of a
|
||
template depends on where the template is instantiated, rather than where
|
||
it is defined. */
|
||
|
||
int flag_alt_external_templates;
|
||
|
||
/* Nonzero means that implicit instantiations will be emitted if needed. */
|
||
|
||
int flag_implicit_templates = 1;
|
||
|
||
/* Nonzero means that implicit instantiations of inline templates will be
|
||
emitted if needed, even if instantiations of non-inline templates
|
||
aren't. */
|
||
|
||
int flag_implicit_inline_templates = 1;
|
||
|
||
/* Nonzero means generate separate instantiation control files and
|
||
juggle them at link time. */
|
||
|
||
int flag_use_repository;
|
||
|
||
/* Nonzero if we want to issue diagnostics that the standard says are not
|
||
required. */
|
||
|
||
int flag_optional_diags = 1;
|
||
|
||
/* Nonzero means we should attempt to elide constructors when possible. */
|
||
|
||
int flag_elide_constructors = 1;
|
||
|
||
/* Nonzero means that member functions defined in class scope are
|
||
inline by default. */
|
||
|
||
int flag_default_inline = 1;
|
||
|
||
/* Controls whether compiler generates 'type descriptor' that give
|
||
run-time type information. */
|
||
|
||
int flag_rtti = 1;
|
||
|
||
/* Nonzero if we want to conserve space in the .o files. We do this
|
||
by putting uninitialized data and runtime initialized data into
|
||
.common instead of .data at the expense of not flagging multiple
|
||
definitions. */
|
||
|
||
int flag_conserve_space;
|
||
|
||
/* Nonzero if we want to obey access control semantics. */
|
||
|
||
int flag_access_control = 1;
|
||
|
||
/* Nonzero if we want to check the return value of new and avoid calling
|
||
constructors if it is a null pointer. */
|
||
|
||
int flag_check_new;
|
||
|
||
/* Nonzero if we want the new ISO rules for pushing a new scope for `for'
|
||
initialization variables.
|
||
0: Old rules, set by -fno-for-scope.
|
||
2: New ISO rules, set by -ffor-scope.
|
||
1: Try to implement new ISO rules, but with backup compatibility
|
||
(and warnings). This is the default, for now. */
|
||
|
||
int flag_new_for_scope = 1;
|
||
|
||
/* Nonzero if we want to emit defined symbols with common-like linkage as
|
||
weak symbols where possible, in order to conform to C++ semantics.
|
||
Otherwise, emit them as local symbols. */
|
||
|
||
int flag_weak = 1;
|
||
|
||
/* Nonzero to use __cxa_atexit, rather than atexit, to register
|
||
destructors for local statics and global objects. */
|
||
|
||
int flag_use_cxa_atexit = DEFAULT_USE_CXA_ATEXIT;
|
||
|
||
/* Nonzero means output .vtable_{entry,inherit} for use in doing vtable gc. */
|
||
|
||
int flag_vtable_gc;
|
||
|
||
/* Nonzero means make the default pedwarns warnings instead of errors.
|
||
The value of this flag is ignored if -pedantic is specified. */
|
||
|
||
int flag_permissive;
|
||
|
||
/* Nonzero means to implement standard semantics for exception
|
||
specifications, calling unexpected if an exception is thrown that
|
||
doesn't match the specification. Zero means to treat them as
|
||
assertions and optimize accordingly, but not check them. */
|
||
|
||
int flag_enforce_eh_specs = 1;
|
||
|
||
/* The version of the C++ ABI in use. The following values are
|
||
allowed:
|
||
|
||
0: The version of the ABI believed most conformant with the
|
||
C++ ABI specification. This ABI may change as bugs are
|
||
discovered and fixed. Therefore, 0 will not necessarily
|
||
indicate the same ABI in different versions of G++.
|
||
|
||
1: The version of the ABI first used in G++ 3.2.
|
||
|
||
Additional positive integers will be assigned as new versions of
|
||
the ABI become the default version of the ABI. */
|
||
|
||
int flag_abi_version = 1;
|
||
|
||
/* Nonzero means warn about things that will change when compiling
|
||
with an ABI-compliant compiler. */
|
||
|
||
int warn_abi = 0;
|
||
|
||
/* Nonzero means warn about implicit declarations. */
|
||
|
||
int warn_implicit = 1;
|
||
|
||
/* Nonzero means warn when all ctors or dtors are private, and the class
|
||
has no friends. */
|
||
|
||
int warn_ctor_dtor_privacy = 1;
|
||
|
||
/* Nonzero means warn in function declared in derived class has the
|
||
same name as a virtual in the base class, but fails to match the
|
||
type signature of any virtual function in the base class. */
|
||
|
||
int warn_overloaded_virtual;
|
||
|
||
/* Nonzero means warn when declaring a class that has a non virtual
|
||
destructor, when it really ought to have a virtual one. */
|
||
|
||
int warn_nonvdtor;
|
||
|
||
/* Nonzero means warn when the compiler will reorder code. */
|
||
|
||
int warn_reorder;
|
||
|
||
/* Nonzero means warn when synthesis behavior differs from Cfront's. */
|
||
|
||
int warn_synth;
|
||
|
||
/* Nonzero means warn when we convert a pointer to member function
|
||
into a pointer to (void or function). */
|
||
|
||
int warn_pmf2ptr = 1;
|
||
|
||
/* Nonzero means warn about violation of some Effective C++ style rules. */
|
||
|
||
int warn_ecpp;
|
||
|
||
/* Nonzero means warn where overload resolution chooses a promotion from
|
||
unsigned to signed over a conversion to an unsigned of the same size. */
|
||
|
||
int warn_sign_promo;
|
||
|
||
/* Nonzero means warn when an old-style cast is used. */
|
||
|
||
int warn_old_style_cast;
|
||
|
||
/* Nonzero means warn when non-templatized friend functions are
|
||
declared within a template */
|
||
|
||
int warn_nontemplate_friend = 1;
|
||
|
||
/* Nonzero means complain about deprecated features. */
|
||
|
||
int warn_deprecated = 1;
|
||
|
||
/* Maximum template instantiation depth. This limit is rather
|
||
arbitrary, but it exists to limit the time it takes to notice
|
||
infinite template instantiations. */
|
||
|
||
int max_tinst_depth = 500;
|
||
|
||
|
||
|
||
/* The elements of `ridpointers' are identifier nodes for the reserved
|
||
type names and storage classes. It is indexed by a RID_... value. */
|
||
tree *ridpointers;
|
||
|
||
tree (*make_fname_decl) PARAMS ((tree, int));
|
||
|
||
/* If non-NULL, the address of a language-specific function that
|
||
returns 1 for language-specific statement codes. */
|
||
int (*lang_statement_code_p) PARAMS ((enum tree_code));
|
||
|
||
/* If non-NULL, the address of a language-specific function that takes
|
||
any action required right before expand_function_end is called. */
|
||
void (*lang_expand_function_end) PARAMS ((void));
|
||
|
||
/* Nonzero means the expression being parsed will never be evaluated.
|
||
This is a count, since unevaluated expressions can nest. */
|
||
int skip_evaluation;
|
||
|
||
/* Information about how a function name is generated. */
|
||
struct fname_var_t
|
||
{
|
||
tree *const decl; /* pointer to the VAR_DECL. */
|
||
const unsigned rid; /* RID number for the identifier. */
|
||
const int pretty; /* How pretty is it? */
|
||
};
|
||
|
||
/* The three ways of getting then name of the current function. */
|
||
|
||
const struct fname_var_t fname_vars[] =
|
||
{
|
||
/* C99 compliant __func__, must be first. */
|
||
{&c99_function_name_decl_node, RID_C99_FUNCTION_NAME, 0},
|
||
/* GCC __FUNCTION__ compliant. */
|
||
{&function_name_decl_node, RID_FUNCTION_NAME, 0},
|
||
/* GCC __PRETTY_FUNCTION__ compliant. */
|
||
{&pretty_function_name_decl_node, RID_PRETTY_FUNCTION_NAME, 1},
|
||
{NULL, 0, 0},
|
||
};
|
||
|
||
static int constant_fits_type_p PARAMS ((tree, tree));
|
||
|
||
/* Keep a stack of if statements. We record the number of compound
|
||
statements seen up to the if keyword, as well as the line number
|
||
and file of the if. If a potentially ambiguous else is seen, that
|
||
fact is recorded; the warning is issued when we can be sure that
|
||
the enclosing if statement does not have an else branch. */
|
||
typedef struct
|
||
{
|
||
int compstmt_count;
|
||
int line;
|
||
const char *file;
|
||
int needs_warning;
|
||
tree if_stmt;
|
||
} if_elt;
|
||
|
||
static if_elt *if_stack;
|
||
|
||
/* Amount of space in the if statement stack. */
|
||
static int if_stack_space = 0;
|
||
|
||
/* Stack pointer. */
|
||
static int if_stack_pointer = 0;
|
||
|
||
static tree handle_packed_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_nocommon_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_common_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_noreturn_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_noinline_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_always_inline_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_used_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_unused_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_const_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_transparent_union_attribute PARAMS ((tree *, tree, tree,
|
||
int, bool *));
|
||
static tree handle_constructor_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_destructor_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_mode_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_section_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_aligned_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_weak_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_alias_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_visibility_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_tls_model_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_no_instrument_function_attribute PARAMS ((tree *, tree,
|
||
tree, int,
|
||
bool *));
|
||
static tree handle_malloc_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_no_limit_stack_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_pure_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_deprecated_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_vector_size_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_nonnull_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_nothrow_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree handle_cleanup_attribute PARAMS ((tree *, tree, tree, int,
|
||
bool *));
|
||
static tree vector_size_helper PARAMS ((tree, tree));
|
||
|
||
static void check_function_nonnull PARAMS ((tree, tree));
|
||
static void check_nonnull_arg PARAMS ((void *, tree,
|
||
unsigned HOST_WIDE_INT));
|
||
static bool nonnull_check_p PARAMS ((tree, unsigned HOST_WIDE_INT));
|
||
static bool get_nonnull_operand PARAMS ((tree,
|
||
unsigned HOST_WIDE_INT *));
|
||
void builtin_define_std PARAMS ((const char *));
|
||
static void builtin_define_with_value PARAMS ((const char *, const char *,
|
||
int));
|
||
static void builtin_define_with_int_value PARAMS ((const char *,
|
||
HOST_WIDE_INT));
|
||
static void builtin_define_with_hex_fp_value PARAMS ((const char *, tree,
|
||
int, const char *,
|
||
const char *));
|
||
static void builtin_define_type_max PARAMS ((const char *, tree, int));
|
||
static void builtin_define_type_precision PARAMS ((const char *, tree));
|
||
static void builtin_define_float_constants PARAMS ((const char *,
|
||
const char *, tree));
|
||
|
||
/* Table of machine-independent attributes common to all C-like languages. */
|
||
const struct attribute_spec c_common_attribute_table[] =
|
||
{
|
||
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
|
||
{ "packed", 0, 0, false, false, false,
|
||
handle_packed_attribute },
|
||
{ "nocommon", 0, 0, true, false, false,
|
||
handle_nocommon_attribute },
|
||
{ "common", 0, 0, true, false, false,
|
||
handle_common_attribute },
|
||
/* FIXME: logically, noreturn attributes should be listed as
|
||
"false, true, true" and apply to function types. But implementing this
|
||
would require all the places in the compiler that use TREE_THIS_VOLATILE
|
||
on a decl to identify non-returning functions to be located and fixed
|
||
to check the function type instead. */
|
||
{ "noreturn", 0, 0, true, false, false,
|
||
handle_noreturn_attribute },
|
||
{ "volatile", 0, 0, true, false, false,
|
||
handle_noreturn_attribute },
|
||
{ "noinline", 0, 0, true, false, false,
|
||
handle_noinline_attribute },
|
||
{ "always_inline", 0, 0, true, false, false,
|
||
handle_always_inline_attribute },
|
||
{ "used", 0, 0, true, false, false,
|
||
handle_used_attribute },
|
||
{ "unused", 0, 0, false, false, false,
|
||
handle_unused_attribute },
|
||
/* The same comments as for noreturn attributes apply to const ones. */
|
||
{ "const", 0, 0, true, false, false,
|
||
handle_const_attribute },
|
||
{ "transparent_union", 0, 0, false, false, false,
|
||
handle_transparent_union_attribute },
|
||
{ "constructor", 0, 0, true, false, false,
|
||
handle_constructor_attribute },
|
||
{ "destructor", 0, 0, true, false, false,
|
||
handle_destructor_attribute },
|
||
{ "mode", 1, 1, false, true, false,
|
||
handle_mode_attribute },
|
||
{ "section", 1, 1, true, false, false,
|
||
handle_section_attribute },
|
||
{ "aligned", 0, 1, false, false, false,
|
||
handle_aligned_attribute },
|
||
{ "weak", 0, 0, true, false, false,
|
||
handle_weak_attribute },
|
||
{ "alias", 1, 1, true, false, false,
|
||
handle_alias_attribute },
|
||
{ "no_instrument_function", 0, 0, true, false, false,
|
||
handle_no_instrument_function_attribute },
|
||
{ "malloc", 0, 0, true, false, false,
|
||
handle_malloc_attribute },
|
||
{ "no_stack_limit", 0, 0, true, false, false,
|
||
handle_no_limit_stack_attribute },
|
||
{ "pure", 0, 0, true, false, false,
|
||
handle_pure_attribute },
|
||
{ "deprecated", 0, 0, false, false, false,
|
||
handle_deprecated_attribute },
|
||
{ "vector_size", 1, 1, false, true, false,
|
||
handle_vector_size_attribute },
|
||
{ "visibility", 1, 1, true, false, false,
|
||
handle_visibility_attribute },
|
||
{ "tls_model", 1, 1, true, false, false,
|
||
handle_tls_model_attribute },
|
||
{ "nonnull", 0, -1, false, true, true,
|
||
handle_nonnull_attribute },
|
||
{ "nothrow", 0, 0, true, false, false,
|
||
handle_nothrow_attribute },
|
||
{ "may_alias", 0, 0, false, true, false, NULL },
|
||
{ "cleanup", 1, 1, true, false, false,
|
||
handle_cleanup_attribute },
|
||
{ NULL, 0, 0, false, false, false, NULL }
|
||
};
|
||
|
||
/* Give the specifications for the format attributes, used by C and all
|
||
descendents. */
|
||
|
||
const struct attribute_spec c_common_format_attribute_table[] =
|
||
{
|
||
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
|
||
{ "format", 3, 3, false, true, true,
|
||
handle_format_attribute },
|
||
{ "format_arg", 1, 1, false, true, true,
|
||
handle_format_arg_attribute },
|
||
{ NULL, 0, 0, false, false, false, NULL }
|
||
};
|
||
|
||
/* Record the start of an if-then, and record the start of it
|
||
for ambiguous else detection.
|
||
|
||
COND is the condition for the if-then statement.
|
||
|
||
IF_STMT is the statement node that has already been created for
|
||
this if-then statement. It is created before parsing the
|
||
condition to keep line number information accurate. */
|
||
|
||
void
|
||
c_expand_start_cond (cond, compstmt_count, if_stmt)
|
||
tree cond;
|
||
int compstmt_count;
|
||
tree if_stmt;
|
||
{
|
||
/* Make sure there is enough space on the stack. */
|
||
if (if_stack_space == 0)
|
||
{
|
||
if_stack_space = 10;
|
||
if_stack = (if_elt *) xmalloc (10 * sizeof (if_elt));
|
||
}
|
||
else if (if_stack_space == if_stack_pointer)
|
||
{
|
||
if_stack_space += 10;
|
||
if_stack = (if_elt *) xrealloc (if_stack, if_stack_space * sizeof (if_elt));
|
||
}
|
||
|
||
IF_COND (if_stmt) = cond;
|
||
add_stmt (if_stmt);
|
||
|
||
/* Record this if statement. */
|
||
if_stack[if_stack_pointer].compstmt_count = compstmt_count;
|
||
if_stack[if_stack_pointer].file = input_filename;
|
||
if_stack[if_stack_pointer].line = lineno;
|
||
if_stack[if_stack_pointer].needs_warning = 0;
|
||
if_stack[if_stack_pointer].if_stmt = if_stmt;
|
||
if_stack_pointer++;
|
||
}
|
||
|
||
/* Called after the then-clause for an if-statement is processed. */
|
||
|
||
void
|
||
c_finish_then ()
|
||
{
|
||
tree if_stmt = if_stack[if_stack_pointer - 1].if_stmt;
|
||
RECHAIN_STMTS (if_stmt, THEN_CLAUSE (if_stmt));
|
||
}
|
||
|
||
/* Record the end of an if-then. Optionally warn if a nested
|
||
if statement had an ambiguous else clause. */
|
||
|
||
void
|
||
c_expand_end_cond ()
|
||
{
|
||
if_stack_pointer--;
|
||
if (if_stack[if_stack_pointer].needs_warning)
|
||
warning_with_file_and_line (if_stack[if_stack_pointer].file,
|
||
if_stack[if_stack_pointer].line,
|
||
"suggest explicit braces to avoid ambiguous `else'");
|
||
last_expr_type = NULL_TREE;
|
||
}
|
||
|
||
/* Called between the then-clause and the else-clause
|
||
of an if-then-else. */
|
||
|
||
void
|
||
c_expand_start_else ()
|
||
{
|
||
/* An ambiguous else warning must be generated for the enclosing if
|
||
statement, unless we see an else branch for that one, too. */
|
||
if (warn_parentheses
|
||
&& if_stack_pointer > 1
|
||
&& (if_stack[if_stack_pointer - 1].compstmt_count
|
||
== if_stack[if_stack_pointer - 2].compstmt_count))
|
||
if_stack[if_stack_pointer - 2].needs_warning = 1;
|
||
|
||
/* Even if a nested if statement had an else branch, it can't be
|
||
ambiguous if this one also has an else. So don't warn in that
|
||
case. Also don't warn for any if statements nested in this else. */
|
||
if_stack[if_stack_pointer - 1].needs_warning = 0;
|
||
if_stack[if_stack_pointer - 1].compstmt_count--;
|
||
}
|
||
|
||
/* Called after the else-clause for an if-statement is processed. */
|
||
|
||
void
|
||
c_finish_else ()
|
||
{
|
||
tree if_stmt = if_stack[if_stack_pointer - 1].if_stmt;
|
||
RECHAIN_STMTS (if_stmt, ELSE_CLAUSE (if_stmt));
|
||
}
|
||
|
||
/* Begin an if-statement. Returns a newly created IF_STMT if
|
||
appropriate.
|
||
|
||
Unlike the C++ front-end, we do not call add_stmt here; it is
|
||
probably safe to do so, but I am not very familiar with this
|
||
code so I am being extra careful not to change its behavior
|
||
beyond what is strictly necessary for correctness. */
|
||
|
||
tree
|
||
c_begin_if_stmt ()
|
||
{
|
||
tree r;
|
||
r = build_stmt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
|
||
return r;
|
||
}
|
||
|
||
/* Begin a while statement. Returns a newly created WHILE_STMT if
|
||
appropriate.
|
||
|
||
Unlike the C++ front-end, we do not call add_stmt here; it is
|
||
probably safe to do so, but I am not very familiar with this
|
||
code so I am being extra careful not to change its behavior
|
||
beyond what is strictly necessary for correctness. */
|
||
|
||
tree
|
||
c_begin_while_stmt ()
|
||
{
|
||
tree r;
|
||
r = build_stmt (WHILE_STMT, NULL_TREE, NULL_TREE);
|
||
return r;
|
||
}
|
||
|
||
void
|
||
c_finish_while_stmt_cond (cond, while_stmt)
|
||
tree while_stmt;
|
||
tree cond;
|
||
{
|
||
WHILE_COND (while_stmt) = cond;
|
||
}
|
||
|
||
/* Push current bindings for the function name VAR_DECLS. */
|
||
|
||
void
|
||
start_fname_decls ()
|
||
{
|
||
unsigned ix;
|
||
tree saved = NULL_TREE;
|
||
|
||
for (ix = 0; fname_vars[ix].decl; ix++)
|
||
{
|
||
tree decl = *fname_vars[ix].decl;
|
||
|
||
if (decl)
|
||
{
|
||
saved = tree_cons (decl, build_int_2 (ix, 0), saved);
|
||
*fname_vars[ix].decl = NULL_TREE;
|
||
}
|
||
}
|
||
if (saved || saved_function_name_decls)
|
||
/* Normally they'll have been NULL, so only push if we've got a
|
||
stack, or they are non-NULL. */
|
||
saved_function_name_decls = tree_cons (saved, NULL_TREE,
|
||
saved_function_name_decls);
|
||
}
|
||
|
||
/* Finish up the current bindings, adding them into the
|
||
current function's statement tree. This is done by wrapping the
|
||
function's body in a COMPOUND_STMT containing these decls too. This
|
||
must be done _before_ finish_stmt_tree is called. If there is no
|
||
current function, we must be at file scope and no statements are
|
||
involved. Pop the previous bindings. */
|
||
|
||
void
|
||
finish_fname_decls ()
|
||
{
|
||
unsigned ix;
|
||
tree body = NULL_TREE;
|
||
tree stack = saved_function_name_decls;
|
||
|
||
for (; stack && TREE_VALUE (stack); stack = TREE_CHAIN (stack))
|
||
body = chainon (TREE_VALUE (stack), body);
|
||
|
||
if (body)
|
||
{
|
||
/* They were called into existence, so add to statement tree. */
|
||
body = chainon (body,
|
||
TREE_CHAIN (DECL_SAVED_TREE (current_function_decl)));
|
||
body = build_stmt (COMPOUND_STMT, body);
|
||
|
||
COMPOUND_STMT_NO_SCOPE (body) = 1;
|
||
TREE_CHAIN (DECL_SAVED_TREE (current_function_decl)) = body;
|
||
}
|
||
|
||
for (ix = 0; fname_vars[ix].decl; ix++)
|
||
*fname_vars[ix].decl = NULL_TREE;
|
||
|
||
if (stack)
|
||
{
|
||
/* We had saved values, restore them. */
|
||
tree saved;
|
||
|
||
for (saved = TREE_PURPOSE (stack); saved; saved = TREE_CHAIN (saved))
|
||
{
|
||
tree decl = TREE_PURPOSE (saved);
|
||
unsigned ix = TREE_INT_CST_LOW (TREE_VALUE (saved));
|
||
|
||
*fname_vars[ix].decl = decl;
|
||
}
|
||
stack = TREE_CHAIN (stack);
|
||
}
|
||
saved_function_name_decls = stack;
|
||
}
|
||
|
||
/* Return the text name of the current function, suitable prettified
|
||
by PRETTY_P. */
|
||
|
||
const char *
|
||
fname_as_string (pretty_p)
|
||
int pretty_p;
|
||
{
|
||
const char *name = NULL;
|
||
|
||
if (pretty_p)
|
||
name = (current_function_decl
|
||
? (*lang_hooks.decl_printable_name) (current_function_decl, 2)
|
||
: "top level");
|
||
else if (current_function_decl && DECL_NAME (current_function_decl))
|
||
name = IDENTIFIER_POINTER (DECL_NAME (current_function_decl));
|
||
else
|
||
name = "";
|
||
return name;
|
||
}
|
||
|
||
/* Return the text name of the current function, formatted as
|
||
required by the supplied RID value. */
|
||
|
||
const char *
|
||
fname_string (rid)
|
||
unsigned rid;
|
||
{
|
||
unsigned ix;
|
||
|
||
for (ix = 0; fname_vars[ix].decl; ix++)
|
||
if (fname_vars[ix].rid == rid)
|
||
break;
|
||
return fname_as_string (fname_vars[ix].pretty);
|
||
}
|
||
|
||
/* Return the VAR_DECL for a const char array naming the current
|
||
function. If the VAR_DECL has not yet been created, create it
|
||
now. RID indicates how it should be formatted and IDENTIFIER_NODE
|
||
ID is its name (unfortunately C and C++ hold the RID values of
|
||
keywords in different places, so we can't derive RID from ID in
|
||
this language independent code. */
|
||
|
||
tree
|
||
fname_decl (rid, id)
|
||
unsigned rid;
|
||
tree id;
|
||
{
|
||
unsigned ix;
|
||
tree decl = NULL_TREE;
|
||
|
||
for (ix = 0; fname_vars[ix].decl; ix++)
|
||
if (fname_vars[ix].rid == rid)
|
||
break;
|
||
|
||
decl = *fname_vars[ix].decl;
|
||
if (!decl)
|
||
{
|
||
tree saved_last_tree = last_tree;
|
||
/* If a tree is built here, it would normally have the lineno of
|
||
the current statement. Later this tree will be moved to the
|
||
beginning of the function and this line number will be wrong.
|
||
To avoid this problem set the lineno to 0 here; that prevents
|
||
it from appearing in the RTL. */
|
||
int saved_lineno = lineno;
|
||
lineno = 0;
|
||
|
||
decl = (*make_fname_decl) (id, fname_vars[ix].pretty);
|
||
if (last_tree != saved_last_tree)
|
||
{
|
||
/* We created some statement tree for the decl. This belongs
|
||
at the start of the function, so remove it now and reinsert
|
||
it after the function is complete. */
|
||
tree stmts = TREE_CHAIN (saved_last_tree);
|
||
|
||
TREE_CHAIN (saved_last_tree) = NULL_TREE;
|
||
last_tree = saved_last_tree;
|
||
saved_function_name_decls = tree_cons (decl, stmts,
|
||
saved_function_name_decls);
|
||
}
|
||
*fname_vars[ix].decl = decl;
|
||
lineno = saved_lineno;
|
||
}
|
||
if (!ix && !current_function_decl)
|
||
pedwarn_with_decl (decl, "`%s' is not defined outside of function scope");
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Given a STRING_CST, give it a suitable array-of-chars data type. */
|
||
|
||
tree
|
||
fix_string_type (value)
|
||
tree value;
|
||
{
|
||
const int wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
|
||
const int wide_flag = TREE_TYPE (value) == wchar_array_type_node;
|
||
const int nchars_max = flag_isoc99 ? 4095 : 509;
|
||
int length = TREE_STRING_LENGTH (value);
|
||
int nchars;
|
||
|
||
/* Compute the number of elements, for the array type. */
|
||
nchars = wide_flag ? length / wchar_bytes : length;
|
||
|
||
if (pedantic && nchars - 1 > nchars_max && c_language == clk_c)
|
||
pedwarn ("string length `%d' is greater than the length `%d' ISO C%d compilers are required to support",
|
||
nchars - 1, nchars_max, flag_isoc99 ? 99 : 89);
|
||
|
||
/* Create the array type for the string constant.
|
||
-Wwrite-strings says make the string constant an array of const char
|
||
so that copying it to a non-const pointer will get a warning.
|
||
For C++, this is the standard behavior. */
|
||
if (flag_const_strings && ! flag_writable_strings)
|
||
{
|
||
tree elements
|
||
= build_type_variant (wide_flag ? wchar_type_node : char_type_node,
|
||
1, 0);
|
||
TREE_TYPE (value)
|
||
= build_array_type (elements,
|
||
build_index_type (build_int_2 (nchars - 1, 0)));
|
||
}
|
||
else
|
||
TREE_TYPE (value)
|
||
= build_array_type (wide_flag ? wchar_type_node : char_type_node,
|
||
build_index_type (build_int_2 (nchars - 1, 0)));
|
||
|
||
TREE_CONSTANT (value) = 1;
|
||
TREE_READONLY (value) = ! flag_writable_strings;
|
||
TREE_STATIC (value) = 1;
|
||
return value;
|
||
}
|
||
|
||
/* Given a VARRAY of STRING_CST nodes, concatenate them into one
|
||
STRING_CST. */
|
||
|
||
tree
|
||
combine_strings (strings)
|
||
varray_type strings;
|
||
{
|
||
const int wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
|
||
const int nstrings = VARRAY_ACTIVE_SIZE (strings);
|
||
tree value, t;
|
||
int length = 1;
|
||
int wide_length = 0;
|
||
int wide_flag = 0;
|
||
int i;
|
||
char *p, *q;
|
||
|
||
/* Don't include the \0 at the end of each substring. Count wide
|
||
strings and ordinary strings separately. */
|
||
for (i = 0; i < nstrings; ++i)
|
||
{
|
||
t = VARRAY_TREE (strings, i);
|
||
|
||
if (TREE_TYPE (t) == wchar_array_type_node)
|
||
{
|
||
wide_length += TREE_STRING_LENGTH (t) - wchar_bytes;
|
||
wide_flag = 1;
|
||
}
|
||
else
|
||
{
|
||
length += (TREE_STRING_LENGTH (t) - 1);
|
||
if (C_ARTIFICIAL_STRING_P (t) && !in_system_header)
|
||
warning ("concatenation of string literals with __FUNCTION__ is deprecated");
|
||
}
|
||
}
|
||
|
||
/* If anything is wide, the non-wides will be converted,
|
||
which makes them take more space. */
|
||
if (wide_flag)
|
||
length = length * wchar_bytes + wide_length;
|
||
|
||
p = xmalloc (length);
|
||
|
||
/* Copy the individual strings into the new combined string.
|
||
If the combined string is wide, convert the chars to ints
|
||
for any individual strings that are not wide. */
|
||
|
||
q = p;
|
||
for (i = 0; i < nstrings; ++i)
|
||
{
|
||
int len, this_wide;
|
||
|
||
t = VARRAY_TREE (strings, i);
|
||
this_wide = TREE_TYPE (t) == wchar_array_type_node;
|
||
len = TREE_STRING_LENGTH (t) - (this_wide ? wchar_bytes : 1);
|
||
if (this_wide == wide_flag)
|
||
{
|
||
memcpy (q, TREE_STRING_POINTER (t), len);
|
||
q += len;
|
||
}
|
||
else
|
||
{
|
||
const int nzeros = (TYPE_PRECISION (wchar_type_node)
|
||
/ BITS_PER_UNIT) - 1;
|
||
int j, k;
|
||
|
||
if (BYTES_BIG_ENDIAN)
|
||
{
|
||
for (k = 0; k < len; k++)
|
||
{
|
||
for (j = 0; j < nzeros; j++)
|
||
*q++ = 0;
|
||
*q++ = TREE_STRING_POINTER (t)[k];
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (k = 0; k < len; k++)
|
||
{
|
||
*q++ = TREE_STRING_POINTER (t)[k];
|
||
for (j = 0; j < nzeros; j++)
|
||
*q++ = 0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Nul terminate the string. */
|
||
if (wide_flag)
|
||
{
|
||
for (i = 0; i < wchar_bytes; i++)
|
||
*q++ = 0;
|
||
}
|
||
else
|
||
*q = 0;
|
||
|
||
value = build_string (length, p);
|
||
free (p);
|
||
|
||
if (wide_flag)
|
||
TREE_TYPE (value) = wchar_array_type_node;
|
||
else
|
||
TREE_TYPE (value) = char_array_type_node;
|
||
|
||
return value;
|
||
}
|
||
|
||
static int is_valid_printf_arglist PARAMS ((tree));
|
||
static rtx c_expand_builtin PARAMS ((tree, rtx, enum machine_mode, enum expand_modifier));
|
||
static rtx c_expand_builtin_printf PARAMS ((tree, rtx, enum machine_mode,
|
||
enum expand_modifier, int, int));
|
||
static rtx c_expand_builtin_fprintf PARAMS ((tree, rtx, enum machine_mode,
|
||
enum expand_modifier, int, int));
|
||
|
||
/* Print a warning if a constant expression had overflow in folding.
|
||
Invoke this function on every expression that the language
|
||
requires to be a constant expression.
|
||
Note the ANSI C standard says it is erroneous for a
|
||
constant expression to overflow. */
|
||
|
||
void
|
||
constant_expression_warning (value)
|
||
tree value;
|
||
{
|
||
if ((TREE_CODE (value) == INTEGER_CST || TREE_CODE (value) == REAL_CST
|
||
|| TREE_CODE (value) == VECTOR_CST
|
||
|| TREE_CODE (value) == COMPLEX_CST)
|
||
&& TREE_CONSTANT_OVERFLOW (value) && pedantic)
|
||
pedwarn ("overflow in constant expression");
|
||
}
|
||
|
||
/* Print a warning if an expression had overflow in folding.
|
||
Invoke this function on every expression that
|
||
(1) appears in the source code, and
|
||
(2) might be a constant expression that overflowed, and
|
||
(3) is not already checked by convert_and_check;
|
||
however, do not invoke this function on operands of explicit casts. */
|
||
|
||
void
|
||
overflow_warning (value)
|
||
tree value;
|
||
{
|
||
if ((TREE_CODE (value) == INTEGER_CST
|
||
|| (TREE_CODE (value) == COMPLEX_CST
|
||
&& TREE_CODE (TREE_REALPART (value)) == INTEGER_CST))
|
||
&& TREE_OVERFLOW (value))
|
||
{
|
||
TREE_OVERFLOW (value) = 0;
|
||
if (skip_evaluation == 0)
|
||
warning ("integer overflow in expression");
|
||
}
|
||
else if ((TREE_CODE (value) == REAL_CST
|
||
|| (TREE_CODE (value) == COMPLEX_CST
|
||
&& TREE_CODE (TREE_REALPART (value)) == REAL_CST))
|
||
&& TREE_OVERFLOW (value))
|
||
{
|
||
TREE_OVERFLOW (value) = 0;
|
||
if (skip_evaluation == 0)
|
||
warning ("floating point overflow in expression");
|
||
}
|
||
else if (TREE_CODE (value) == VECTOR_CST && TREE_OVERFLOW (value))
|
||
{
|
||
TREE_OVERFLOW (value) = 0;
|
||
if (skip_evaluation == 0)
|
||
warning ("vector overflow in expression");
|
||
}
|
||
}
|
||
|
||
/* Print a warning if a large constant is truncated to unsigned,
|
||
or if -Wconversion is used and a constant < 0 is converted to unsigned.
|
||
Invoke this function on every expression that might be implicitly
|
||
converted to an unsigned type. */
|
||
|
||
void
|
||
unsigned_conversion_warning (result, operand)
|
||
tree result, operand;
|
||
{
|
||
tree type = TREE_TYPE (result);
|
||
|
||
if (TREE_CODE (operand) == INTEGER_CST
|
||
&& TREE_CODE (type) == INTEGER_TYPE
|
||
&& TREE_UNSIGNED (type)
|
||
&& skip_evaluation == 0
|
||
&& !int_fits_type_p (operand, type))
|
||
{
|
||
if (!int_fits_type_p (operand, c_common_signed_type (type)))
|
||
/* This detects cases like converting -129 or 256 to unsigned char. */
|
||
warning ("large integer implicitly truncated to unsigned type");
|
||
else if (warn_conversion)
|
||
warning ("negative integer implicitly converted to unsigned type");
|
||
}
|
||
}
|
||
|
||
/* Nonzero if constant C has a value that is permissible
|
||
for type TYPE (an INTEGER_TYPE). */
|
||
|
||
static int
|
||
constant_fits_type_p (c, type)
|
||
tree c, type;
|
||
{
|
||
if (TREE_CODE (c) == INTEGER_CST)
|
||
return int_fits_type_p (c, type);
|
||
|
||
c = convert (type, c);
|
||
return !TREE_OVERFLOW (c);
|
||
}
|
||
|
||
/* Convert EXPR to TYPE, warning about conversion problems with constants.
|
||
Invoke this function on every expression that is converted implicitly,
|
||
i.e. because of language rules and not because of an explicit cast. */
|
||
|
||
tree
|
||
convert_and_check (type, expr)
|
||
tree type, expr;
|
||
{
|
||
tree t = convert (type, expr);
|
||
if (TREE_CODE (t) == INTEGER_CST)
|
||
{
|
||
if (TREE_OVERFLOW (t))
|
||
{
|
||
TREE_OVERFLOW (t) = 0;
|
||
|
||
/* Do not diagnose overflow in a constant expression merely
|
||
because a conversion overflowed. */
|
||
TREE_CONSTANT_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (expr);
|
||
|
||
/* No warning for converting 0x80000000 to int. */
|
||
if (!(TREE_UNSIGNED (type) < TREE_UNSIGNED (TREE_TYPE (expr))
|
||
&& TREE_CODE (TREE_TYPE (expr)) == INTEGER_TYPE
|
||
&& TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (expr))))
|
||
/* If EXPR fits in the unsigned version of TYPE,
|
||
don't warn unless pedantic. */
|
||
if ((pedantic
|
||
|| TREE_UNSIGNED (type)
|
||
|| ! constant_fits_type_p (expr,
|
||
c_common_unsigned_type (type)))
|
||
&& skip_evaluation == 0)
|
||
warning ("overflow in implicit constant conversion");
|
||
}
|
||
else
|
||
unsigned_conversion_warning (t, expr);
|
||
}
|
||
return t;
|
||
}
|
||
|
||
/* A node in a list that describes references to variables (EXPR), which are
|
||
either read accesses if WRITER is zero, or write accesses, in which case
|
||
WRITER is the parent of EXPR. */
|
||
struct tlist
|
||
{
|
||
struct tlist *next;
|
||
tree expr, writer;
|
||
};
|
||
|
||
/* Used to implement a cache the results of a call to verify_tree. We only
|
||
use this for SAVE_EXPRs. */
|
||
struct tlist_cache
|
||
{
|
||
struct tlist_cache *next;
|
||
struct tlist *cache_before_sp;
|
||
struct tlist *cache_after_sp;
|
||
tree expr;
|
||
};
|
||
|
||
/* Obstack to use when allocating tlist structures, and corresponding
|
||
firstobj. */
|
||
static struct obstack tlist_obstack;
|
||
static char *tlist_firstobj = 0;
|
||
|
||
/* Keep track of the identifiers we've warned about, so we can avoid duplicate
|
||
warnings. */
|
||
static struct tlist *warned_ids;
|
||
/* SAVE_EXPRs need special treatment. We process them only once and then
|
||
cache the results. */
|
||
static struct tlist_cache *save_expr_cache;
|
||
|
||
static void add_tlist PARAMS ((struct tlist **, struct tlist *, tree, int));
|
||
static void merge_tlist PARAMS ((struct tlist **, struct tlist *, int));
|
||
static void verify_tree PARAMS ((tree, struct tlist **, struct tlist **, tree));
|
||
static int warning_candidate_p PARAMS ((tree));
|
||
static void warn_for_collisions PARAMS ((struct tlist *));
|
||
static void warn_for_collisions_1 PARAMS ((tree, tree, struct tlist *, int));
|
||
static struct tlist *new_tlist PARAMS ((struct tlist *, tree, tree));
|
||
static void verify_sequence_points PARAMS ((tree));
|
||
|
||
/* Create a new struct tlist and fill in its fields. */
|
||
static struct tlist *
|
||
new_tlist (next, t, writer)
|
||
struct tlist *next;
|
||
tree t;
|
||
tree writer;
|
||
{
|
||
struct tlist *l;
|
||
l = (struct tlist *) obstack_alloc (&tlist_obstack, sizeof *l);
|
||
l->next = next;
|
||
l->expr = t;
|
||
l->writer = writer;
|
||
return l;
|
||
}
|
||
|
||
/* Add duplicates of the nodes found in ADD to the list *TO. If EXCLUDE_WRITER
|
||
is nonnull, we ignore any node we find which has a writer equal to it. */
|
||
|
||
static void
|
||
add_tlist (to, add, exclude_writer, copy)
|
||
struct tlist **to;
|
||
struct tlist *add;
|
||
tree exclude_writer;
|
||
int copy;
|
||
{
|
||
while (add)
|
||
{
|
||
struct tlist *next = add->next;
|
||
if (! copy)
|
||
add->next = *to;
|
||
if (! exclude_writer || add->writer != exclude_writer)
|
||
*to = copy ? new_tlist (*to, add->expr, add->writer) : add;
|
||
add = next;
|
||
}
|
||
}
|
||
|
||
/* Merge the nodes of ADD into TO. This merging process is done so that for
|
||
each variable that already exists in TO, no new node is added; however if
|
||
there is a write access recorded in ADD, and an occurrence on TO is only
|
||
a read access, then the occurrence in TO will be modified to record the
|
||
write. */
|
||
|
||
static void
|
||
merge_tlist (to, add, copy)
|
||
struct tlist **to;
|
||
struct tlist *add;
|
||
int copy;
|
||
{
|
||
struct tlist **end = to;
|
||
|
||
while (*end)
|
||
end = &(*end)->next;
|
||
|
||
while (add)
|
||
{
|
||
int found = 0;
|
||
struct tlist *tmp2;
|
||
struct tlist *next = add->next;
|
||
|
||
for (tmp2 = *to; tmp2; tmp2 = tmp2->next)
|
||
if (tmp2->expr == add->expr)
|
||
{
|
||
found = 1;
|
||
if (! tmp2->writer)
|
||
tmp2->writer = add->writer;
|
||
}
|
||
if (! found)
|
||
{
|
||
*end = copy ? add : new_tlist (NULL, add->expr, add->writer);
|
||
end = &(*end)->next;
|
||
*end = 0;
|
||
}
|
||
add = next;
|
||
}
|
||
}
|
||
|
||
/* WRITTEN is a variable, WRITER is its parent. Warn if any of the variable
|
||
references in list LIST conflict with it, excluding reads if ONLY writers
|
||
is nonzero. */
|
||
|
||
static void
|
||
warn_for_collisions_1 (written, writer, list, only_writes)
|
||
tree written, writer;
|
||
struct tlist *list;
|
||
int only_writes;
|
||
{
|
||
struct tlist *tmp;
|
||
|
||
/* Avoid duplicate warnings. */
|
||
for (tmp = warned_ids; tmp; tmp = tmp->next)
|
||
if (tmp->expr == written)
|
||
return;
|
||
|
||
while (list)
|
||
{
|
||
if (list->expr == written
|
||
&& list->writer != writer
|
||
&& (! only_writes || list->writer))
|
||
{
|
||
warned_ids = new_tlist (warned_ids, written, NULL_TREE);
|
||
warning ("operation on `%s' may be undefined",
|
||
IDENTIFIER_POINTER (DECL_NAME (list->expr)));
|
||
}
|
||
list = list->next;
|
||
}
|
||
}
|
||
|
||
/* Given a list LIST of references to variables, find whether any of these
|
||
can cause conflicts due to missing sequence points. */
|
||
|
||
static void
|
||
warn_for_collisions (list)
|
||
struct tlist *list;
|
||
{
|
||
struct tlist *tmp;
|
||
|
||
for (tmp = list; tmp; tmp = tmp->next)
|
||
{
|
||
if (tmp->writer)
|
||
warn_for_collisions_1 (tmp->expr, tmp->writer, list, 0);
|
||
}
|
||
}
|
||
|
||
/* Return nonzero if X is a tree that can be verified by the sequence point
|
||
warnings. */
|
||
static int
|
||
warning_candidate_p (x)
|
||
tree x;
|
||
{
|
||
return TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == PARM_DECL;
|
||
}
|
||
|
||
/* Walk the tree X, and record accesses to variables. If X is written by the
|
||
parent tree, WRITER is the parent.
|
||
We store accesses in one of the two lists: PBEFORE_SP, and PNO_SP. If this
|
||
expression or its only operand forces a sequence point, then everything up
|
||
to the sequence point is stored in PBEFORE_SP. Everything else gets stored
|
||
in PNO_SP.
|
||
Once we return, we will have emitted warnings if any subexpression before
|
||
such a sequence point could be undefined. On a higher level, however, the
|
||
sequence point may not be relevant, and we'll merge the two lists.
|
||
|
||
Example: (b++, a) + b;
|
||
The call that processes the COMPOUND_EXPR will store the increment of B
|
||
in PBEFORE_SP, and the use of A in PNO_SP. The higher-level call that
|
||
processes the PLUS_EXPR will need to merge the two lists so that
|
||
eventually, all accesses end up on the same list (and we'll warn about the
|
||
unordered subexpressions b++ and b.
|
||
|
||
A note on merging. If we modify the former example so that our expression
|
||
becomes
|
||
(b++, b) + a
|
||
care must be taken not simply to add all three expressions into the final
|
||
PNO_SP list. The function merge_tlist takes care of that by merging the
|
||
before-SP list of the COMPOUND_EXPR into its after-SP list in a special
|
||
way, so that no more than one access to B is recorded. */
|
||
|
||
static void
|
||
verify_tree (x, pbefore_sp, pno_sp, writer)
|
||
tree x;
|
||
struct tlist **pbefore_sp, **pno_sp;
|
||
tree writer;
|
||
{
|
||
struct tlist *tmp_before, *tmp_nosp, *tmp_list2, *tmp_list3;
|
||
enum tree_code code;
|
||
char class;
|
||
|
||
/* X may be NULL if it is the operand of an empty statement expression
|
||
({ }). */
|
||
if (x == NULL)
|
||
return;
|
||
|
||
restart:
|
||
code = TREE_CODE (x);
|
||
class = TREE_CODE_CLASS (code);
|
||
|
||
if (warning_candidate_p (x))
|
||
{
|
||
*pno_sp = new_tlist (*pno_sp, x, writer);
|
||
return;
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case CONSTRUCTOR:
|
||
return;
|
||
|
||
case COMPOUND_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
tmp_before = tmp_nosp = tmp_list3 = 0;
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
warn_for_collisions (tmp_nosp);
|
||
merge_tlist (pbefore_sp, tmp_before, 0);
|
||
merge_tlist (pbefore_sp, tmp_nosp, 0);
|
||
verify_tree (TREE_OPERAND (x, 1), &tmp_list3, pno_sp, NULL_TREE);
|
||
merge_tlist (pbefore_sp, tmp_list3, 0);
|
||
return;
|
||
|
||
case COND_EXPR:
|
||
tmp_before = tmp_list2 = 0;
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_list2, NULL_TREE);
|
||
warn_for_collisions (tmp_list2);
|
||
merge_tlist (pbefore_sp, tmp_before, 0);
|
||
merge_tlist (pbefore_sp, tmp_list2, 1);
|
||
|
||
tmp_list3 = tmp_nosp = 0;
|
||
verify_tree (TREE_OPERAND (x, 1), &tmp_list3, &tmp_nosp, NULL_TREE);
|
||
warn_for_collisions (tmp_nosp);
|
||
merge_tlist (pbefore_sp, tmp_list3, 0);
|
||
|
||
tmp_list3 = tmp_list2 = 0;
|
||
verify_tree (TREE_OPERAND (x, 2), &tmp_list3, &tmp_list2, NULL_TREE);
|
||
warn_for_collisions (tmp_list2);
|
||
merge_tlist (pbefore_sp, tmp_list3, 0);
|
||
/* Rather than add both tmp_nosp and tmp_list2, we have to merge the
|
||
two first, to avoid warning for (a ? b++ : b++). */
|
||
merge_tlist (&tmp_nosp, tmp_list2, 0);
|
||
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
|
||
return;
|
||
|
||
case PREDECREMENT_EXPR:
|
||
case PREINCREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
verify_tree (TREE_OPERAND (x, 0), pno_sp, pno_sp, x);
|
||
return;
|
||
|
||
case MODIFY_EXPR:
|
||
tmp_before = tmp_nosp = tmp_list3 = 0;
|
||
verify_tree (TREE_OPERAND (x, 1), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_list3, &tmp_list3, x);
|
||
/* Expressions inside the LHS are not ordered wrt. the sequence points
|
||
in the RHS. Example:
|
||
*a = (a++, 2)
|
||
Despite the fact that the modification of "a" is in the before_sp
|
||
list (tmp_before), it conflicts with the use of "a" in the LHS.
|
||
We can handle this by adding the contents of tmp_list3
|
||
to those of tmp_before, and redoing the collision warnings for that
|
||
list. */
|
||
add_tlist (&tmp_before, tmp_list3, x, 1);
|
||
warn_for_collisions (tmp_before);
|
||
/* Exclude the LHS itself here; we first have to merge it into the
|
||
tmp_nosp list. This is done to avoid warning for "a = a"; if we
|
||
didn't exclude the LHS, we'd get it twice, once as a read and once
|
||
as a write. */
|
||
add_tlist (pno_sp, tmp_list3, x, 0);
|
||
warn_for_collisions_1 (TREE_OPERAND (x, 0), x, tmp_nosp, 1);
|
||
|
||
merge_tlist (pbefore_sp, tmp_before, 0);
|
||
if (warning_candidate_p (TREE_OPERAND (x, 0)))
|
||
merge_tlist (&tmp_nosp, new_tlist (NULL, TREE_OPERAND (x, 0), x), 0);
|
||
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 1);
|
||
return;
|
||
|
||
case CALL_EXPR:
|
||
/* We need to warn about conflicts among arguments and conflicts between
|
||
args and the function address. Side effects of the function address,
|
||
however, are not ordered by the sequence point of the call. */
|
||
tmp_before = tmp_nosp = tmp_list2 = tmp_list3 = 0;
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
if (TREE_OPERAND (x, 1))
|
||
verify_tree (TREE_OPERAND (x, 1), &tmp_list2, &tmp_list3, NULL_TREE);
|
||
merge_tlist (&tmp_list3, tmp_list2, 0);
|
||
add_tlist (&tmp_before, tmp_list3, NULL_TREE, 0);
|
||
add_tlist (&tmp_before, tmp_nosp, NULL_TREE, 0);
|
||
warn_for_collisions (tmp_before);
|
||
add_tlist (pbefore_sp, tmp_before, NULL_TREE, 0);
|
||
return;
|
||
|
||
case TREE_LIST:
|
||
/* Scan all the list, e.g. indices of multi dimensional array. */
|
||
while (x)
|
||
{
|
||
tmp_before = tmp_nosp = 0;
|
||
verify_tree (TREE_VALUE (x), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
merge_tlist (&tmp_nosp, tmp_before, 0);
|
||
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
|
||
x = TREE_CHAIN (x);
|
||
}
|
||
return;
|
||
|
||
case SAVE_EXPR:
|
||
{
|
||
struct tlist_cache *t;
|
||
for (t = save_expr_cache; t; t = t->next)
|
||
if (t->expr == x)
|
||
break;
|
||
|
||
if (! t)
|
||
{
|
||
t = (struct tlist_cache *) obstack_alloc (&tlist_obstack,
|
||
sizeof *t);
|
||
t->next = save_expr_cache;
|
||
t->expr = x;
|
||
save_expr_cache = t;
|
||
|
||
tmp_before = tmp_nosp = 0;
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
warn_for_collisions (tmp_nosp);
|
||
|
||
tmp_list3 = 0;
|
||
while (tmp_nosp)
|
||
{
|
||
struct tlist *t = tmp_nosp;
|
||
tmp_nosp = t->next;
|
||
merge_tlist (&tmp_list3, t, 0);
|
||
}
|
||
t->cache_before_sp = tmp_before;
|
||
t->cache_after_sp = tmp_list3;
|
||
}
|
||
merge_tlist (pbefore_sp, t->cache_before_sp, 1);
|
||
add_tlist (pno_sp, t->cache_after_sp, NULL_TREE, 1);
|
||
return;
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (class == '1')
|
||
{
|
||
if (first_rtl_op (code) == 0)
|
||
return;
|
||
x = TREE_OPERAND (x, 0);
|
||
writer = 0;
|
||
goto restart;
|
||
}
|
||
|
||
switch (class)
|
||
{
|
||
case 'r':
|
||
case '<':
|
||
case '2':
|
||
case 'b':
|
||
case 'e':
|
||
case 's':
|
||
case 'x':
|
||
{
|
||
int lp;
|
||
int max = first_rtl_op (TREE_CODE (x));
|
||
for (lp = 0; lp < max; lp++)
|
||
{
|
||
tmp_before = tmp_nosp = 0;
|
||
verify_tree (TREE_OPERAND (x, lp), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
merge_tlist (&tmp_nosp, tmp_before, 0);
|
||
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Try to warn for undefined behavior in EXPR due to missing sequence
|
||
points. */
|
||
|
||
static void
|
||
verify_sequence_points (expr)
|
||
tree expr;
|
||
{
|
||
struct tlist *before_sp = 0, *after_sp = 0;
|
||
|
||
warned_ids = 0;
|
||
save_expr_cache = 0;
|
||
if (tlist_firstobj == 0)
|
||
{
|
||
gcc_obstack_init (&tlist_obstack);
|
||
tlist_firstobj = obstack_alloc (&tlist_obstack, 0);
|
||
}
|
||
|
||
verify_tree (expr, &before_sp, &after_sp, 0);
|
||
warn_for_collisions (after_sp);
|
||
obstack_free (&tlist_obstack, tlist_firstobj);
|
||
}
|
||
|
||
tree
|
||
c_expand_expr_stmt (expr)
|
||
tree expr;
|
||
{
|
||
/* Do default conversion if safe and possibly important,
|
||
in case within ({...}). */
|
||
if ((TREE_CODE (TREE_TYPE (expr)) == ARRAY_TYPE
|
||
&& (flag_isoc99 || lvalue_p (expr)))
|
||
|| TREE_CODE (TREE_TYPE (expr)) == FUNCTION_TYPE)
|
||
expr = default_conversion (expr);
|
||
|
||
if (warn_sequence_point)
|
||
verify_sequence_points (expr);
|
||
|
||
if (TREE_TYPE (expr) != error_mark_node
|
||
&& !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
|
||
&& TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
|
||
error ("expression statement has incomplete type");
|
||
|
||
last_expr_type = TREE_TYPE (expr);
|
||
return add_stmt (build_stmt (EXPR_STMT, expr));
|
||
}
|
||
|
||
/* Validate the expression after `case' and apply default promotions. */
|
||
|
||
tree
|
||
check_case_value (value)
|
||
tree value;
|
||
{
|
||
if (value == NULL_TREE)
|
||
return value;
|
||
|
||
/* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
|
||
STRIP_TYPE_NOPS (value);
|
||
/* In C++, the following is allowed:
|
||
|
||
const int i = 3;
|
||
switch (...) { case i: ... }
|
||
|
||
So, we try to reduce the VALUE to a constant that way. */
|
||
if (c_language == clk_cplusplus)
|
||
{
|
||
value = decl_constant_value (value);
|
||
STRIP_TYPE_NOPS (value);
|
||
value = fold (value);
|
||
}
|
||
|
||
if (TREE_CODE (value) != INTEGER_CST
|
||
&& value != error_mark_node)
|
||
{
|
||
error ("case label does not reduce to an integer constant");
|
||
value = error_mark_node;
|
||
}
|
||
else
|
||
/* Promote char or short to int. */
|
||
value = default_conversion (value);
|
||
|
||
constant_expression_warning (value);
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Return an integer type with BITS bits of precision,
|
||
that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
|
||
|
||
tree
|
||
c_common_type_for_size (bits, unsignedp)
|
||
unsigned bits;
|
||
int unsignedp;
|
||
{
|
||
if (bits == TYPE_PRECISION (integer_type_node))
|
||
return unsignedp ? unsigned_type_node : integer_type_node;
|
||
|
||
if (bits == TYPE_PRECISION (signed_char_type_node))
|
||
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
||
|
||
if (bits == TYPE_PRECISION (short_integer_type_node))
|
||
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
||
|
||
if (bits == TYPE_PRECISION (long_integer_type_node))
|
||
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
||
|
||
if (bits == TYPE_PRECISION (long_long_integer_type_node))
|
||
return (unsignedp ? long_long_unsigned_type_node
|
||
: long_long_integer_type_node);
|
||
|
||
if (bits == TYPE_PRECISION (widest_integer_literal_type_node))
|
||
return (unsignedp ? widest_unsigned_literal_type_node
|
||
: widest_integer_literal_type_node);
|
||
|
||
if (bits <= TYPE_PRECISION (intQI_type_node))
|
||
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
|
||
|
||
if (bits <= TYPE_PRECISION (intHI_type_node))
|
||
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
|
||
|
||
if (bits <= TYPE_PRECISION (intSI_type_node))
|
||
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
|
||
|
||
if (bits <= TYPE_PRECISION (intDI_type_node))
|
||
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return a data type that has machine mode MODE.
|
||
If the mode is an integer,
|
||
then UNSIGNEDP selects between signed and unsigned types. */
|
||
|
||
tree
|
||
c_common_type_for_mode (mode, unsignedp)
|
||
enum machine_mode mode;
|
||
int unsignedp;
|
||
{
|
||
if (mode == TYPE_MODE (integer_type_node))
|
||
return unsignedp ? unsigned_type_node : integer_type_node;
|
||
|
||
if (mode == TYPE_MODE (signed_char_type_node))
|
||
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
||
|
||
if (mode == TYPE_MODE (short_integer_type_node))
|
||
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
||
|
||
if (mode == TYPE_MODE (long_integer_type_node))
|
||
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
||
|
||
if (mode == TYPE_MODE (long_long_integer_type_node))
|
||
return unsignedp ? long_long_unsigned_type_node : long_long_integer_type_node;
|
||
|
||
if (mode == TYPE_MODE (widest_integer_literal_type_node))
|
||
return unsignedp ? widest_unsigned_literal_type_node
|
||
: widest_integer_literal_type_node;
|
||
|
||
if (mode == QImode)
|
||
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
|
||
|
||
if (mode == HImode)
|
||
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
|
||
|
||
if (mode == SImode)
|
||
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
|
||
|
||
if (mode == DImode)
|
||
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
|
||
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (mode == TYPE_MODE (intTI_type_node))
|
||
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
|
||
#endif
|
||
|
||
if (mode == TYPE_MODE (float_type_node))
|
||
return float_type_node;
|
||
|
||
if (mode == TYPE_MODE (double_type_node))
|
||
return double_type_node;
|
||
|
||
if (mode == TYPE_MODE (long_double_type_node))
|
||
return long_double_type_node;
|
||
|
||
if (mode == TYPE_MODE (build_pointer_type (char_type_node)))
|
||
return build_pointer_type (char_type_node);
|
||
|
||
if (mode == TYPE_MODE (build_pointer_type (integer_type_node)))
|
||
return build_pointer_type (integer_type_node);
|
||
|
||
switch (mode)
|
||
{
|
||
case V16QImode:
|
||
return unsignedp ? unsigned_V16QI_type_node : V16QI_type_node;
|
||
case V8HImode:
|
||
return unsignedp ? unsigned_V8HI_type_node : V8HI_type_node;
|
||
case V4SImode:
|
||
return unsignedp ? unsigned_V4SI_type_node : V4SI_type_node;
|
||
case V2DImode:
|
||
return unsignedp ? unsigned_V2DI_type_node : V2DI_type_node;
|
||
case V2SImode:
|
||
return unsignedp ? unsigned_V2SI_type_node : V2SI_type_node;
|
||
case V2HImode:
|
||
return unsignedp ? unsigned_V2HI_type_node : V2HI_type_node;
|
||
case V4HImode:
|
||
return unsignedp ? unsigned_V4HI_type_node : V4HI_type_node;
|
||
case V8QImode:
|
||
return unsignedp ? unsigned_V8QI_type_node : V8QI_type_node;
|
||
case V1DImode:
|
||
return unsignedp ? unsigned_V1DI_type_node : V1DI_type_node;
|
||
case V16SFmode:
|
||
return V16SF_type_node;
|
||
case V4SFmode:
|
||
return V4SF_type_node;
|
||
case V2SFmode:
|
||
return V2SF_type_node;
|
||
case V2DFmode:
|
||
return V2DF_type_node;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return an unsigned type the same as TYPE in other respects. */
|
||
tree
|
||
c_common_unsigned_type (type)
|
||
tree type;
|
||
{
|
||
tree type1 = TYPE_MAIN_VARIANT (type);
|
||
if (type1 == signed_char_type_node || type1 == char_type_node)
|
||
return unsigned_char_type_node;
|
||
if (type1 == integer_type_node)
|
||
return unsigned_type_node;
|
||
if (type1 == short_integer_type_node)
|
||
return short_unsigned_type_node;
|
||
if (type1 == long_integer_type_node)
|
||
return long_unsigned_type_node;
|
||
if (type1 == long_long_integer_type_node)
|
||
return long_long_unsigned_type_node;
|
||
if (type1 == widest_integer_literal_type_node)
|
||
return widest_unsigned_literal_type_node;
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (type1 == intTI_type_node)
|
||
return unsigned_intTI_type_node;
|
||
#endif
|
||
if (type1 == intDI_type_node)
|
||
return unsigned_intDI_type_node;
|
||
if (type1 == intSI_type_node)
|
||
return unsigned_intSI_type_node;
|
||
if (type1 == intHI_type_node)
|
||
return unsigned_intHI_type_node;
|
||
if (type1 == intQI_type_node)
|
||
return unsigned_intQI_type_node;
|
||
|
||
return c_common_signed_or_unsigned_type (1, type);
|
||
}
|
||
|
||
/* Return a signed type the same as TYPE in other respects. */
|
||
|
||
tree
|
||
c_common_signed_type (type)
|
||
tree type;
|
||
{
|
||
tree type1 = TYPE_MAIN_VARIANT (type);
|
||
if (type1 == unsigned_char_type_node || type1 == char_type_node)
|
||
return signed_char_type_node;
|
||
if (type1 == unsigned_type_node)
|
||
return integer_type_node;
|
||
if (type1 == short_unsigned_type_node)
|
||
return short_integer_type_node;
|
||
if (type1 == long_unsigned_type_node)
|
||
return long_integer_type_node;
|
||
if (type1 == long_long_unsigned_type_node)
|
||
return long_long_integer_type_node;
|
||
if (type1 == widest_unsigned_literal_type_node)
|
||
return widest_integer_literal_type_node;
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (type1 == unsigned_intTI_type_node)
|
||
return intTI_type_node;
|
||
#endif
|
||
if (type1 == unsigned_intDI_type_node)
|
||
return intDI_type_node;
|
||
if (type1 == unsigned_intSI_type_node)
|
||
return intSI_type_node;
|
||
if (type1 == unsigned_intHI_type_node)
|
||
return intHI_type_node;
|
||
if (type1 == unsigned_intQI_type_node)
|
||
return intQI_type_node;
|
||
|
||
return c_common_signed_or_unsigned_type (0, type);
|
||
}
|
||
|
||
/* Return a type the same as TYPE except unsigned or
|
||
signed according to UNSIGNEDP. */
|
||
|
||
tree
|
||
c_common_signed_or_unsigned_type (unsignedp, type)
|
||
int unsignedp;
|
||
tree type;
|
||
{
|
||
if (! INTEGRAL_TYPE_P (type)
|
||
|| TREE_UNSIGNED (type) == unsignedp)
|
||
return type;
|
||
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node))
|
||
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
|
||
return unsignedp ? unsigned_type_node : integer_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (short_integer_type_node))
|
||
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (long_integer_type_node))
|
||
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (long_long_integer_type_node))
|
||
return (unsignedp ? long_long_unsigned_type_node
|
||
: long_long_integer_type_node);
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (widest_integer_literal_type_node))
|
||
return (unsignedp ? widest_unsigned_literal_type_node
|
||
: widest_integer_literal_type_node);
|
||
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (intTI_type_node))
|
||
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
|
||
#endif
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (intDI_type_node))
|
||
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (intSI_type_node))
|
||
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (intHI_type_node))
|
||
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (intQI_type_node))
|
||
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Return the minimum number of bits needed to represent VALUE in a
|
||
signed or unsigned type, UNSIGNEDP says which. */
|
||
|
||
unsigned int
|
||
min_precision (value, unsignedp)
|
||
tree value;
|
||
int unsignedp;
|
||
{
|
||
int log;
|
||
|
||
/* If the value is negative, compute its negative minus 1. The latter
|
||
adjustment is because the absolute value of the largest negative value
|
||
is one larger than the largest positive value. This is equivalent to
|
||
a bit-wise negation, so use that operation instead. */
|
||
|
||
if (tree_int_cst_sgn (value) < 0)
|
||
value = fold (build1 (BIT_NOT_EXPR, TREE_TYPE (value), value));
|
||
|
||
/* Return the number of bits needed, taking into account the fact
|
||
that we need one more bit for a signed than unsigned type. */
|
||
|
||
if (integer_zerop (value))
|
||
log = 0;
|
||
else
|
||
log = tree_floor_log2 (value);
|
||
|
||
return log + 1 + ! unsignedp;
|
||
}
|
||
|
||
/* Print an error message for invalid operands to arith operation
|
||
CODE. NOP_EXPR is used as a special case (see
|
||
c_common_truthvalue_conversion). */
|
||
|
||
void
|
||
binary_op_error (code)
|
||
enum tree_code code;
|
||
{
|
||
const char *opname;
|
||
|
||
switch (code)
|
||
{
|
||
case NOP_EXPR:
|
||
error ("invalid truth-value expression");
|
||
return;
|
||
|
||
case PLUS_EXPR:
|
||
opname = "+"; break;
|
||
case MINUS_EXPR:
|
||
opname = "-"; break;
|
||
case MULT_EXPR:
|
||
opname = "*"; break;
|
||
case MAX_EXPR:
|
||
opname = "max"; break;
|
||
case MIN_EXPR:
|
||
opname = "min"; break;
|
||
case EQ_EXPR:
|
||
opname = "=="; break;
|
||
case NE_EXPR:
|
||
opname = "!="; break;
|
||
case LE_EXPR:
|
||
opname = "<="; break;
|
||
case GE_EXPR:
|
||
opname = ">="; break;
|
||
case LT_EXPR:
|
||
opname = "<"; break;
|
||
case GT_EXPR:
|
||
opname = ">"; break;
|
||
case LSHIFT_EXPR:
|
||
opname = "<<"; break;
|
||
case RSHIFT_EXPR:
|
||
opname = ">>"; break;
|
||
case TRUNC_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
opname = "%"; break;
|
||
case TRUNC_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
opname = "/"; break;
|
||
case BIT_AND_EXPR:
|
||
opname = "&"; break;
|
||
case BIT_IOR_EXPR:
|
||
opname = "|"; break;
|
||
case TRUTH_ANDIF_EXPR:
|
||
opname = "&&"; break;
|
||
case TRUTH_ORIF_EXPR:
|
||
opname = "||"; break;
|
||
case BIT_XOR_EXPR:
|
||
opname = "^"; break;
|
||
case LROTATE_EXPR:
|
||
case RROTATE_EXPR:
|
||
opname = "rotate"; break;
|
||
default:
|
||
opname = "unknown"; break;
|
||
}
|
||
error ("invalid operands to binary %s", opname);
|
||
}
|
||
|
||
/* Subroutine of build_binary_op, used for comparison operations.
|
||
See if the operands have both been converted from subword integer types
|
||
and, if so, perhaps change them both back to their original type.
|
||
This function is also responsible for converting the two operands
|
||
to the proper common type for comparison.
|
||
|
||
The arguments of this function are all pointers to local variables
|
||
of build_binary_op: OP0_PTR is &OP0, OP1_PTR is &OP1,
|
||
RESTYPE_PTR is &RESULT_TYPE and RESCODE_PTR is &RESULTCODE.
|
||
|
||
If this function returns nonzero, it means that the comparison has
|
||
a constant value. What this function returns is an expression for
|
||
that value. */
|
||
|
||
tree
|
||
shorten_compare (op0_ptr, op1_ptr, restype_ptr, rescode_ptr)
|
||
tree *op0_ptr, *op1_ptr;
|
||
tree *restype_ptr;
|
||
enum tree_code *rescode_ptr;
|
||
{
|
||
tree type;
|
||
tree op0 = *op0_ptr;
|
||
tree op1 = *op1_ptr;
|
||
int unsignedp0, unsignedp1;
|
||
int real1, real2;
|
||
tree primop0, primop1;
|
||
enum tree_code code = *rescode_ptr;
|
||
|
||
/* Throw away any conversions to wider types
|
||
already present in the operands. */
|
||
|
||
primop0 = get_narrower (op0, &unsignedp0);
|
||
primop1 = get_narrower (op1, &unsignedp1);
|
||
|
||
/* Handle the case that OP0 does not *contain* a conversion
|
||
but it *requires* conversion to FINAL_TYPE. */
|
||
|
||
if (op0 == primop0 && TREE_TYPE (op0) != *restype_ptr)
|
||
unsignedp0 = TREE_UNSIGNED (TREE_TYPE (op0));
|
||
if (op1 == primop1 && TREE_TYPE (op1) != *restype_ptr)
|
||
unsignedp1 = TREE_UNSIGNED (TREE_TYPE (op1));
|
||
|
||
/* If one of the operands must be floated, we cannot optimize. */
|
||
real1 = TREE_CODE (TREE_TYPE (primop0)) == REAL_TYPE;
|
||
real2 = TREE_CODE (TREE_TYPE (primop1)) == REAL_TYPE;
|
||
|
||
/* If first arg is constant, swap the args (changing operation
|
||
so value is preserved), for canonicalization. Don't do this if
|
||
the second arg is 0. */
|
||
|
||
if (TREE_CONSTANT (primop0)
|
||
&& ! integer_zerop (primop1) && ! real_zerop (primop1))
|
||
{
|
||
tree tem = primop0;
|
||
int temi = unsignedp0;
|
||
primop0 = primop1;
|
||
primop1 = tem;
|
||
tem = op0;
|
||
op0 = op1;
|
||
op1 = tem;
|
||
*op0_ptr = op0;
|
||
*op1_ptr = op1;
|
||
unsignedp0 = unsignedp1;
|
||
unsignedp1 = temi;
|
||
temi = real1;
|
||
real1 = real2;
|
||
real2 = temi;
|
||
|
||
switch (code)
|
||
{
|
||
case LT_EXPR:
|
||
code = GT_EXPR;
|
||
break;
|
||
case GT_EXPR:
|
||
code = LT_EXPR;
|
||
break;
|
||
case LE_EXPR:
|
||
code = GE_EXPR;
|
||
break;
|
||
case GE_EXPR:
|
||
code = LE_EXPR;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
*rescode_ptr = code;
|
||
}
|
||
|
||
/* If comparing an integer against a constant more bits wide,
|
||
maybe we can deduce a value of 1 or 0 independent of the data.
|
||
Or else truncate the constant now
|
||
rather than extend the variable at run time.
|
||
|
||
This is only interesting if the constant is the wider arg.
|
||
Also, it is not safe if the constant is unsigned and the
|
||
variable arg is signed, since in this case the variable
|
||
would be sign-extended and then regarded as unsigned.
|
||
Our technique fails in this case because the lowest/highest
|
||
possible unsigned results don't follow naturally from the
|
||
lowest/highest possible values of the variable operand.
|
||
For just EQ_EXPR and NE_EXPR there is another technique that
|
||
could be used: see if the constant can be faithfully represented
|
||
in the other operand's type, by truncating it and reextending it
|
||
and see if that preserves the constant's value. */
|
||
|
||
if (!real1 && !real2
|
||
&& TREE_CODE (primop1) == INTEGER_CST
|
||
&& TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr))
|
||
{
|
||
int min_gt, max_gt, min_lt, max_lt;
|
||
tree maxval, minval;
|
||
/* 1 if comparison is nominally unsigned. */
|
||
int unsignedp = TREE_UNSIGNED (*restype_ptr);
|
||
tree val;
|
||
|
||
type = c_common_signed_or_unsigned_type (unsignedp0,
|
||
TREE_TYPE (primop0));
|
||
|
||
/* If TYPE is an enumeration, then we need to get its min/max
|
||
values from it's underlying integral type, not the enumerated
|
||
type itself. */
|
||
if (TREE_CODE (type) == ENUMERAL_TYPE)
|
||
type = c_common_type_for_size (TYPE_PRECISION (type), unsignedp0);
|
||
|
||
maxval = TYPE_MAX_VALUE (type);
|
||
minval = TYPE_MIN_VALUE (type);
|
||
|
||
if (unsignedp && !unsignedp0)
|
||
*restype_ptr = c_common_signed_type (*restype_ptr);
|
||
|
||
if (TREE_TYPE (primop1) != *restype_ptr)
|
||
primop1 = convert (*restype_ptr, primop1);
|
||
if (type != *restype_ptr)
|
||
{
|
||
minval = convert (*restype_ptr, minval);
|
||
maxval = convert (*restype_ptr, maxval);
|
||
}
|
||
|
||
if (unsignedp && unsignedp0)
|
||
{
|
||
min_gt = INT_CST_LT_UNSIGNED (primop1, minval);
|
||
max_gt = INT_CST_LT_UNSIGNED (primop1, maxval);
|
||
min_lt = INT_CST_LT_UNSIGNED (minval, primop1);
|
||
max_lt = INT_CST_LT_UNSIGNED (maxval, primop1);
|
||
}
|
||
else
|
||
{
|
||
min_gt = INT_CST_LT (primop1, minval);
|
||
max_gt = INT_CST_LT (primop1, maxval);
|
||
min_lt = INT_CST_LT (minval, primop1);
|
||
max_lt = INT_CST_LT (maxval, primop1);
|
||
}
|
||
|
||
val = 0;
|
||
/* This used to be a switch, but Genix compiler can't handle that. */
|
||
if (code == NE_EXPR)
|
||
{
|
||
if (max_lt || min_gt)
|
||
val = boolean_true_node;
|
||
}
|
||
else if (code == EQ_EXPR)
|
||
{
|
||
if (max_lt || min_gt)
|
||
val = boolean_false_node;
|
||
}
|
||
else if (code == LT_EXPR)
|
||
{
|
||
if (max_lt)
|
||
val = boolean_true_node;
|
||
if (!min_lt)
|
||
val = boolean_false_node;
|
||
}
|
||
else if (code == GT_EXPR)
|
||
{
|
||
if (min_gt)
|
||
val = boolean_true_node;
|
||
if (!max_gt)
|
||
val = boolean_false_node;
|
||
}
|
||
else if (code == LE_EXPR)
|
||
{
|
||
if (!max_gt)
|
||
val = boolean_true_node;
|
||
if (min_gt)
|
||
val = boolean_false_node;
|
||
}
|
||
else if (code == GE_EXPR)
|
||
{
|
||
if (!min_lt)
|
||
val = boolean_true_node;
|
||
if (max_lt)
|
||
val = boolean_false_node;
|
||
}
|
||
|
||
/* If primop0 was sign-extended and unsigned comparison specd,
|
||
we did a signed comparison above using the signed type bounds.
|
||
But the comparison we output must be unsigned.
|
||
|
||
Also, for inequalities, VAL is no good; but if the signed
|
||
comparison had *any* fixed result, it follows that the
|
||
unsigned comparison just tests the sign in reverse
|
||
(positive values are LE, negative ones GE).
|
||
So we can generate an unsigned comparison
|
||
against an extreme value of the signed type. */
|
||
|
||
if (unsignedp && !unsignedp0)
|
||
{
|
||
if (val != 0)
|
||
switch (code)
|
||
{
|
||
case LT_EXPR:
|
||
case GE_EXPR:
|
||
primop1 = TYPE_MIN_VALUE (type);
|
||
val = 0;
|
||
break;
|
||
|
||
case LE_EXPR:
|
||
case GT_EXPR:
|
||
primop1 = TYPE_MAX_VALUE (type);
|
||
val = 0;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
type = c_common_unsigned_type (type);
|
||
}
|
||
|
||
if (TREE_CODE (primop0) != INTEGER_CST)
|
||
{
|
||
if (val == boolean_false_node)
|
||
warning ("comparison is always false due to limited range of data type");
|
||
if (val == boolean_true_node)
|
||
warning ("comparison is always true due to limited range of data type");
|
||
}
|
||
|
||
if (val != 0)
|
||
{
|
||
/* Don't forget to evaluate PRIMOP0 if it has side effects. */
|
||
if (TREE_SIDE_EFFECTS (primop0))
|
||
return build (COMPOUND_EXPR, TREE_TYPE (val), primop0, val);
|
||
return val;
|
||
}
|
||
|
||
/* Value is not predetermined, but do the comparison
|
||
in the type of the operand that is not constant.
|
||
TYPE is already properly set. */
|
||
}
|
||
else if (real1 && real2
|
||
&& (TYPE_PRECISION (TREE_TYPE (primop0))
|
||
== TYPE_PRECISION (TREE_TYPE (primop1))))
|
||
type = TREE_TYPE (primop0);
|
||
|
||
/* If args' natural types are both narrower than nominal type
|
||
and both extend in the same manner, compare them
|
||
in the type of the wider arg.
|
||
Otherwise must actually extend both to the nominal
|
||
common type lest different ways of extending
|
||
alter the result.
|
||
(eg, (short)-1 == (unsigned short)-1 should be 0.) */
|
||
|
||
else if (unsignedp0 == unsignedp1 && real1 == real2
|
||
&& TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr)
|
||
&& TYPE_PRECISION (TREE_TYPE (primop1)) < TYPE_PRECISION (*restype_ptr))
|
||
{
|
||
type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));
|
||
type = c_common_signed_or_unsigned_type (unsignedp0
|
||
|| TREE_UNSIGNED (*restype_ptr),
|
||
type);
|
||
/* Make sure shorter operand is extended the right way
|
||
to match the longer operand. */
|
||
primop0
|
||
= convert (c_common_signed_or_unsigned_type (unsignedp0,
|
||
TREE_TYPE (primop0)),
|
||
primop0);
|
||
primop1
|
||
= convert (c_common_signed_or_unsigned_type (unsignedp1,
|
||
TREE_TYPE (primop1)),
|
||
primop1);
|
||
}
|
||
else
|
||
{
|
||
/* Here we must do the comparison on the nominal type
|
||
using the args exactly as we received them. */
|
||
type = *restype_ptr;
|
||
primop0 = op0;
|
||
primop1 = op1;
|
||
|
||
if (!real1 && !real2 && integer_zerop (primop1)
|
||
&& TREE_UNSIGNED (*restype_ptr))
|
||
{
|
||
tree value = 0;
|
||
switch (code)
|
||
{
|
||
case GE_EXPR:
|
||
/* All unsigned values are >= 0, so we warn if extra warnings
|
||
are requested. However, if OP0 is a constant that is
|
||
>= 0, the signedness of the comparison isn't an issue,
|
||
so suppress the warning. */
|
||
if (extra_warnings && !in_system_header
|
||
&& ! (TREE_CODE (primop0) == INTEGER_CST
|
||
&& ! TREE_OVERFLOW (convert (c_common_signed_type (type),
|
||
primop0))))
|
||
warning ("comparison of unsigned expression >= 0 is always true");
|
||
value = boolean_true_node;
|
||
break;
|
||
|
||
case LT_EXPR:
|
||
if (extra_warnings && !in_system_header
|
||
&& ! (TREE_CODE (primop0) == INTEGER_CST
|
||
&& ! TREE_OVERFLOW (convert (c_common_signed_type (type),
|
||
primop0))))
|
||
warning ("comparison of unsigned expression < 0 is always false");
|
||
value = boolean_false_node;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (value != 0)
|
||
{
|
||
/* Don't forget to evaluate PRIMOP0 if it has side effects. */
|
||
if (TREE_SIDE_EFFECTS (primop0))
|
||
return build (COMPOUND_EXPR, TREE_TYPE (value),
|
||
primop0, value);
|
||
return value;
|
||
}
|
||
}
|
||
}
|
||
|
||
*op0_ptr = convert (type, primop0);
|
||
*op1_ptr = convert (type, primop1);
|
||
|
||
*restype_ptr = boolean_type_node;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return a tree for the sum or difference (RESULTCODE says which)
|
||
of pointer PTROP and integer INTOP. */
|
||
|
||
tree
|
||
pointer_int_sum (resultcode, ptrop, intop)
|
||
enum tree_code resultcode;
|
||
tree ptrop, intop;
|
||
{
|
||
tree size_exp;
|
||
|
||
tree result;
|
||
tree folded;
|
||
|
||
/* The result is a pointer of the same type that is being added. */
|
||
|
||
tree result_type = TREE_TYPE (ptrop);
|
||
|
||
if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("pointer of type `void *' used in arithmetic");
|
||
size_exp = integer_one_node;
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("pointer to a function used in arithmetic");
|
||
size_exp = integer_one_node;
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (result_type)) == METHOD_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("pointer to member function used in arithmetic");
|
||
size_exp = integer_one_node;
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (result_type)) == OFFSET_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("pointer to a member used in arithmetic");
|
||
size_exp = integer_one_node;
|
||
}
|
||
else
|
||
size_exp = size_in_bytes (TREE_TYPE (result_type));
|
||
|
||
/* If what we are about to multiply by the size of the elements
|
||
contains a constant term, apply distributive law
|
||
and multiply that constant term separately.
|
||
This helps produce common subexpressions. */
|
||
|
||
if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
|
||
&& ! TREE_CONSTANT (intop)
|
||
&& TREE_CONSTANT (TREE_OPERAND (intop, 1))
|
||
&& TREE_CONSTANT (size_exp)
|
||
/* If the constant comes from pointer subtraction,
|
||
skip this optimization--it would cause an error. */
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
|
||
/* If the constant is unsigned, and smaller than the pointer size,
|
||
then we must skip this optimization. This is because it could cause
|
||
an overflow error if the constant is negative but INTOP is not. */
|
||
&& (! TREE_UNSIGNED (TREE_TYPE (intop))
|
||
|| (TYPE_PRECISION (TREE_TYPE (intop))
|
||
== TYPE_PRECISION (TREE_TYPE (ptrop)))))
|
||
{
|
||
enum tree_code subcode = resultcode;
|
||
tree int_type = TREE_TYPE (intop);
|
||
if (TREE_CODE (intop) == MINUS_EXPR)
|
||
subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
|
||
/* Convert both subexpression types to the type of intop,
|
||
because weird cases involving pointer arithmetic
|
||
can result in a sum or difference with different type args. */
|
||
ptrop = build_binary_op (subcode, ptrop,
|
||
convert (int_type, TREE_OPERAND (intop, 1)), 1);
|
||
intop = convert (int_type, TREE_OPERAND (intop, 0));
|
||
}
|
||
|
||
/* Convert the integer argument to a type the same size as sizetype
|
||
so the multiply won't overflow spuriously. */
|
||
|
||
if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
|
||
|| TREE_UNSIGNED (TREE_TYPE (intop)) != TREE_UNSIGNED (sizetype))
|
||
intop = convert (c_common_type_for_size (TYPE_PRECISION (sizetype),
|
||
TREE_UNSIGNED (sizetype)), intop);
|
||
|
||
/* Replace the integer argument with a suitable product by the object size.
|
||
Do this multiplication as signed, then convert to the appropriate
|
||
pointer type (actually unsigned integral). */
|
||
|
||
intop = convert (result_type,
|
||
build_binary_op (MULT_EXPR, intop,
|
||
convert (TREE_TYPE (intop), size_exp), 1));
|
||
|
||
/* Create the sum or difference. */
|
||
|
||
result = build (resultcode, result_type, ptrop, intop);
|
||
|
||
folded = fold (result);
|
||
if (folded == result)
|
||
TREE_CONSTANT (folded) = TREE_CONSTANT (ptrop) & TREE_CONSTANT (intop);
|
||
return folded;
|
||
}
|
||
|
||
/* Prepare expr to be an argument of a TRUTH_NOT_EXPR,
|
||
or validate its data type for an `if' or `while' statement or ?..: exp.
|
||
|
||
This preparation consists of taking the ordinary
|
||
representation of an expression expr and producing a valid tree
|
||
boolean expression describing whether expr is nonzero. We could
|
||
simply always do build_binary_op (NE_EXPR, expr, boolean_false_node, 1),
|
||
but we optimize comparisons, &&, ||, and !.
|
||
|
||
The resulting type should always be `boolean_type_node'. */
|
||
|
||
tree
|
||
c_common_truthvalue_conversion (expr)
|
||
tree expr;
|
||
{
|
||
if (TREE_CODE (expr) == ERROR_MARK)
|
||
return expr;
|
||
|
||
#if 0 /* This appears to be wrong for C++. */
|
||
/* These really should return error_mark_node after 2.4 is stable.
|
||
But not all callers handle ERROR_MARK properly. */
|
||
switch (TREE_CODE (TREE_TYPE (expr)))
|
||
{
|
||
case RECORD_TYPE:
|
||
error ("struct type value used where scalar is required");
|
||
return boolean_false_node;
|
||
|
||
case UNION_TYPE:
|
||
error ("union type value used where scalar is required");
|
||
return boolean_false_node;
|
||
|
||
case ARRAY_TYPE:
|
||
error ("array type value used where scalar is required");
|
||
return boolean_false_node;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
#endif /* 0 */
|
||
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case EQ_EXPR:
|
||
case NE_EXPR: case LE_EXPR: case GE_EXPR: case LT_EXPR: case GT_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case TRUTH_XOR_EXPR:
|
||
case TRUTH_NOT_EXPR:
|
||
TREE_TYPE (expr) = boolean_type_node;
|
||
return expr;
|
||
|
||
case ERROR_MARK:
|
||
return expr;
|
||
|
||
case INTEGER_CST:
|
||
return integer_zerop (expr) ? boolean_false_node : boolean_true_node;
|
||
|
||
case REAL_CST:
|
||
return real_zerop (expr) ? boolean_false_node : boolean_true_node;
|
||
|
||
case ADDR_EXPR:
|
||
/* If we are taking the address of an external decl, it might be zero
|
||
if it is weak, so we cannot optimize. */
|
||
if (DECL_P (TREE_OPERAND (expr, 0))
|
||
&& DECL_EXTERNAL (TREE_OPERAND (expr, 0)))
|
||
break;
|
||
|
||
if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 0)))
|
||
return build (COMPOUND_EXPR, boolean_type_node,
|
||
TREE_OPERAND (expr, 0), boolean_true_node);
|
||
else
|
||
return boolean_true_node;
|
||
|
||
case COMPLEX_EXPR:
|
||
return build_binary_op ((TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1))
|
||
? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
|
||
c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)),
|
||
c_common_truthvalue_conversion (TREE_OPERAND (expr, 1)),
|
||
0);
|
||
|
||
case NEGATE_EXPR:
|
||
case ABS_EXPR:
|
||
case FLOAT_EXPR:
|
||
case FFS_EXPR:
|
||
/* These don't change whether an object is nonzero or zero. */
|
||
return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
|
||
|
||
case LROTATE_EXPR:
|
||
case RROTATE_EXPR:
|
||
/* These don't change whether an object is zero or nonzero, but
|
||
we can't ignore them if their second arg has side-effects. */
|
||
if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1)))
|
||
return build (COMPOUND_EXPR, boolean_type_node, TREE_OPERAND (expr, 1),
|
||
c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)));
|
||
else
|
||
return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
|
||
|
||
case COND_EXPR:
|
||
/* Distribute the conversion into the arms of a COND_EXPR. */
|
||
return fold (build (COND_EXPR, boolean_type_node, TREE_OPERAND (expr, 0),
|
||
c_common_truthvalue_conversion (TREE_OPERAND (expr, 1)),
|
||
c_common_truthvalue_conversion (TREE_OPERAND (expr, 2))));
|
||
|
||
case CONVERT_EXPR:
|
||
/* Don't cancel the effect of a CONVERT_EXPR from a REFERENCE_TYPE,
|
||
since that affects how `default_conversion' will behave. */
|
||
if (TREE_CODE (TREE_TYPE (expr)) == REFERENCE_TYPE
|
||
|| TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == REFERENCE_TYPE)
|
||
break;
|
||
/* fall through... */
|
||
case NOP_EXPR:
|
||
/* If this is widening the argument, we can ignore it. */
|
||
if (TYPE_PRECISION (TREE_TYPE (expr))
|
||
>= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
|
||
return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
|
||
break;
|
||
|
||
case MINUS_EXPR:
|
||
/* Perhaps reduce (x - y) != 0 to (x != y). The expressions
|
||
aren't guaranteed to the be same for modes that can represent
|
||
infinity, since if x and y are both +infinity, or both
|
||
-infinity, then x - y is not a number.
|
||
|
||
Note that this transformation is safe when x or y is NaN.
|
||
(x - y) is then NaN, and both (x - y) != 0 and x != y will
|
||
be false. */
|
||
if (HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0)))))
|
||
break;
|
||
/* fall through... */
|
||
case BIT_XOR_EXPR:
|
||
/* This and MINUS_EXPR can be changed into a comparison of the
|
||
two objects. */
|
||
if (TREE_TYPE (TREE_OPERAND (expr, 0))
|
||
== TREE_TYPE (TREE_OPERAND (expr, 1)))
|
||
return build_binary_op (NE_EXPR, TREE_OPERAND (expr, 0),
|
||
TREE_OPERAND (expr, 1), 1);
|
||
return build_binary_op (NE_EXPR, TREE_OPERAND (expr, 0),
|
||
fold (build1 (NOP_EXPR,
|
||
TREE_TYPE (TREE_OPERAND (expr, 0)),
|
||
TREE_OPERAND (expr, 1))), 1);
|
||
|
||
case BIT_AND_EXPR:
|
||
if (integer_onep (TREE_OPERAND (expr, 1))
|
||
&& TREE_TYPE (expr) != boolean_type_node)
|
||
/* Using convert here would cause infinite recursion. */
|
||
return build1 (NOP_EXPR, boolean_type_node, expr);
|
||
break;
|
||
|
||
case MODIFY_EXPR:
|
||
if (warn_parentheses && C_EXP_ORIGINAL_CODE (expr) == MODIFY_EXPR)
|
||
warning ("suggest parentheses around assignment used as truth value");
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
|
||
{
|
||
tree t = save_expr (expr);
|
||
return (build_binary_op
|
||
((TREE_SIDE_EFFECTS (expr)
|
||
? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
|
||
c_common_truthvalue_conversion (build_unary_op (REALPART_EXPR, t, 0)),
|
||
c_common_truthvalue_conversion (build_unary_op (IMAGPART_EXPR, t, 0)),
|
||
0));
|
||
}
|
||
|
||
return build_binary_op (NE_EXPR, expr, integer_zero_node, 1);
|
||
}
|
||
|
||
static tree builtin_function_2 PARAMS ((const char *, const char *, tree, tree,
|
||
int, enum built_in_class, int, int,
|
||
tree));
|
||
|
||
/* Make a variant type in the proper way for C/C++, propagating qualifiers
|
||
down to the element type of an array. */
|
||
|
||
tree
|
||
c_build_qualified_type (type, type_quals)
|
||
tree type;
|
||
int type_quals;
|
||
{
|
||
/* A restrict-qualified pointer type must be a pointer to object or
|
||
incomplete type. Note that the use of POINTER_TYPE_P also allows
|
||
REFERENCE_TYPEs, which is appropriate for C++. Unfortunately,
|
||
the C++ front-end also use POINTER_TYPE for pointer-to-member
|
||
values, so even though it should be illegal to use `restrict'
|
||
with such an entity we don't flag that here. Thus, special case
|
||
code for that case is required in the C++ front-end. */
|
||
if ((type_quals & TYPE_QUAL_RESTRICT)
|
||
&& (!POINTER_TYPE_P (type)
|
||
|| !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type))))
|
||
{
|
||
error ("invalid use of `restrict'");
|
||
type_quals &= ~TYPE_QUAL_RESTRICT;
|
||
}
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
return build_array_type (c_build_qualified_type (TREE_TYPE (type),
|
||
type_quals),
|
||
TYPE_DOMAIN (type));
|
||
return build_qualified_type (type, type_quals);
|
||
}
|
||
|
||
/* Apply the TYPE_QUALS to the new DECL. */
|
||
|
||
void
|
||
c_apply_type_quals_to_decl (type_quals, decl)
|
||
int type_quals;
|
||
tree decl;
|
||
{
|
||
if ((type_quals & TYPE_QUAL_CONST)
|
||
|| (TREE_TYPE (decl)
|
||
&& TREE_CODE (TREE_TYPE (decl)) == REFERENCE_TYPE))
|
||
TREE_READONLY (decl) = 1;
|
||
if (type_quals & TYPE_QUAL_VOLATILE)
|
||
{
|
||
TREE_SIDE_EFFECTS (decl) = 1;
|
||
TREE_THIS_VOLATILE (decl) = 1;
|
||
}
|
||
if (type_quals & TYPE_QUAL_RESTRICT)
|
||
{
|
||
if (!TREE_TYPE (decl)
|
||
|| !POINTER_TYPE_P (TREE_TYPE (decl))
|
||
|| !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (TREE_TYPE (decl))))
|
||
error ("invalid use of `restrict'");
|
||
else if (flag_strict_aliasing)
|
||
/* Indicate we need to make a unique alias set for this pointer.
|
||
We can't do it here because it might be pointing to an
|
||
incomplete type. */
|
||
DECL_POINTER_ALIAS_SET (decl) = -2;
|
||
}
|
||
}
|
||
|
||
/* Return the typed-based alias set for T, which may be an expression
|
||
or a type. Return -1 if we don't do anything special. */
|
||
|
||
HOST_WIDE_INT
|
||
c_common_get_alias_set (t)
|
||
tree t;
|
||
{
|
||
tree u;
|
||
|
||
/* Permit type-punning when accessing a union, provided the access
|
||
is directly through the union. For example, this code does not
|
||
permit taking the address of a union member and then storing
|
||
through it. Even the type-punning allowed here is a GCC
|
||
extension, albeit a common and useful one; the C standard says
|
||
that such accesses have implementation-defined behavior. */
|
||
for (u = t;
|
||
TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
|
||
u = TREE_OPERAND (u, 0))
|
||
if (TREE_CODE (u) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
|
||
return 0;
|
||
|
||
/* That's all the expressions we handle specially. */
|
||
if (! TYPE_P (t))
|
||
return -1;
|
||
|
||
/* The C standard guarantess that any object may be accessed via an
|
||
lvalue that has character type. */
|
||
if (t == char_type_node
|
||
|| t == signed_char_type_node
|
||
|| t == unsigned_char_type_node)
|
||
return 0;
|
||
|
||
/* If it has the may_alias attribute, it can alias anything. */
|
||
if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (t)))
|
||
return 0;
|
||
|
||
/* The C standard specifically allows aliasing between signed and
|
||
unsigned variants of the same type. We treat the signed
|
||
variant as canonical. */
|
||
if (TREE_CODE (t) == INTEGER_TYPE && TREE_UNSIGNED (t))
|
||
{
|
||
tree t1 = c_common_signed_type (t);
|
||
|
||
/* t1 == t can happen for boolean nodes which are always unsigned. */
|
||
if (t1 != t)
|
||
return get_alias_set (t1);
|
||
}
|
||
else if (POINTER_TYPE_P (t))
|
||
{
|
||
tree t1;
|
||
|
||
/* Unfortunately, there is no canonical form of a pointer type.
|
||
In particular, if we have `typedef int I', then `int *', and
|
||
`I *' are different types. So, we have to pick a canonical
|
||
representative. We do this below.
|
||
|
||
Technically, this approach is actually more conservative that
|
||
it needs to be. In particular, `const int *' and `int *'
|
||
should be in different alias sets, according to the C and C++
|
||
standard, since their types are not the same, and so,
|
||
technically, an `int **' and `const int **' cannot point at
|
||
the same thing.
|
||
|
||
But, the standard is wrong. In particular, this code is
|
||
legal C++:
|
||
|
||
int *ip;
|
||
int **ipp = &ip;
|
||
const int* const* cipp = &ipp;
|
||
|
||
And, it doesn't make sense for that to be legal unless you
|
||
can dereference IPP and CIPP. So, we ignore cv-qualifiers on
|
||
the pointed-to types. This issue has been reported to the
|
||
C++ committee. */
|
||
t1 = build_type_no_quals (t);
|
||
if (t1 != t)
|
||
return get_alias_set (t1);
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Compute the value of 'sizeof (TYPE)' or '__alignof__ (TYPE)', where the
|
||
second parameter indicates which OPERATOR is being applied. The COMPLAIN
|
||
flag controls whether we should diagnose possibly ill-formed
|
||
constructs or not. */
|
||
tree
|
||
c_sizeof_or_alignof_type (type, op, complain)
|
||
tree type;
|
||
enum tree_code op;
|
||
int complain;
|
||
{
|
||
const char *op_name;
|
||
tree value = NULL;
|
||
enum tree_code type_code = TREE_CODE (type);
|
||
|
||
my_friendly_assert (op == SIZEOF_EXPR || op == ALIGNOF_EXPR, 20020720);
|
||
op_name = op == SIZEOF_EXPR ? "sizeof" : "__alignof__";
|
||
|
||
if (type_code == FUNCTION_TYPE)
|
||
{
|
||
if (op == SIZEOF_EXPR)
|
||
{
|
||
if (complain && (pedantic || warn_pointer_arith))
|
||
pedwarn ("invalid application of `sizeof' to a function type");
|
||
value = size_one_node;
|
||
}
|
||
else
|
||
value = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
|
||
}
|
||
else if (type_code == VOID_TYPE || type_code == ERROR_MARK)
|
||
{
|
||
if (type_code == VOID_TYPE
|
||
&& complain && (pedantic || warn_pointer_arith))
|
||
pedwarn ("invalid application of `%s' to a void type", op_name);
|
||
value = size_one_node;
|
||
}
|
||
else if (!COMPLETE_TYPE_P (type))
|
||
{
|
||
if (complain)
|
||
error ("invalid application of `%s' to an incomplete type", op_name);
|
||
value = size_zero_node;
|
||
}
|
||
else
|
||
{
|
||
if (op == SIZEOF_EXPR)
|
||
/* Convert in case a char is more than one unit. */
|
||
value = size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
|
||
size_int (TYPE_PRECISION (char_type_node)
|
||
/ BITS_PER_UNIT));
|
||
else
|
||
value = size_int (TYPE_ALIGN (type) / BITS_PER_UNIT);
|
||
}
|
||
|
||
/* VALUE will have an integer type with TYPE_IS_SIZETYPE set.
|
||
TYPE_IS_SIZETYPE means that certain things (like overflow) will
|
||
never happen. However, this node should really have type
|
||
`size_t', which is just a typedef for an ordinary integer type. */
|
||
value = fold (build1 (NOP_EXPR, size_type_node, value));
|
||
my_friendly_assert (!TYPE_IS_SIZETYPE (TREE_TYPE (value)), 20001021);
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Implement the __alignof keyword: Return the minimum required
|
||
alignment of EXPR, measured in bytes. For VAR_DECL's and
|
||
FIELD_DECL's return DECL_ALIGN (which can be set from an
|
||
"aligned" __attribute__ specification). */
|
||
|
||
tree
|
||
c_alignof_expr (expr)
|
||
tree expr;
|
||
{
|
||
tree t;
|
||
|
||
if (TREE_CODE (expr) == VAR_DECL)
|
||
t = size_int (DECL_ALIGN (expr) / BITS_PER_UNIT);
|
||
|
||
else if (TREE_CODE (expr) == COMPONENT_REF
|
||
&& DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
|
||
{
|
||
error ("`__alignof' applied to a bit-field");
|
||
t = size_one_node;
|
||
}
|
||
else if (TREE_CODE (expr) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
|
||
t = size_int (DECL_ALIGN (TREE_OPERAND (expr, 1)) / BITS_PER_UNIT);
|
||
|
||
else if (TREE_CODE (expr) == INDIRECT_REF)
|
||
{
|
||
tree t = TREE_OPERAND (expr, 0);
|
||
tree best = t;
|
||
int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
|
||
|
||
while (TREE_CODE (t) == NOP_EXPR
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
|
||
{
|
||
int thisalign;
|
||
|
||
t = TREE_OPERAND (t, 0);
|
||
thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
|
||
if (thisalign > bestalign)
|
||
best = t, bestalign = thisalign;
|
||
}
|
||
return c_alignof (TREE_TYPE (TREE_TYPE (best)));
|
||
}
|
||
else
|
||
return c_alignof (TREE_TYPE (expr));
|
||
|
||
return fold (build1 (NOP_EXPR, size_type_node, t));
|
||
}
|
||
|
||
/* Handle C and C++ default attributes. */
|
||
|
||
enum built_in_attribute
|
||
{
|
||
#define DEF_ATTR_NULL_TREE(ENUM) ENUM,
|
||
#define DEF_ATTR_INT(ENUM, VALUE) ENUM,
|
||
#define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
|
||
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
|
||
#define DEF_FN_ATTR(NAME, ATTRS, PREDICATE) /* No entry needed in enum. */
|
||
#include "builtin-attrs.def"
|
||
#undef DEF_ATTR_NULL_TREE
|
||
#undef DEF_ATTR_INT
|
||
#undef DEF_ATTR_IDENT
|
||
#undef DEF_ATTR_TREE_LIST
|
||
#undef DEF_FN_ATTR
|
||
ATTR_LAST
|
||
};
|
||
|
||
static GTY(()) tree built_in_attributes[(int) ATTR_LAST];
|
||
|
||
static bool c_attrs_initialized = false;
|
||
|
||
static void c_init_attributes PARAMS ((void));
|
||
|
||
/* Build tree nodes and builtin functions common to both C and C++ language
|
||
frontends. */
|
||
|
||
void
|
||
c_common_nodes_and_builtins ()
|
||
{
|
||
enum builtin_type
|
||
{
|
||
#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
|
||
#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
|
||
#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
|
||
#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
|
||
#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
|
||
#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
|
||
#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
|
||
#define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
|
||
#define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
|
||
#define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
|
||
#define DEF_POINTER_TYPE(NAME, TYPE) NAME,
|
||
#include "builtin-types.def"
|
||
#undef DEF_PRIMITIVE_TYPE
|
||
#undef DEF_FUNCTION_TYPE_0
|
||
#undef DEF_FUNCTION_TYPE_1
|
||
#undef DEF_FUNCTION_TYPE_2
|
||
#undef DEF_FUNCTION_TYPE_3
|
||
#undef DEF_FUNCTION_TYPE_4
|
||
#undef DEF_FUNCTION_TYPE_VAR_0
|
||
#undef DEF_FUNCTION_TYPE_VAR_1
|
||
#undef DEF_FUNCTION_TYPE_VAR_2
|
||
#undef DEF_FUNCTION_TYPE_VAR_3
|
||
#undef DEF_POINTER_TYPE
|
||
BT_LAST
|
||
};
|
||
|
||
typedef enum builtin_type builtin_type;
|
||
|
||
tree builtin_types[(int) BT_LAST];
|
||
int wchar_type_size;
|
||
tree array_domain_type;
|
||
tree va_list_ref_type_node;
|
||
tree va_list_arg_type_node;
|
||
|
||
/* Define `int' and `char' first so that dbx will output them first. */
|
||
record_builtin_type (RID_INT, NULL, integer_type_node);
|
||
record_builtin_type (RID_CHAR, "char", char_type_node);
|
||
|
||
/* `signed' is the same as `int'. FIXME: the declarations of "signed",
|
||
"unsigned long", "long long unsigned" and "unsigned short" were in C++
|
||
but not C. Are the conditionals here needed? */
|
||
if (c_language == clk_cplusplus)
|
||
record_builtin_type (RID_SIGNED, NULL, integer_type_node);
|
||
record_builtin_type (RID_LONG, "long int", long_integer_type_node);
|
||
record_builtin_type (RID_UNSIGNED, "unsigned int", unsigned_type_node);
|
||
record_builtin_type (RID_MAX, "long unsigned int",
|
||
long_unsigned_type_node);
|
||
if (c_language == clk_cplusplus)
|
||
record_builtin_type (RID_MAX, "unsigned long", long_unsigned_type_node);
|
||
record_builtin_type (RID_MAX, "long long int",
|
||
long_long_integer_type_node);
|
||
record_builtin_type (RID_MAX, "long long unsigned int",
|
||
long_long_unsigned_type_node);
|
||
if (c_language == clk_cplusplus)
|
||
record_builtin_type (RID_MAX, "long long unsigned",
|
||
long_long_unsigned_type_node);
|
||
record_builtin_type (RID_SHORT, "short int", short_integer_type_node);
|
||
record_builtin_type (RID_MAX, "short unsigned int",
|
||
short_unsigned_type_node);
|
||
if (c_language == clk_cplusplus)
|
||
record_builtin_type (RID_MAX, "unsigned short",
|
||
short_unsigned_type_node);
|
||
|
||
/* Define both `signed char' and `unsigned char'. */
|
||
record_builtin_type (RID_MAX, "signed char", signed_char_type_node);
|
||
record_builtin_type (RID_MAX, "unsigned char", unsigned_char_type_node);
|
||
|
||
/* These are types that c_common_type_for_size and
|
||
c_common_type_for_mode use. */
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
|
||
intQI_type_node));
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
|
||
intHI_type_node));
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
|
||
intSI_type_node));
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
|
||
intDI_type_node));
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
|
||
get_identifier ("__int128_t"),
|
||
intTI_type_node));
|
||
#endif
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
|
||
unsigned_intQI_type_node));
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
|
||
unsigned_intHI_type_node));
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
|
||
unsigned_intSI_type_node));
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
|
||
unsigned_intDI_type_node));
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
|
||
get_identifier ("__uint128_t"),
|
||
unsigned_intTI_type_node));
|
||
#endif
|
||
|
||
/* Create the widest literal types. */
|
||
widest_integer_literal_type_node
|
||
= make_signed_type (HOST_BITS_PER_WIDE_INT * 2);
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
|
||
widest_integer_literal_type_node));
|
||
|
||
widest_unsigned_literal_type_node
|
||
= make_unsigned_type (HOST_BITS_PER_WIDE_INT * 2);
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
|
||
widest_unsigned_literal_type_node));
|
||
|
||
/* `unsigned long' is the standard type for sizeof.
|
||
Note that stddef.h uses `unsigned long',
|
||
and this must agree, even if long and int are the same size. */
|
||
size_type_node =
|
||
TREE_TYPE (identifier_global_value (get_identifier (SIZE_TYPE)));
|
||
signed_size_type_node = c_common_signed_type (size_type_node);
|
||
set_sizetype (size_type_node);
|
||
|
||
build_common_tree_nodes_2 (flag_short_double);
|
||
|
||
record_builtin_type (RID_FLOAT, NULL, float_type_node);
|
||
record_builtin_type (RID_DOUBLE, NULL, double_type_node);
|
||
record_builtin_type (RID_MAX, "long double", long_double_type_node);
|
||
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
|
||
get_identifier ("complex int"),
|
||
complex_integer_type_node));
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
|
||
get_identifier ("complex float"),
|
||
complex_float_type_node));
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
|
||
get_identifier ("complex double"),
|
||
complex_double_type_node));
|
||
(*lang_hooks.decls.pushdecl)
|
||
(build_decl (TYPE_DECL, get_identifier ("complex long double"),
|
||
complex_long_double_type_node));
|
||
|
||
/* Types which are common to the fortran compiler and libf2c. When
|
||
changing these, you also need to be concerned with f/com.h. */
|
||
|
||
if (TYPE_PRECISION (float_type_node)
|
||
== TYPE_PRECISION (long_integer_type_node))
|
||
{
|
||
g77_integer_type_node = long_integer_type_node;
|
||
g77_uinteger_type_node = long_unsigned_type_node;
|
||
}
|
||
else if (TYPE_PRECISION (float_type_node)
|
||
== TYPE_PRECISION (integer_type_node))
|
||
{
|
||
g77_integer_type_node = integer_type_node;
|
||
g77_uinteger_type_node = unsigned_type_node;
|
||
}
|
||
else
|
||
g77_integer_type_node = g77_uinteger_type_node = NULL_TREE;
|
||
|
||
if (g77_integer_type_node != NULL_TREE)
|
||
{
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
|
||
get_identifier ("__g77_integer"),
|
||
g77_integer_type_node));
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
|
||
get_identifier ("__g77_uinteger"),
|
||
g77_uinteger_type_node));
|
||
}
|
||
|
||
if (TYPE_PRECISION (float_type_node) * 2
|
||
== TYPE_PRECISION (long_integer_type_node))
|
||
{
|
||
g77_longint_type_node = long_integer_type_node;
|
||
g77_ulongint_type_node = long_unsigned_type_node;
|
||
}
|
||
else if (TYPE_PRECISION (float_type_node) * 2
|
||
== TYPE_PRECISION (long_long_integer_type_node))
|
||
{
|
||
g77_longint_type_node = long_long_integer_type_node;
|
||
g77_ulongint_type_node = long_long_unsigned_type_node;
|
||
}
|
||
else
|
||
g77_longint_type_node = g77_ulongint_type_node = NULL_TREE;
|
||
|
||
if (g77_longint_type_node != NULL_TREE)
|
||
{
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
|
||
get_identifier ("__g77_longint"),
|
||
g77_longint_type_node));
|
||
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
|
||
get_identifier ("__g77_ulongint"),
|
||
g77_ulongint_type_node));
|
||
}
|
||
|
||
record_builtin_type (RID_VOID, NULL, void_type_node);
|
||
|
||
void_zero_node = build_int_2 (0, 0);
|
||
TREE_TYPE (void_zero_node) = void_type_node;
|
||
|
||
void_list_node = build_void_list_node ();
|
||
|
||
/* Make a type to be the domain of a few array types
|
||
whose domains don't really matter.
|
||
200 is small enough that it always fits in size_t
|
||
and large enough that it can hold most function names for the
|
||
initializations of __FUNCTION__ and __PRETTY_FUNCTION__. */
|
||
array_domain_type = build_index_type (size_int (200));
|
||
|
||
/* Make a type for arrays of characters.
|
||
With luck nothing will ever really depend on the length of this
|
||
array type. */
|
||
char_array_type_node
|
||
= build_array_type (char_type_node, array_domain_type);
|
||
|
||
/* Likewise for arrays of ints. */
|
||
int_array_type_node
|
||
= build_array_type (integer_type_node, array_domain_type);
|
||
|
||
string_type_node = build_pointer_type (char_type_node);
|
||
const_string_type_node
|
||
= build_pointer_type (build_qualified_type
|
||
(char_type_node, TYPE_QUAL_CONST));
|
||
|
||
/* This is special for C++ so functions can be overloaded. */
|
||
wchar_type_node = get_identifier (MODIFIED_WCHAR_TYPE);
|
||
wchar_type_node = TREE_TYPE (identifier_global_value (wchar_type_node));
|
||
wchar_type_size = TYPE_PRECISION (wchar_type_node);
|
||
if (c_language == clk_cplusplus)
|
||
{
|
||
if (TREE_UNSIGNED (wchar_type_node))
|
||
wchar_type_node = make_unsigned_type (wchar_type_size);
|
||
else
|
||
wchar_type_node = make_signed_type (wchar_type_size);
|
||
record_builtin_type (RID_WCHAR, "wchar_t", wchar_type_node);
|
||
}
|
||
else
|
||
{
|
||
signed_wchar_type_node = c_common_signed_type (wchar_type_node);
|
||
unsigned_wchar_type_node = c_common_unsigned_type (wchar_type_node);
|
||
}
|
||
|
||
/* This is for wide string constants. */
|
||
wchar_array_type_node
|
||
= build_array_type (wchar_type_node, array_domain_type);
|
||
|
||
wint_type_node =
|
||
TREE_TYPE (identifier_global_value (get_identifier (WINT_TYPE)));
|
||
|
||
intmax_type_node =
|
||
TREE_TYPE (identifier_global_value (get_identifier (INTMAX_TYPE)));
|
||
uintmax_type_node =
|
||
TREE_TYPE (identifier_global_value (get_identifier (UINTMAX_TYPE)));
|
||
|
||
default_function_type = build_function_type (integer_type_node, NULL_TREE);
|
||
ptrdiff_type_node
|
||
= TREE_TYPE (identifier_global_value (get_identifier (PTRDIFF_TYPE)));
|
||
unsigned_ptrdiff_type_node = c_common_unsigned_type (ptrdiff_type_node);
|
||
|
||
(*lang_hooks.decls.pushdecl)
|
||
(build_decl (TYPE_DECL, get_identifier ("__builtin_va_list"),
|
||
va_list_type_node));
|
||
|
||
(*lang_hooks.decls.pushdecl)
|
||
(build_decl (TYPE_DECL, get_identifier ("__builtin_ptrdiff_t"),
|
||
ptrdiff_type_node));
|
||
|
||
(*lang_hooks.decls.pushdecl)
|
||
(build_decl (TYPE_DECL, get_identifier ("__builtin_size_t"),
|
||
sizetype));
|
||
|
||
if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
|
||
{
|
||
va_list_arg_type_node = va_list_ref_type_node =
|
||
build_pointer_type (TREE_TYPE (va_list_type_node));
|
||
}
|
||
else
|
||
{
|
||
va_list_arg_type_node = va_list_type_node;
|
||
va_list_ref_type_node = build_reference_type (va_list_type_node);
|
||
}
|
||
|
||
#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
|
||
builtin_types[(int) ENUM] = VALUE;
|
||
#define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type (builtin_types[(int) RETURN], \
|
||
void_list_node);
|
||
#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type (builtin_types[(int) RETURN], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG1], \
|
||
void_list_node));
|
||
#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type \
|
||
(builtin_types[(int) RETURN], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG1], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG2], \
|
||
void_list_node)));
|
||
#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type \
|
||
(builtin_types[(int) RETURN], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG1], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG2], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG3], \
|
||
void_list_node))));
|
||
#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type \
|
||
(builtin_types[(int) RETURN], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG1], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG2], \
|
||
tree_cons \
|
||
(NULL_TREE, \
|
||
builtin_types[(int) ARG3], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG4], \
|
||
void_list_node)))));
|
||
#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type (builtin_types[(int) RETURN], NULL_TREE);
|
||
#define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type (builtin_types[(int) RETURN], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG1], \
|
||
NULL_TREE));
|
||
|
||
#define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type \
|
||
(builtin_types[(int) RETURN], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG1], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG2], \
|
||
NULL_TREE)));
|
||
|
||
#define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type \
|
||
(builtin_types[(int) RETURN], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG1], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG2], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG3], \
|
||
NULL_TREE))));
|
||
|
||
#define DEF_POINTER_TYPE(ENUM, TYPE) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_pointer_type (builtin_types[(int) TYPE]);
|
||
#include "builtin-types.def"
|
||
#undef DEF_PRIMITIVE_TYPE
|
||
#undef DEF_FUNCTION_TYPE_1
|
||
#undef DEF_FUNCTION_TYPE_2
|
||
#undef DEF_FUNCTION_TYPE_3
|
||
#undef DEF_FUNCTION_TYPE_4
|
||
#undef DEF_FUNCTION_TYPE_VAR_0
|
||
#undef DEF_FUNCTION_TYPE_VAR_1
|
||
#undef DEF_FUNCTION_TYPE_VAR_2
|
||
#undef DEF_FUNCTION_TYPE_VAR_3
|
||
#undef DEF_POINTER_TYPE
|
||
|
||
if (!c_attrs_initialized)
|
||
c_init_attributes ();
|
||
|
||
#define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, \
|
||
BOTH_P, FALLBACK_P, NONANSI_P, ATTRS) \
|
||
if (NAME) \
|
||
{ \
|
||
tree decl; \
|
||
\
|
||
if (strncmp (NAME, "__builtin_", strlen ("__builtin_")) != 0) \
|
||
abort (); \
|
||
\
|
||
if (!BOTH_P) \
|
||
decl = builtin_function (NAME, builtin_types[TYPE], ENUM, \
|
||
CLASS, \
|
||
(FALLBACK_P \
|
||
? (NAME + strlen ("__builtin_")) \
|
||
: NULL), \
|
||
built_in_attributes[(int) ATTRS]); \
|
||
else \
|
||
decl = builtin_function_2 (NAME, \
|
||
NAME + strlen ("__builtin_"), \
|
||
builtin_types[TYPE], \
|
||
builtin_types[LIBTYPE], \
|
||
ENUM, \
|
||
CLASS, \
|
||
FALLBACK_P, \
|
||
NONANSI_P, \
|
||
built_in_attributes[(int) ATTRS]); \
|
||
\
|
||
built_in_decls[(int) ENUM] = decl; \
|
||
}
|
||
#include "builtins.def"
|
||
#undef DEF_BUILTIN
|
||
|
||
(*targetm.init_builtins) ();
|
||
|
||
main_identifier_node = get_identifier ("main");
|
||
}
|
||
|
||
tree
|
||
build_va_arg (expr, type)
|
||
tree expr, type;
|
||
{
|
||
return build1 (VA_ARG_EXPR, type, expr);
|
||
}
|
||
|
||
|
||
/* Linked list of disabled built-in functions. */
|
||
|
||
typedef struct disabled_builtin
|
||
{
|
||
const char *name;
|
||
struct disabled_builtin *next;
|
||
} disabled_builtin;
|
||
static disabled_builtin *disabled_builtins = NULL;
|
||
|
||
static bool builtin_function_disabled_p PARAMS ((const char *));
|
||
|
||
/* Disable a built-in function specified by -fno-builtin-NAME. If NAME
|
||
begins with "__builtin_", give an error. */
|
||
|
||
void
|
||
disable_builtin_function (name)
|
||
const char *name;
|
||
{
|
||
if (strncmp (name, "__builtin_", strlen ("__builtin_")) == 0)
|
||
error ("cannot disable built-in function `%s'", name);
|
||
else
|
||
{
|
||
disabled_builtin *new = xmalloc (sizeof (disabled_builtin));
|
||
new->name = name;
|
||
new->next = disabled_builtins;
|
||
disabled_builtins = new;
|
||
}
|
||
}
|
||
|
||
|
||
/* Return true if the built-in function NAME has been disabled, false
|
||
otherwise. */
|
||
|
||
static bool
|
||
builtin_function_disabled_p (name)
|
||
const char *name;
|
||
{
|
||
disabled_builtin *p;
|
||
for (p = disabled_builtins; p != NULL; p = p->next)
|
||
{
|
||
if (strcmp (name, p->name) == 0)
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Possibly define a builtin function with one or two names. BUILTIN_NAME
|
||
is an __builtin_-prefixed name; NAME is the ordinary name; one or both
|
||
of these may be NULL (though both being NULL is useless).
|
||
BUILTIN_TYPE is the type of the __builtin_-prefixed function;
|
||
TYPE is the type of the function with the ordinary name. These
|
||
may differ if the ordinary name is declared with a looser type to avoid
|
||
conflicts with headers. FUNCTION_CODE and CLASS are as for
|
||
builtin_function. If LIBRARY_NAME_P is nonzero, NAME is passed as
|
||
the LIBRARY_NAME parameter to builtin_function when declaring BUILTIN_NAME.
|
||
If NONANSI_P is nonzero, the name NAME is treated as a non-ANSI name;
|
||
ATTRS is the tree list representing the builtin's function attributes.
|
||
Returns the declaration of BUILTIN_NAME, if any, otherwise
|
||
the declaration of NAME. Does not declare NAME if flag_no_builtin,
|
||
or if NONANSI_P and flag_no_nonansi_builtin. */
|
||
|
||
static tree
|
||
builtin_function_2 (builtin_name, name, builtin_type, type, function_code,
|
||
class, library_name_p, nonansi_p, attrs)
|
||
const char *builtin_name;
|
||
const char *name;
|
||
tree builtin_type;
|
||
tree type;
|
||
int function_code;
|
||
enum built_in_class class;
|
||
int library_name_p;
|
||
int nonansi_p;
|
||
tree attrs;
|
||
{
|
||
tree bdecl = NULL_TREE;
|
||
tree decl = NULL_TREE;
|
||
if (builtin_name != 0)
|
||
{
|
||
bdecl = builtin_function (builtin_name, builtin_type, function_code,
|
||
class, library_name_p ? name : NULL,
|
||
attrs);
|
||
}
|
||
if (name != 0 && !flag_no_builtin && !builtin_function_disabled_p (name)
|
||
&& !(nonansi_p && flag_no_nonansi_builtin))
|
||
{
|
||
decl = builtin_function (name, type, function_code, class, NULL,
|
||
attrs);
|
||
if (nonansi_p)
|
||
DECL_BUILT_IN_NONANSI (decl) = 1;
|
||
}
|
||
return (bdecl != 0 ? bdecl : decl);
|
||
}
|
||
|
||
/* Nonzero if the type T promotes to int. This is (nearly) the
|
||
integral promotions defined in ISO C99 6.3.1.1/2. */
|
||
|
||
bool
|
||
c_promoting_integer_type_p (t)
|
||
tree t;
|
||
{
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case INTEGER_TYPE:
|
||
return (TYPE_MAIN_VARIANT (t) == char_type_node
|
||
|| TYPE_MAIN_VARIANT (t) == signed_char_type_node
|
||
|| TYPE_MAIN_VARIANT (t) == unsigned_char_type_node
|
||
|| TYPE_MAIN_VARIANT (t) == short_integer_type_node
|
||
|| TYPE_MAIN_VARIANT (t) == short_unsigned_type_node
|
||
|| TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node));
|
||
|
||
case ENUMERAL_TYPE:
|
||
/* ??? Technically all enumerations not larger than an int
|
||
promote to an int. But this is used along code paths
|
||
that only want to notice a size change. */
|
||
return TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node);
|
||
|
||
case BOOLEAN_TYPE:
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if PARMS specifies a fixed number of parameters
|
||
and none of their types is affected by default promotions. */
|
||
|
||
int
|
||
self_promoting_args_p (parms)
|
||
tree parms;
|
||
{
|
||
tree t;
|
||
for (t = parms; t; t = TREE_CHAIN (t))
|
||
{
|
||
tree type = TREE_VALUE (t);
|
||
|
||
if (TREE_CHAIN (t) == 0 && type != void_type_node)
|
||
return 0;
|
||
|
||
if (type == 0)
|
||
return 0;
|
||
|
||
if (TYPE_MAIN_VARIANT (type) == float_type_node)
|
||
return 0;
|
||
|
||
if (c_promoting_integer_type_p (type))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Recursively examines the array elements of TYPE, until a non-array
|
||
element type is found. */
|
||
|
||
tree
|
||
strip_array_types (type)
|
||
tree type;
|
||
{
|
||
while (TREE_CODE (type) == ARRAY_TYPE)
|
||
type = TREE_TYPE (type);
|
||
|
||
return type;
|
||
}
|
||
|
||
static tree expand_unordered_cmp PARAMS ((tree, tree, enum tree_code,
|
||
enum tree_code));
|
||
|
||
/* Expand a call to an unordered comparison function such as
|
||
__builtin_isgreater(). FUNCTION is the function's declaration and
|
||
PARAMS a list of the values passed. For __builtin_isunordered(),
|
||
UNORDERED_CODE is UNORDERED_EXPR and ORDERED_CODE is NOP_EXPR. In
|
||
other cases, UNORDERED_CODE and ORDERED_CODE are comparison codes
|
||
that give the opposite of the desired result. UNORDERED_CODE is
|
||
used for modes that can hold NaNs and ORDERED_CODE is used for the
|
||
rest. */
|
||
|
||
static tree
|
||
expand_unordered_cmp (function, params, unordered_code, ordered_code)
|
||
tree function, params;
|
||
enum tree_code unordered_code, ordered_code;
|
||
{
|
||
tree arg0, arg1, type;
|
||
enum tree_code code0, code1;
|
||
|
||
/* Check that we have exactly two arguments. */
|
||
if (params == 0 || TREE_CHAIN (params) == 0)
|
||
{
|
||
error ("too few arguments to function `%s'",
|
||
IDENTIFIER_POINTER (DECL_NAME (function)));
|
||
return error_mark_node;
|
||
}
|
||
else if (TREE_CHAIN (TREE_CHAIN (params)) != 0)
|
||
{
|
||
error ("too many arguments to function `%s'",
|
||
IDENTIFIER_POINTER (DECL_NAME (function)));
|
||
return error_mark_node;
|
||
}
|
||
|
||
arg0 = TREE_VALUE (params);
|
||
arg1 = TREE_VALUE (TREE_CHAIN (params));
|
||
|
||
code0 = TREE_CODE (TREE_TYPE (arg0));
|
||
code1 = TREE_CODE (TREE_TYPE (arg1));
|
||
|
||
/* Make sure that the arguments have a common type of REAL. */
|
||
type = 0;
|
||
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
|
||
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
|
||
type = common_type (TREE_TYPE (arg0), TREE_TYPE (arg1));
|
||
|
||
if (type == 0 || TREE_CODE (type) != REAL_TYPE)
|
||
{
|
||
error ("non-floating-point argument to function `%s'",
|
||
IDENTIFIER_POINTER (DECL_NAME (function)));
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (unordered_code == UNORDERED_EXPR)
|
||
{
|
||
if (MODE_HAS_NANS (TYPE_MODE (type)))
|
||
return build_binary_op (unordered_code,
|
||
convert (type, arg0),
|
||
convert (type, arg1),
|
||
0);
|
||
else
|
||
return integer_zero_node;
|
||
}
|
||
|
||
return build_unary_op (TRUTH_NOT_EXPR,
|
||
build_binary_op (MODE_HAS_NANS (TYPE_MODE (type))
|
||
? unordered_code
|
||
: ordered_code,
|
||
convert (type, arg0),
|
||
convert (type, arg1),
|
||
0),
|
||
0);
|
||
}
|
||
|
||
|
||
/* Recognize certain built-in functions so we can make tree-codes
|
||
other than CALL_EXPR. We do this when it enables fold-const.c
|
||
to do something useful. */
|
||
/* ??? By rights this should go in builtins.c, but only C and C++
|
||
implement build_{binary,unary}_op. Not exactly sure what bits
|
||
of functionality are actually needed from those functions, or
|
||
where the similar functionality exists in the other front ends. */
|
||
|
||
tree
|
||
expand_tree_builtin (function, params, coerced_params)
|
||
tree function, params, coerced_params;
|
||
{
|
||
if (DECL_BUILT_IN_CLASS (function) != BUILT_IN_NORMAL)
|
||
return NULL_TREE;
|
||
|
||
switch (DECL_FUNCTION_CODE (function))
|
||
{
|
||
case BUILT_IN_ABS:
|
||
case BUILT_IN_LABS:
|
||
case BUILT_IN_LLABS:
|
||
case BUILT_IN_IMAXABS:
|
||
case BUILT_IN_FABS:
|
||
case BUILT_IN_FABSL:
|
||
case BUILT_IN_FABSF:
|
||
if (coerced_params == 0)
|
||
return integer_zero_node;
|
||
return build_unary_op (ABS_EXPR, TREE_VALUE (coerced_params), 0);
|
||
|
||
case BUILT_IN_CONJ:
|
||
case BUILT_IN_CONJF:
|
||
case BUILT_IN_CONJL:
|
||
if (coerced_params == 0)
|
||
return integer_zero_node;
|
||
return build_unary_op (CONJ_EXPR, TREE_VALUE (coerced_params), 0);
|
||
|
||
case BUILT_IN_CREAL:
|
||
case BUILT_IN_CREALF:
|
||
case BUILT_IN_CREALL:
|
||
if (coerced_params == 0)
|
||
return integer_zero_node;
|
||
return build_unary_op (REALPART_EXPR, TREE_VALUE (coerced_params), 0);
|
||
|
||
case BUILT_IN_CIMAG:
|
||
case BUILT_IN_CIMAGF:
|
||
case BUILT_IN_CIMAGL:
|
||
if (coerced_params == 0)
|
||
return integer_zero_node;
|
||
return build_unary_op (IMAGPART_EXPR, TREE_VALUE (coerced_params), 0);
|
||
|
||
case BUILT_IN_ISGREATER:
|
||
return expand_unordered_cmp (function, params, UNLE_EXPR, LE_EXPR);
|
||
|
||
case BUILT_IN_ISGREATEREQUAL:
|
||
return expand_unordered_cmp (function, params, UNLT_EXPR, LT_EXPR);
|
||
|
||
case BUILT_IN_ISLESS:
|
||
return expand_unordered_cmp (function, params, UNGE_EXPR, GE_EXPR);
|
||
|
||
case BUILT_IN_ISLESSEQUAL:
|
||
return expand_unordered_cmp (function, params, UNGT_EXPR, GT_EXPR);
|
||
|
||
case BUILT_IN_ISLESSGREATER:
|
||
return expand_unordered_cmp (function, params, UNEQ_EXPR, EQ_EXPR);
|
||
|
||
case BUILT_IN_ISUNORDERED:
|
||
return expand_unordered_cmp (function, params, UNORDERED_EXPR, NOP_EXPR);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Returns nonzero if CODE is the code for a statement. */
|
||
|
||
int
|
||
statement_code_p (code)
|
||
enum tree_code code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case CLEANUP_STMT:
|
||
case EXPR_STMT:
|
||
case COMPOUND_STMT:
|
||
case DECL_STMT:
|
||
case IF_STMT:
|
||
case FOR_STMT:
|
||
case WHILE_STMT:
|
||
case DO_STMT:
|
||
case RETURN_STMT:
|
||
case BREAK_STMT:
|
||
case CONTINUE_STMT:
|
||
case SCOPE_STMT:
|
||
case SWITCH_STMT:
|
||
case GOTO_STMT:
|
||
case LABEL_STMT:
|
||
case ASM_STMT:
|
||
case FILE_STMT:
|
||
case CASE_LABEL:
|
||
return 1;
|
||
|
||
default:
|
||
if (lang_statement_code_p)
|
||
return (*lang_statement_code_p) (code);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Walk the statement tree, rooted at *tp. Apply FUNC to all the
|
||
sub-trees of *TP in a pre-order traversal. FUNC is called with the
|
||
DATA and the address of each sub-tree. If FUNC returns a non-NULL
|
||
value, the traversal is aborted, and the value returned by FUNC is
|
||
returned. If FUNC sets WALK_SUBTREES to zero, then the subtrees of
|
||
the node being visited are not walked.
|
||
|
||
We don't need a without_duplicates variant of this one because the
|
||
statement tree is a tree, not a graph. */
|
||
|
||
tree
|
||
walk_stmt_tree (tp, func, data)
|
||
tree *tp;
|
||
walk_tree_fn func;
|
||
void *data;
|
||
{
|
||
enum tree_code code;
|
||
int walk_subtrees;
|
||
tree result;
|
||
int i, len;
|
||
|
||
#define WALK_SUBTREE(NODE) \
|
||
do \
|
||
{ \
|
||
result = walk_stmt_tree (&(NODE), func, data); \
|
||
if (result) \
|
||
return result; \
|
||
} \
|
||
while (0)
|
||
|
||
/* Skip empty subtrees. */
|
||
if (!*tp)
|
||
return NULL_TREE;
|
||
|
||
/* Skip subtrees below non-statement nodes. */
|
||
if (!statement_code_p (TREE_CODE (*tp)))
|
||
return NULL_TREE;
|
||
|
||
/* Call the function. */
|
||
walk_subtrees = 1;
|
||
result = (*func) (tp, &walk_subtrees, data);
|
||
|
||
/* If we found something, return it. */
|
||
if (result)
|
||
return result;
|
||
|
||
/* FUNC may have modified the tree, recheck that we're looking at a
|
||
statement node. */
|
||
code = TREE_CODE (*tp);
|
||
if (!statement_code_p (code))
|
||
return NULL_TREE;
|
||
|
||
/* Visit the subtrees unless FUNC decided that there was nothing
|
||
interesting below this point in the tree. */
|
||
if (walk_subtrees)
|
||
{
|
||
/* Walk over all the sub-trees of this operand. Statement nodes
|
||
never contain RTL, and we needn't worry about TARGET_EXPRs. */
|
||
len = TREE_CODE_LENGTH (code);
|
||
|
||
/* Go through the subtrees. We need to do this in forward order so
|
||
that the scope of a FOR_EXPR is handled properly. */
|
||
for (i = 0; i < len; ++i)
|
||
WALK_SUBTREE (TREE_OPERAND (*tp, i));
|
||
}
|
||
|
||
/* Finally visit the chain. This can be tail-recursion optimized if
|
||
we write it this way. */
|
||
return walk_stmt_tree (&TREE_CHAIN (*tp), func, data);
|
||
|
||
#undef WALK_SUBTREE
|
||
}
|
||
|
||
/* Used to compare case labels. K1 and K2 are actually tree nodes
|
||
representing case labels, or NULL_TREE for a `default' label.
|
||
Returns -1 if K1 is ordered before K2, -1 if K1 is ordered after
|
||
K2, and 0 if K1 and K2 are equal. */
|
||
|
||
int
|
||
case_compare (k1, k2)
|
||
splay_tree_key k1;
|
||
splay_tree_key k2;
|
||
{
|
||
/* Consider a NULL key (such as arises with a `default' label) to be
|
||
smaller than anything else. */
|
||
if (!k1)
|
||
return k2 ? -1 : 0;
|
||
else if (!k2)
|
||
return k1 ? 1 : 0;
|
||
|
||
return tree_int_cst_compare ((tree) k1, (tree) k2);
|
||
}
|
||
|
||
/* Process a case label for the range LOW_VALUE ... HIGH_VALUE. If
|
||
LOW_VALUE and HIGH_VALUE are both NULL_TREE then this case label is
|
||
actually a `default' label. If only HIGH_VALUE is NULL_TREE, then
|
||
case label was declared using the usual C/C++ syntax, rather than
|
||
the GNU case range extension. CASES is a tree containing all the
|
||
case ranges processed so far; COND is the condition for the
|
||
switch-statement itself. Returns the CASE_LABEL created, or
|
||
ERROR_MARK_NODE if no CASE_LABEL is created. */
|
||
|
||
tree
|
||
c_add_case_label (cases, cond, low_value, high_value)
|
||
splay_tree cases;
|
||
tree cond;
|
||
tree low_value;
|
||
tree high_value;
|
||
{
|
||
tree type;
|
||
tree label;
|
||
tree case_label;
|
||
splay_tree_node node;
|
||
|
||
/* Create the LABEL_DECL itself. */
|
||
label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
|
||
DECL_CONTEXT (label) = current_function_decl;
|
||
|
||
/* If there was an error processing the switch condition, bail now
|
||
before we get more confused. */
|
||
if (!cond || cond == error_mark_node)
|
||
{
|
||
/* Add a label anyhow so that the back-end doesn't think that
|
||
the beginning of the switch is unreachable. */
|
||
if (!cases->root)
|
||
add_stmt (build_case_label (NULL_TREE, NULL_TREE, label));
|
||
return error_mark_node;
|
||
}
|
||
|
||
if ((low_value && TREE_TYPE (low_value)
|
||
&& POINTER_TYPE_P (TREE_TYPE (low_value)))
|
||
|| (high_value && TREE_TYPE (high_value)
|
||
&& POINTER_TYPE_P (TREE_TYPE (high_value))))
|
||
error ("pointers are not permitted as case values");
|
||
|
||
/* Case ranges are a GNU extension. */
|
||
if (high_value && pedantic)
|
||
{
|
||
if (c_language == clk_cplusplus)
|
||
pedwarn ("ISO C++ forbids range expressions in switch statements");
|
||
else
|
||
pedwarn ("ISO C forbids range expressions in switch statements");
|
||
}
|
||
|
||
type = TREE_TYPE (cond);
|
||
if (low_value)
|
||
{
|
||
low_value = check_case_value (low_value);
|
||
low_value = convert_and_check (type, low_value);
|
||
}
|
||
if (high_value)
|
||
{
|
||
high_value = check_case_value (high_value);
|
||
high_value = convert_and_check (type, high_value);
|
||
}
|
||
|
||
/* If an error has occurred, bail out now. */
|
||
if (low_value == error_mark_node || high_value == error_mark_node)
|
||
{
|
||
if (!cases->root)
|
||
add_stmt (build_case_label (NULL_TREE, NULL_TREE, label));
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* If the LOW_VALUE and HIGH_VALUE are the same, then this isn't
|
||
really a case range, even though it was written that way. Remove
|
||
the HIGH_VALUE to simplify later processing. */
|
||
if (tree_int_cst_equal (low_value, high_value))
|
||
high_value = NULL_TREE;
|
||
if (low_value && high_value
|
||
&& !tree_int_cst_lt (low_value, high_value))
|
||
warning ("empty range specified");
|
||
|
||
/* Look up the LOW_VALUE in the table of case labels we already
|
||
have. */
|
||
node = splay_tree_lookup (cases, (splay_tree_key) low_value);
|
||
/* If there was not an exact match, check for overlapping ranges.
|
||
There's no need to do this if there's no LOW_VALUE or HIGH_VALUE;
|
||
that's a `default' label and the only overlap is an exact match. */
|
||
if (!node && (low_value || high_value))
|
||
{
|
||
splay_tree_node low_bound;
|
||
splay_tree_node high_bound;
|
||
|
||
/* Even though there wasn't an exact match, there might be an
|
||
overlap between this case range and another case range.
|
||
Since we've (inductively) not allowed any overlapping case
|
||
ranges, we simply need to find the greatest low case label
|
||
that is smaller that LOW_VALUE, and the smallest low case
|
||
label that is greater than LOW_VALUE. If there is an overlap
|
||
it will occur in one of these two ranges. */
|
||
low_bound = splay_tree_predecessor (cases,
|
||
(splay_tree_key) low_value);
|
||
high_bound = splay_tree_successor (cases,
|
||
(splay_tree_key) low_value);
|
||
|
||
/* Check to see if the LOW_BOUND overlaps. It is smaller than
|
||
the LOW_VALUE, so there is no need to check unless the
|
||
LOW_BOUND is in fact itself a case range. */
|
||
if (low_bound
|
||
&& CASE_HIGH ((tree) low_bound->value)
|
||
&& tree_int_cst_compare (CASE_HIGH ((tree) low_bound->value),
|
||
low_value) >= 0)
|
||
node = low_bound;
|
||
/* Check to see if the HIGH_BOUND overlaps. The low end of that
|
||
range is bigger than the low end of the current range, so we
|
||
are only interested if the current range is a real range, and
|
||
not an ordinary case label. */
|
||
else if (high_bound
|
||
&& high_value
|
||
&& (tree_int_cst_compare ((tree) high_bound->key,
|
||
high_value)
|
||
<= 0))
|
||
node = high_bound;
|
||
}
|
||
/* If there was an overlap, issue an error. */
|
||
if (node)
|
||
{
|
||
tree duplicate = CASE_LABEL_DECL ((tree) node->value);
|
||
|
||
if (high_value)
|
||
{
|
||
error ("duplicate (or overlapping) case value");
|
||
error_with_decl (duplicate,
|
||
"this is the first entry overlapping that value");
|
||
}
|
||
else if (low_value)
|
||
{
|
||
error ("duplicate case value") ;
|
||
error_with_decl (duplicate, "previously used here");
|
||
}
|
||
else
|
||
{
|
||
error ("multiple default labels in one switch");
|
||
error_with_decl (duplicate, "this is the first default label");
|
||
}
|
||
if (!cases->root)
|
||
add_stmt (build_case_label (NULL_TREE, NULL_TREE, label));
|
||
}
|
||
|
||
/* Add a CASE_LABEL to the statement-tree. */
|
||
case_label = add_stmt (build_case_label (low_value, high_value, label));
|
||
/* Register this case label in the splay tree. */
|
||
splay_tree_insert (cases,
|
||
(splay_tree_key) low_value,
|
||
(splay_tree_value) case_label);
|
||
|
||
return case_label;
|
||
}
|
||
|
||
/* Finish an expression taking the address of LABEL. Returns an
|
||
expression for the address. */
|
||
|
||
tree
|
||
finish_label_address_expr (label)
|
||
tree label;
|
||
{
|
||
tree result;
|
||
|
||
if (pedantic)
|
||
{
|
||
if (c_language == clk_cplusplus)
|
||
pedwarn ("ISO C++ forbids taking the address of a label");
|
||
else
|
||
pedwarn ("ISO C forbids taking the address of a label");
|
||
}
|
||
|
||
label = lookup_label (label);
|
||
if (label == NULL_TREE)
|
||
result = null_pointer_node;
|
||
else
|
||
{
|
||
TREE_USED (label) = 1;
|
||
result = build1 (ADDR_EXPR, ptr_type_node, label);
|
||
TREE_CONSTANT (result) = 1;
|
||
/* The current function in not necessarily uninlinable.
|
||
Computed gotos are incompatible with inlining, but the value
|
||
here could be used only in a diagnostic, for example. */
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Hook used by expand_expr to expand language-specific tree codes. */
|
||
|
||
rtx
|
||
c_expand_expr (exp, target, tmode, modifier)
|
||
tree exp;
|
||
rtx target;
|
||
enum machine_mode tmode;
|
||
int modifier; /* Actually enum_modifier. */
|
||
{
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case STMT_EXPR:
|
||
{
|
||
tree rtl_expr;
|
||
rtx result;
|
||
bool preserve_result = false;
|
||
bool return_target = false;
|
||
|
||
/* Since expand_expr_stmt calls free_temp_slots after every
|
||
expression statement, we must call push_temp_slots here.
|
||
Otherwise, any temporaries in use now would be considered
|
||
out-of-scope after the first EXPR_STMT from within the
|
||
STMT_EXPR. */
|
||
push_temp_slots ();
|
||
rtl_expr = expand_start_stmt_expr (!STMT_EXPR_NO_SCOPE (exp));
|
||
|
||
/* If we want the result of this expression, find the last
|
||
EXPR_STMT in the COMPOUND_STMT and mark it as addressable. */
|
||
if (target != const0_rtx
|
||
&& TREE_CODE (STMT_EXPR_STMT (exp)) == COMPOUND_STMT
|
||
&& TREE_CODE (COMPOUND_BODY (STMT_EXPR_STMT (exp))) == SCOPE_STMT)
|
||
{
|
||
tree expr = COMPOUND_BODY (STMT_EXPR_STMT (exp));
|
||
tree last = TREE_CHAIN (expr);
|
||
|
||
while (TREE_CHAIN (last))
|
||
{
|
||
expr = last;
|
||
last = TREE_CHAIN (last);
|
||
}
|
||
|
||
if (TREE_CODE (last) == SCOPE_STMT
|
||
&& TREE_CODE (expr) == EXPR_STMT)
|
||
{
|
||
if (target && TREE_CODE (EXPR_STMT_EXPR (expr)) == VAR_DECL
|
||
&& DECL_RTL_IF_SET (EXPR_STMT_EXPR (expr)) == target)
|
||
/* If the last expression is a variable whose RTL is the
|
||
same as our target, just return the target; if it
|
||
isn't valid expanding the decl would produce different
|
||
RTL, and store_expr would try to do a copy. */
|
||
return_target = true;
|
||
else
|
||
{
|
||
/* Otherwise, note that we want the value from the last
|
||
expression. */
|
||
TREE_ADDRESSABLE (expr) = 1;
|
||
preserve_result = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
expand_stmt (STMT_EXPR_STMT (exp));
|
||
expand_end_stmt_expr (rtl_expr);
|
||
|
||
result = expand_expr (rtl_expr, target, tmode, modifier);
|
||
if (return_target)
|
||
result = target;
|
||
else if (preserve_result && GET_CODE (result) == MEM)
|
||
{
|
||
if (GET_MODE (result) != BLKmode)
|
||
result = copy_to_reg (result);
|
||
else
|
||
preserve_temp_slots (result);
|
||
}
|
||
|
||
/* If the statment-expression does not have a scope, then the
|
||
new temporaries we created within it must live beyond the
|
||
statement-expression. */
|
||
if (STMT_EXPR_NO_SCOPE (exp))
|
||
preserve_temp_slots (NULL_RTX);
|
||
|
||
pop_temp_slots ();
|
||
return result;
|
||
}
|
||
break;
|
||
|
||
case CALL_EXPR:
|
||
{
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
|
||
&& (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
||
== FUNCTION_DECL)
|
||
&& DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
||
&& (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
||
== BUILT_IN_FRONTEND))
|
||
return c_expand_builtin (exp, target, tmode, modifier);
|
||
else
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case COMPOUND_LITERAL_EXPR:
|
||
{
|
||
/* Initialize the anonymous variable declared in the compound
|
||
literal, then return the variable. */
|
||
tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
|
||
emit_local_var (decl);
|
||
return expand_expr (decl, target, tmode, modifier);
|
||
}
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
abort ();
|
||
return NULL;
|
||
}
|
||
|
||
/* Hook used by safe_from_p to handle language-specific tree codes. */
|
||
|
||
int
|
||
c_safe_from_p (target, exp)
|
||
rtx target;
|
||
tree exp;
|
||
{
|
||
/* We can see statements here when processing the body of a
|
||
statement-expression. For a declaration statement declaring a
|
||
variable, look at the variable's initializer. */
|
||
if (TREE_CODE (exp) == DECL_STMT)
|
||
{
|
||
tree decl = DECL_STMT_DECL (exp);
|
||
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
&& DECL_INITIAL (decl)
|
||
&& !safe_from_p (target, DECL_INITIAL (decl), /*top_p=*/0))
|
||
return 0;
|
||
}
|
||
|
||
/* For any statement, we must follow the statement-chain. */
|
||
if (statement_code_p (TREE_CODE (exp)) && TREE_CHAIN (exp))
|
||
return safe_from_p (target, TREE_CHAIN (exp), /*top_p=*/0);
|
||
|
||
/* Assume everything else is safe. */
|
||
return 1;
|
||
}
|
||
|
||
/* Hook used by unsafe_for_reeval to handle language-specific tree codes. */
|
||
|
||
int
|
||
c_common_unsafe_for_reeval (exp)
|
||
tree exp;
|
||
{
|
||
/* Statement expressions may not be reevaluated, likewise compound
|
||
literals. */
|
||
if (TREE_CODE (exp) == STMT_EXPR
|
||
|| TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
|
||
return 2;
|
||
|
||
/* Walk all other expressions. */
|
||
return -1;
|
||
}
|
||
|
||
/* Hook used by staticp to handle language-specific tree codes. */
|
||
|
||
int
|
||
c_staticp (exp)
|
||
tree exp;
|
||
{
|
||
if (TREE_CODE (exp) == COMPOUND_LITERAL_EXPR
|
||
&& TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
#define CALLED_AS_BUILT_IN(NODE) \
|
||
(!strncmp (IDENTIFIER_POINTER (DECL_NAME (NODE)), "__builtin_", 10))
|
||
|
||
static rtx
|
||
c_expand_builtin (exp, target, tmode, modifier)
|
||
tree exp;
|
||
rtx target;
|
||
enum machine_mode tmode;
|
||
enum expand_modifier modifier;
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
|
||
tree arglist = TREE_OPERAND (exp, 1);
|
||
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
|
||
enum tree_code code = TREE_CODE (exp);
|
||
const int ignore = (target == const0_rtx
|
||
|| ((code == NON_LVALUE_EXPR || code == NOP_EXPR
|
||
|| code == CONVERT_EXPR || code == REFERENCE_EXPR
|
||
|| code == COND_EXPR)
|
||
&& TREE_CODE (type) == VOID_TYPE));
|
||
|
||
if (! optimize && ! CALLED_AS_BUILT_IN (fndecl))
|
||
return expand_call (exp, target, ignore);
|
||
|
||
switch (fcode)
|
||
{
|
||
case BUILT_IN_PRINTF:
|
||
target = c_expand_builtin_printf (arglist, target, tmode,
|
||
modifier, ignore, /*unlocked=*/ 0);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_PRINTF_UNLOCKED:
|
||
target = c_expand_builtin_printf (arglist, target, tmode,
|
||
modifier, ignore, /*unlocked=*/ 1);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_FPRINTF:
|
||
target = c_expand_builtin_fprintf (arglist, target, tmode,
|
||
modifier, ignore, /*unlocked=*/ 0);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_FPRINTF_UNLOCKED:
|
||
target = c_expand_builtin_fprintf (arglist, target, tmode,
|
||
modifier, ignore, /*unlocked=*/ 1);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
default: /* just do library call, if unknown builtin */
|
||
error ("built-in function `%s' not currently supported",
|
||
IDENTIFIER_POINTER (DECL_NAME (fndecl)));
|
||
}
|
||
|
||
/* The switch statement above can drop through to cause the function
|
||
to be called normally. */
|
||
return expand_call (exp, target, ignore);
|
||
}
|
||
|
||
/* Check an arglist to *printf for problems. The arglist should start
|
||
at the format specifier, with the remaining arguments immediately
|
||
following it. */
|
||
static int
|
||
is_valid_printf_arglist (arglist)
|
||
tree arglist;
|
||
{
|
||
/* Save this value so we can restore it later. */
|
||
const int SAVE_pedantic = pedantic;
|
||
int diagnostic_occurred = 0;
|
||
tree attrs;
|
||
|
||
/* Set this to a known value so the user setting won't affect code
|
||
generation. */
|
||
pedantic = 1;
|
||
/* Check to make sure there are no format specifier errors. */
|
||
attrs = tree_cons (get_identifier ("format"),
|
||
tree_cons (NULL_TREE,
|
||
get_identifier ("printf"),
|
||
tree_cons (NULL_TREE,
|
||
integer_one_node,
|
||
tree_cons (NULL_TREE,
|
||
build_int_2 (2, 0),
|
||
NULL_TREE))),
|
||
NULL_TREE);
|
||
check_function_format (&diagnostic_occurred, attrs, arglist);
|
||
|
||
/* Restore the value of `pedantic'. */
|
||
pedantic = SAVE_pedantic;
|
||
|
||
/* If calling `check_function_format_ptr' produces a warning, we
|
||
return false, otherwise we return true. */
|
||
return ! diagnostic_occurred;
|
||
}
|
||
|
||
/* If the arguments passed to printf are suitable for optimizations,
|
||
we attempt to transform the call. */
|
||
static rtx
|
||
c_expand_builtin_printf (arglist, target, tmode, modifier, ignore, unlocked)
|
||
tree arglist;
|
||
rtx target;
|
||
enum machine_mode tmode;
|
||
enum expand_modifier modifier;
|
||
int ignore;
|
||
int unlocked;
|
||
{
|
||
tree fn_putchar = unlocked ?
|
||
built_in_decls[BUILT_IN_PUTCHAR_UNLOCKED] : built_in_decls[BUILT_IN_PUTCHAR];
|
||
tree fn_puts = unlocked ?
|
||
built_in_decls[BUILT_IN_PUTS_UNLOCKED] : built_in_decls[BUILT_IN_PUTS];
|
||
tree fn, format_arg, stripped_string;
|
||
|
||
/* If the return value is used, or the replacement _DECL isn't
|
||
initialized, don't do the transformation. */
|
||
if (!ignore || !fn_putchar || !fn_puts)
|
||
return 0;
|
||
|
||
/* Verify the required arguments in the original call. */
|
||
if (arglist == 0
|
||
|| (TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != POINTER_TYPE))
|
||
return 0;
|
||
|
||
/* Check the specifier vs. the parameters. */
|
||
if (!is_valid_printf_arglist (arglist))
|
||
return 0;
|
||
|
||
format_arg = TREE_VALUE (arglist);
|
||
stripped_string = format_arg;
|
||
STRIP_NOPS (stripped_string);
|
||
if (stripped_string && TREE_CODE (stripped_string) == ADDR_EXPR)
|
||
stripped_string = TREE_OPERAND (stripped_string, 0);
|
||
|
||
/* If the format specifier isn't a STRING_CST, punt. */
|
||
if (TREE_CODE (stripped_string) != STRING_CST)
|
||
return 0;
|
||
|
||
/* OK! We can attempt optimization. */
|
||
|
||
/* If the format specifier was "%s\n", call __builtin_puts(arg2). */
|
||
if (strcmp (TREE_STRING_POINTER (stripped_string), "%s\n") == 0)
|
||
{
|
||
arglist = TREE_CHAIN (arglist);
|
||
fn = fn_puts;
|
||
}
|
||
/* If the format specifier was "%c", call __builtin_putchar (arg2). */
|
||
else if (strcmp (TREE_STRING_POINTER (stripped_string), "%c") == 0)
|
||
{
|
||
arglist = TREE_CHAIN (arglist);
|
||
fn = fn_putchar;
|
||
}
|
||
else
|
||
{
|
||
/* We can't handle anything else with % args or %% ... yet. */
|
||
if (strchr (TREE_STRING_POINTER (stripped_string), '%'))
|
||
return 0;
|
||
|
||
/* If the resulting constant string has a length of 1, call
|
||
putchar. Note, TREE_STRING_LENGTH includes the terminating
|
||
NULL in its count. */
|
||
if (TREE_STRING_LENGTH (stripped_string) == 2)
|
||
{
|
||
/* Given printf("c"), (where c is any one character,)
|
||
convert "c"[0] to an int and pass that to the replacement
|
||
function. */
|
||
arglist = build_int_2 (TREE_STRING_POINTER (stripped_string)[0], 0);
|
||
arglist = build_tree_list (NULL_TREE, arglist);
|
||
|
||
fn = fn_putchar;
|
||
}
|
||
/* If the resulting constant was "string\n", call
|
||
__builtin_puts("string"). Ensure "string" has at least one
|
||
character besides the trailing \n. Note, TREE_STRING_LENGTH
|
||
includes the terminating NULL in its count. */
|
||
else if (TREE_STRING_LENGTH (stripped_string) > 2
|
||
&& TREE_STRING_POINTER (stripped_string)
|
||
[TREE_STRING_LENGTH (stripped_string) - 2] == '\n')
|
||
{
|
||
/* Create a NULL-terminated string that's one char shorter
|
||
than the original, stripping off the trailing '\n'. */
|
||
const int newlen = TREE_STRING_LENGTH (stripped_string) - 1;
|
||
char *newstr = (char *) alloca (newlen);
|
||
memcpy (newstr, TREE_STRING_POINTER (stripped_string), newlen - 1);
|
||
newstr[newlen - 1] = 0;
|
||
|
||
arglist = fix_string_type (build_string (newlen, newstr));
|
||
arglist = build_tree_list (NULL_TREE, arglist);
|
||
fn = fn_puts;
|
||
}
|
||
else
|
||
/* We'd like to arrange to call fputs(string) here, but we
|
||
need stdout and don't have a way to get it ... yet. */
|
||
return 0;
|
||
}
|
||
|
||
return expand_expr (build_function_call (fn, arglist),
|
||
(ignore ? const0_rtx : target),
|
||
tmode, modifier);
|
||
}
|
||
|
||
/* If the arguments passed to fprintf are suitable for optimizations,
|
||
we attempt to transform the call. */
|
||
static rtx
|
||
c_expand_builtin_fprintf (arglist, target, tmode, modifier, ignore, unlocked)
|
||
tree arglist;
|
||
rtx target;
|
||
enum machine_mode tmode;
|
||
enum expand_modifier modifier;
|
||
int ignore;
|
||
int unlocked;
|
||
{
|
||
tree fn_fputc = unlocked ?
|
||
built_in_decls[BUILT_IN_FPUTC_UNLOCKED] : built_in_decls[BUILT_IN_FPUTC];
|
||
tree fn_fputs = unlocked ?
|
||
built_in_decls[BUILT_IN_FPUTS_UNLOCKED] : built_in_decls[BUILT_IN_FPUTS];
|
||
tree fn, format_arg, stripped_string;
|
||
|
||
/* If the return value is used, or the replacement _DECL isn't
|
||
initialized, don't do the transformation. */
|
||
if (!ignore || !fn_fputc || !fn_fputs)
|
||
return 0;
|
||
|
||
/* Verify the required arguments in the original call. */
|
||
if (arglist == 0
|
||
|| (TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != POINTER_TYPE)
|
||
|| (TREE_CHAIN (arglist) == 0)
|
||
|| (TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (arglist)))) !=
|
||
POINTER_TYPE))
|
||
return 0;
|
||
|
||
/* Check the specifier vs. the parameters. */
|
||
if (!is_valid_printf_arglist (TREE_CHAIN (arglist)))
|
||
return 0;
|
||
|
||
format_arg = TREE_VALUE (TREE_CHAIN (arglist));
|
||
stripped_string = format_arg;
|
||
STRIP_NOPS (stripped_string);
|
||
if (stripped_string && TREE_CODE (stripped_string) == ADDR_EXPR)
|
||
stripped_string = TREE_OPERAND (stripped_string, 0);
|
||
|
||
/* If the format specifier isn't a STRING_CST, punt. */
|
||
if (TREE_CODE (stripped_string) != STRING_CST)
|
||
return 0;
|
||
|
||
/* OK! We can attempt optimization. */
|
||
|
||
/* If the format specifier was "%s", call __builtin_fputs(arg3, arg1). */
|
||
if (strcmp (TREE_STRING_POINTER (stripped_string), "%s") == 0)
|
||
{
|
||
tree newarglist = build_tree_list (NULL_TREE, TREE_VALUE (arglist));
|
||
arglist = tree_cons (NULL_TREE,
|
||
TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))),
|
||
newarglist);
|
||
fn = fn_fputs;
|
||
}
|
||
/* If the format specifier was "%c", call __builtin_fputc (arg3, arg1). */
|
||
else if (strcmp (TREE_STRING_POINTER (stripped_string), "%c") == 0)
|
||
{
|
||
tree newarglist = build_tree_list (NULL_TREE, TREE_VALUE (arglist));
|
||
arglist = tree_cons (NULL_TREE,
|
||
TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))),
|
||
newarglist);
|
||
fn = fn_fputc;
|
||
}
|
||
else
|
||
{
|
||
/* We can't handle anything else with % args or %% ... yet. */
|
||
if (strchr (TREE_STRING_POINTER (stripped_string), '%'))
|
||
return 0;
|
||
|
||
/* When "string" doesn't contain %, replace all cases of
|
||
fprintf(stream,string) with fputs(string,stream). The fputs
|
||
builtin will take take of special cases like length==1. */
|
||
arglist = tree_cons (NULL_TREE, TREE_VALUE (TREE_CHAIN (arglist)),
|
||
build_tree_list (NULL_TREE, TREE_VALUE (arglist)));
|
||
fn = fn_fputs;
|
||
}
|
||
|
||
return expand_expr (build_function_call (fn, arglist),
|
||
(ignore ? const0_rtx : target),
|
||
tmode, modifier);
|
||
}
|
||
|
||
|
||
/* Given a boolean expression ARG, return a tree representing an increment
|
||
or decrement (as indicated by CODE) of ARG. The front end must check for
|
||
invalid cases (e.g., decrement in C++). */
|
||
tree
|
||
boolean_increment (code, arg)
|
||
enum tree_code code;
|
||
tree arg;
|
||
{
|
||
tree val;
|
||
tree true_res = (c_language == clk_cplusplus
|
||
? boolean_true_node
|
||
: c_bool_true_node);
|
||
arg = stabilize_reference (arg);
|
||
switch (code)
|
||
{
|
||
case PREINCREMENT_EXPR:
|
||
val = build (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
|
||
break;
|
||
case POSTINCREMENT_EXPR:
|
||
val = build (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
|
||
arg = save_expr (arg);
|
||
val = build (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
|
||
val = build (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
|
||
break;
|
||
case PREDECREMENT_EXPR:
|
||
val = build (MODIFY_EXPR, TREE_TYPE (arg), arg, invert_truthvalue (arg));
|
||
break;
|
||
case POSTDECREMENT_EXPR:
|
||
val = build (MODIFY_EXPR, TREE_TYPE (arg), arg, invert_truthvalue (arg));
|
||
arg = save_expr (arg);
|
||
val = build (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
|
||
val = build (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
TREE_SIDE_EFFECTS (val) = 1;
|
||
return val;
|
||
}
|
||
|
||
/* Define NAME with value TYPE precision. */
|
||
static void
|
||
builtin_define_type_precision (name, type)
|
||
const char *name;
|
||
tree type;
|
||
{
|
||
builtin_define_with_int_value (name, TYPE_PRECISION (type));
|
||
}
|
||
|
||
/* Define the float.h constants for TYPE using NAME_PREFIX and FP_SUFFIX. */
|
||
static void
|
||
builtin_define_float_constants (name_prefix, fp_suffix, type)
|
||
const char *name_prefix;
|
||
const char *fp_suffix;
|
||
tree type;
|
||
{
|
||
/* Used to convert radix-based values to base 10 values in several cases.
|
||
|
||
In the max_exp -> max_10_exp conversion for 128-bit IEEE, we need at
|
||
least 6 significant digits for correct results. Using the fraction
|
||
formed by (log(2)*1e6)/(log(10)*1e6) overflows a 32-bit integer as an
|
||
intermediate; perhaps someone can find a better approximation, in the
|
||
mean time, I suspect using doubles won't harm the bootstrap here. */
|
||
|
||
const double log10_2 = .30102999566398119521;
|
||
double log10_b;
|
||
const struct real_format *fmt;
|
||
|
||
char name[64], buf[128];
|
||
int dig, min_10_exp, max_10_exp;
|
||
int decimal_dig;
|
||
|
||
fmt = real_format_for_mode[TYPE_MODE (type) - QFmode];
|
||
|
||
/* The radix of the exponent representation. */
|
||
if (type == float_type_node)
|
||
builtin_define_with_int_value ("__FLT_RADIX__", fmt->b);
|
||
log10_b = log10_2 * fmt->log2_b;
|
||
|
||
/* The number of radix digits, p, in the floating-point significand. */
|
||
sprintf (name, "__%s_MANT_DIG__", name_prefix);
|
||
builtin_define_with_int_value (name, fmt->p);
|
||
|
||
/* The number of decimal digits, q, such that any floating-point number
|
||
with q decimal digits can be rounded into a floating-point number with
|
||
p radix b digits and back again without change to the q decimal digits,
|
||
|
||
p log10 b if b is a power of 10
|
||
floor((p - 1) log10 b) otherwise
|
||
*/
|
||
dig = (fmt->p - 1) * log10_b;
|
||
sprintf (name, "__%s_DIG__", name_prefix);
|
||
builtin_define_with_int_value (name, dig);
|
||
|
||
/* The minimum negative int x such that b**(x-1) is a normalized float. */
|
||
sprintf (name, "__%s_MIN_EXP__", name_prefix);
|
||
sprintf (buf, "(%d)", fmt->emin);
|
||
builtin_define_with_value (name, buf, 0);
|
||
|
||
/* The minimum negative int x such that 10**x is a normalized float,
|
||
|
||
ceil (log10 (b ** (emin - 1)))
|
||
= ceil (log10 (b) * (emin - 1))
|
||
|
||
Recall that emin is negative, so the integer truncation calculates
|
||
the ceiling, not the floor, in this case. */
|
||
min_10_exp = (fmt->emin - 1) * log10_b;
|
||
sprintf (name, "__%s_MIN_10_EXP__", name_prefix);
|
||
sprintf (buf, "(%d)", min_10_exp);
|
||
builtin_define_with_value (name, buf, 0);
|
||
|
||
/* The maximum int x such that b**(x-1) is a representable float. */
|
||
sprintf (name, "__%s_MAX_EXP__", name_prefix);
|
||
builtin_define_with_int_value (name, fmt->emax);
|
||
|
||
/* The maximum int x such that 10**x is in the range of representable
|
||
finite floating-point numbers,
|
||
|
||
floor (log10((1 - b**-p) * b**emax))
|
||
= floor (log10(1 - b**-p) + log10(b**emax))
|
||
= floor (log10(1 - b**-p) + log10(b)*emax)
|
||
|
||
The safest thing to do here is to just compute this number. But since
|
||
we don't link cc1 with libm, we cannot. We could implement log10 here
|
||
a series expansion, but that seems too much effort because:
|
||
|
||
Note that the first term, for all extant p, is a number exceedingly close
|
||
to zero, but slightly negative. Note that the second term is an integer
|
||
scaling an irrational number, and that because of the floor we are only
|
||
interested in its integral portion.
|
||
|
||
In order for the first term to have any effect on the integral portion
|
||
of the second term, the second term has to be exceedingly close to an
|
||
integer itself (e.g. 123.000000000001 or something). Getting a result
|
||
that close to an integer requires that the irrational multiplicand have
|
||
a long series of zeros in its expansion, which doesn't occur in the
|
||
first 20 digits or so of log10(b).
|
||
|
||
Hand-waving aside, crunching all of the sets of constants above by hand
|
||
does not yield a case for which the first term is significant, which
|
||
in the end is all that matters. */
|
||
max_10_exp = fmt->emax * log10_b;
|
||
sprintf (name, "__%s_MAX_10_EXP__", name_prefix);
|
||
builtin_define_with_int_value (name, max_10_exp);
|
||
|
||
/* The number of decimal digits, n, such that any floating-point number
|
||
can be rounded to n decimal digits and back again without change to
|
||
the value.
|
||
|
||
p * log10(b) if b is a power of 10
|
||
ceil(1 + p * log10(b)) otherwise
|
||
|
||
The only macro we care about is this number for the widest supported
|
||
floating type, but we want this value for rendering constants below. */
|
||
{
|
||
double d_decimal_dig = 1 + fmt->p * log10_b;
|
||
decimal_dig = d_decimal_dig;
|
||
if (decimal_dig < d_decimal_dig)
|
||
decimal_dig++;
|
||
}
|
||
if (type == long_double_type_node)
|
||
builtin_define_with_int_value ("__DECIMAL_DIG__", decimal_dig);
|
||
|
||
/* Since, for the supported formats, B is always a power of 2, we
|
||
construct the following numbers directly as a hexadecimal
|
||
constants. */
|
||
|
||
/* The maximum representable finite floating-point number,
|
||
(1 - b**-p) * b**emax */
|
||
{
|
||
int i, n;
|
||
char *p;
|
||
|
||
strcpy (buf, "0x0.");
|
||
n = fmt->p * fmt->log2_b;
|
||
for (i = 0, p = buf + 4; i + 3 < n; i += 4)
|
||
*p++ = 'f';
|
||
if (i < n)
|
||
*p++ = "08ce"[n - i];
|
||
sprintf (p, "p%d", fmt->emax * fmt->log2_b);
|
||
}
|
||
sprintf (name, "__%s_MAX__", name_prefix);
|
||
builtin_define_with_hex_fp_value (name, type, decimal_dig, buf, fp_suffix);
|
||
|
||
/* The minimum normalized positive floating-point number,
|
||
b**(emin-1). */
|
||
sprintf (name, "__%s_MIN__", name_prefix);
|
||
sprintf (buf, "0x1p%d", (fmt->emin - 1) * fmt->log2_b);
|
||
builtin_define_with_hex_fp_value (name, type, decimal_dig, buf, fp_suffix);
|
||
|
||
/* The difference between 1 and the least value greater than 1 that is
|
||
representable in the given floating point type, b**(1-p). */
|
||
sprintf (name, "__%s_EPSILON__", name_prefix);
|
||
sprintf (buf, "0x1p%d", (1 - fmt->p) * fmt->log2_b);
|
||
builtin_define_with_hex_fp_value (name, type, decimal_dig, buf, fp_suffix);
|
||
|
||
/* For C++ std::numeric_limits<T>::denorm_min. The minimum denormalized
|
||
positive floating-point number, b**(emin-p). Zero for formats that
|
||
don't support denormals. */
|
||
sprintf (name, "__%s_DENORM_MIN__", name_prefix);
|
||
if (fmt->has_denorm)
|
||
{
|
||
sprintf (buf, "0x1p%d", (fmt->emin - fmt->p) * fmt->log2_b);
|
||
builtin_define_with_hex_fp_value (name, type, decimal_dig,
|
||
buf, fp_suffix);
|
||
}
|
||
else
|
||
{
|
||
sprintf (buf, "0.0%s", fp_suffix);
|
||
builtin_define_with_value (name, buf, 0);
|
||
}
|
||
}
|
||
|
||
/* Hook that registers front end and target-specific built-ins. */
|
||
void
|
||
cb_register_builtins (pfile)
|
||
cpp_reader *pfile;
|
||
{
|
||
/* -undef turns off target-specific built-ins. */
|
||
if (flag_undef)
|
||
return;
|
||
|
||
if (c_language == clk_cplusplus)
|
||
{
|
||
if (SUPPORTS_ONE_ONLY)
|
||
cpp_define (pfile, "__GXX_WEAK__=1");
|
||
else
|
||
cpp_define (pfile, "__GXX_WEAK__=0");
|
||
if (warn_deprecated)
|
||
cpp_define (pfile, "__DEPRECATED");
|
||
}
|
||
if (flag_exceptions)
|
||
cpp_define (pfile, "__EXCEPTIONS");
|
||
|
||
/* represents the C++ ABI version, always defined so it can be used while
|
||
preprocessing C and assembler. */
|
||
cpp_define (pfile, "__GXX_ABI_VERSION=102");
|
||
|
||
/* libgcc needs to know this. */
|
||
if (USING_SJLJ_EXCEPTIONS)
|
||
cpp_define (pfile, "__USING_SJLJ_EXCEPTIONS__");
|
||
|
||
/* stddef.h needs to know these. */
|
||
builtin_define_with_value ("__SIZE_TYPE__", SIZE_TYPE, 0);
|
||
builtin_define_with_value ("__PTRDIFF_TYPE__", PTRDIFF_TYPE, 0);
|
||
builtin_define_with_value ("__WCHAR_TYPE__", MODIFIED_WCHAR_TYPE, 0);
|
||
builtin_define_with_value ("__WINT_TYPE__", WINT_TYPE, 0);
|
||
|
||
/* limits.h needs to know these. */
|
||
builtin_define_type_max ("__SCHAR_MAX__", signed_char_type_node, 0);
|
||
builtin_define_type_max ("__SHRT_MAX__", short_integer_type_node, 0);
|
||
builtin_define_type_max ("__INT_MAX__", integer_type_node, 0);
|
||
builtin_define_type_max ("__LONG_MAX__", long_integer_type_node, 1);
|
||
builtin_define_type_max ("__LONG_LONG_MAX__", long_long_integer_type_node, 2);
|
||
builtin_define_type_max ("__WCHAR_MAX__", wchar_type_node, 0);
|
||
|
||
builtin_define_type_precision ("__CHAR_BIT__", char_type_node);
|
||
|
||
/* float.h needs to know these. */
|
||
|
||
builtin_define_with_int_value ("__FLT_EVAL_METHOD__",
|
||
TARGET_FLT_EVAL_METHOD);
|
||
|
||
builtin_define_float_constants ("FLT", "F", float_type_node);
|
||
builtin_define_float_constants ("DBL", "", double_type_node);
|
||
builtin_define_float_constants ("LDBL", "L", long_double_type_node);
|
||
|
||
/* For use in assembly language. */
|
||
builtin_define_with_value ("__REGISTER_PREFIX__", REGISTER_PREFIX, 0);
|
||
builtin_define_with_value ("__USER_LABEL_PREFIX__", user_label_prefix, 0);
|
||
|
||
/* Misc. */
|
||
builtin_define_with_value ("__VERSION__", version_string, 1);
|
||
|
||
/* Other target-independent built-ins determined by command-line
|
||
options. */
|
||
if (optimize_size)
|
||
cpp_define (pfile, "__OPTIMIZE_SIZE__");
|
||
if (optimize)
|
||
cpp_define (pfile, "__OPTIMIZE__");
|
||
|
||
if (flag_hosted)
|
||
cpp_define (pfile, "__STDC_HOSTED__=1");
|
||
else
|
||
cpp_define (pfile, "__STDC_HOSTED__=0");
|
||
|
||
if (fast_math_flags_set_p ())
|
||
cpp_define (pfile, "__FAST_MATH__");
|
||
if (flag_really_no_inline)
|
||
cpp_define (pfile, "__NO_INLINE__");
|
||
if (flag_signaling_nans)
|
||
cpp_define (pfile, "__SUPPORT_SNAN__");
|
||
if (flag_finite_math_only)
|
||
cpp_define (pfile, "__FINITE_MATH_ONLY__=1");
|
||
else
|
||
cpp_define (pfile, "__FINITE_MATH_ONLY__=0");
|
||
|
||
if (flag_iso)
|
||
cpp_define (pfile, "__STRICT_ANSI__");
|
||
|
||
if (!flag_signed_char)
|
||
cpp_define (pfile, "__CHAR_UNSIGNED__");
|
||
|
||
if (c_language == clk_cplusplus && TREE_UNSIGNED (wchar_type_node))
|
||
cpp_define (pfile, "__WCHAR_UNSIGNED__");
|
||
|
||
/* Make the choice of ObjC runtime visible to source code. */
|
||
if (flag_objc && flag_next_runtime)
|
||
cpp_define (pfile, "__NEXT_RUNTIME__");
|
||
|
||
/* A straightforward target hook doesn't work, because of problems
|
||
linking that hook's body when part of non-C front ends. */
|
||
# define preprocessing_asm_p() (cpp_get_options (pfile)->lang == CLK_ASM)
|
||
# define preprocessing_trad_p() (cpp_get_options (pfile)->traditional)
|
||
# define builtin_define(TXT) cpp_define (pfile, TXT)
|
||
# define builtin_assert(TXT) cpp_assert (pfile, TXT)
|
||
TARGET_CPU_CPP_BUILTINS ();
|
||
TARGET_OS_CPP_BUILTINS ();
|
||
}
|
||
|
||
/* Pass an object-like macro. If it doesn't lie in the user's
|
||
namespace, defines it unconditionally. Otherwise define a version
|
||
with two leading underscores, and another version with two leading
|
||
and trailing underscores, and define the original only if an ISO
|
||
standard was not nominated.
|
||
|
||
e.g. passing "unix" defines "__unix", "__unix__" and possibly
|
||
"unix". Passing "_mips" defines "__mips", "__mips__" and possibly
|
||
"_mips". */
|
||
void
|
||
builtin_define_std (macro)
|
||
const char *macro;
|
||
{
|
||
size_t len = strlen (macro);
|
||
char *buff = alloca (len + 5);
|
||
char *p = buff + 2;
|
||
char *q = p + len;
|
||
|
||
/* prepend __ (or maybe just _) if in user's namespace. */
|
||
memcpy (p, macro, len + 1);
|
||
if (!( *p == '_' && (p[1] == '_' || ISUPPER (p[1]))))
|
||
{
|
||
if (*p != '_')
|
||
*--p = '_';
|
||
if (p[1] != '_')
|
||
*--p = '_';
|
||
}
|
||
cpp_define (parse_in, p);
|
||
|
||
/* If it was in user's namespace... */
|
||
if (p != buff + 2)
|
||
{
|
||
/* Define the macro with leading and following __. */
|
||
if (q[-1] != '_')
|
||
*q++ = '_';
|
||
if (q[-2] != '_')
|
||
*q++ = '_';
|
||
*q = '\0';
|
||
cpp_define (parse_in, p);
|
||
|
||
/* Finally, define the original macro if permitted. */
|
||
if (!flag_iso)
|
||
cpp_define (parse_in, macro);
|
||
}
|
||
}
|
||
|
||
/* Pass an object-like macro and a value to define it to. The third
|
||
parameter says whether or not to turn the value into a string
|
||
constant. */
|
||
static void
|
||
builtin_define_with_value (macro, expansion, is_str)
|
||
const char *macro;
|
||
const char *expansion;
|
||
int is_str;
|
||
{
|
||
char *buf;
|
||
size_t mlen = strlen (macro);
|
||
size_t elen = strlen (expansion);
|
||
size_t extra = 2; /* space for an = and a NUL */
|
||
|
||
if (is_str)
|
||
extra += 2; /* space for two quote marks */
|
||
|
||
buf = alloca (mlen + elen + extra);
|
||
if (is_str)
|
||
sprintf (buf, "%s=\"%s\"", macro, expansion);
|
||
else
|
||
sprintf (buf, "%s=%s", macro, expansion);
|
||
|
||
cpp_define (parse_in, buf);
|
||
}
|
||
|
||
/* Pass an object-like macro and an integer value to define it to. */
|
||
static void
|
||
builtin_define_with_int_value (macro, value)
|
||
const char *macro;
|
||
HOST_WIDE_INT value;
|
||
{
|
||
char *buf;
|
||
size_t mlen = strlen (macro);
|
||
size_t vlen = 18;
|
||
size_t extra = 2; /* space for = and NUL. */
|
||
|
||
buf = alloca (mlen + vlen + extra);
|
||
memcpy (buf, macro, mlen);
|
||
buf[mlen] = '=';
|
||
sprintf (buf + mlen + 1, HOST_WIDE_INT_PRINT_DEC, value);
|
||
|
||
cpp_define (parse_in, buf);
|
||
}
|
||
|
||
/* Pass an object-like macro a hexadecimal floating-point value. */
|
||
static void
|
||
builtin_define_with_hex_fp_value (macro, type, digits, hex_str, fp_suffix)
|
||
const char *macro;
|
||
tree type ATTRIBUTE_UNUSED;
|
||
int digits;
|
||
const char *hex_str;
|
||
const char *fp_suffix;
|
||
{
|
||
REAL_VALUE_TYPE real;
|
||
char dec_str[64], buf[256];
|
||
|
||
/* Hex values are really cool and convenient, except that they're
|
||
not supported in strict ISO C90 mode. First, the "p-" sequence
|
||
is not valid as part of a preprocessor number. Second, we get a
|
||
pedwarn from the preprocessor, which has no context, so we can't
|
||
suppress the warning with __extension__.
|
||
|
||
So instead what we do is construct the number in hex (because
|
||
it's easy to get the exact correct value), parse it as a real,
|
||
then print it back out as decimal. */
|
||
|
||
real_from_string (&real, hex_str);
|
||
real_to_decimal (dec_str, &real, sizeof (dec_str), digits, 0);
|
||
|
||
sprintf (buf, "%s=%s%s", macro, dec_str, fp_suffix);
|
||
cpp_define (parse_in, buf);
|
||
}
|
||
|
||
/* Define MAX for TYPE based on the precision of the type. IS_LONG is
|
||
1 for type "long" and 2 for "long long". We have to handle
|
||
unsigned types, since wchar_t might be unsigned. */
|
||
|
||
static void
|
||
builtin_define_type_max (macro, type, is_long)
|
||
const char *macro;
|
||
tree type;
|
||
int is_long;
|
||
{
|
||
static const char *const values[]
|
||
= { "127", "255",
|
||
"32767", "65535",
|
||
"2147483647", "4294967295",
|
||
"9223372036854775807", "18446744073709551615",
|
||
"170141183460469231731687303715884105727",
|
||
"340282366920938463463374607431768211455" };
|
||
static const char *const suffixes[] = { "", "U", "L", "UL", "LL", "ULL" };
|
||
|
||
const char *value, *suffix;
|
||
char *buf;
|
||
size_t idx;
|
||
|
||
/* Pre-rendering the values mean we don't have to futz with printing a
|
||
multi-word decimal value. There are also a very limited number of
|
||
precisions that we support, so it's really a waste of time. */
|
||
switch (TYPE_PRECISION (type))
|
||
{
|
||
case 8: idx = 0; break;
|
||
case 16: idx = 2; break;
|
||
case 32: idx = 4; break;
|
||
case 64: idx = 6; break;
|
||
case 128: idx = 8; break;
|
||
default: abort ();
|
||
}
|
||
|
||
value = values[idx + TREE_UNSIGNED (type)];
|
||
suffix = suffixes[is_long * 2 + TREE_UNSIGNED (type)];
|
||
|
||
buf = alloca (strlen (macro) + 1 + strlen (value) + strlen (suffix) + 1);
|
||
sprintf (buf, "%s=%s%s", macro, value, suffix);
|
||
|
||
cpp_define (parse_in, buf);
|
||
}
|
||
|
||
static void
|
||
c_init_attributes ()
|
||
{
|
||
/* Fill in the built_in_attributes array. */
|
||
#define DEF_ATTR_NULL_TREE(ENUM) \
|
||
built_in_attributes[(int) ENUM] = NULL_TREE;
|
||
#define DEF_ATTR_INT(ENUM, VALUE) \
|
||
built_in_attributes[(int) ENUM] = build_int_2 (VALUE, VALUE < 0 ? -1 : 0);
|
||
#define DEF_ATTR_IDENT(ENUM, STRING) \
|
||
built_in_attributes[(int) ENUM] = get_identifier (STRING);
|
||
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \
|
||
built_in_attributes[(int) ENUM] \
|
||
= tree_cons (built_in_attributes[(int) PURPOSE], \
|
||
built_in_attributes[(int) VALUE], \
|
||
built_in_attributes[(int) CHAIN]);
|
||
#define DEF_FN_ATTR(NAME, ATTRS, PREDICATE) /* No initialization needed. */
|
||
#include "builtin-attrs.def"
|
||
#undef DEF_ATTR_NULL_TREE
|
||
#undef DEF_ATTR_INT
|
||
#undef DEF_ATTR_IDENT
|
||
#undef DEF_ATTR_TREE_LIST
|
||
#undef DEF_FN_ATTR
|
||
c_attrs_initialized = true;
|
||
}
|
||
|
||
/* Depending on the name of DECL, apply default attributes to it. */
|
||
|
||
void
|
||
c_common_insert_default_attributes (decl)
|
||
tree decl;
|
||
{
|
||
tree name = DECL_NAME (decl);
|
||
|
||
if (!c_attrs_initialized)
|
||
c_init_attributes ();
|
||
|
||
#define DEF_ATTR_NULL_TREE(ENUM) /* Nothing needed after initialization. */
|
||
#define DEF_ATTR_INT(ENUM, VALUE)
|
||
#define DEF_ATTR_IDENT(ENUM, STRING)
|
||
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN)
|
||
#define DEF_FN_ATTR(NAME, ATTRS, PREDICATE) \
|
||
if ((PREDICATE) && name == built_in_attributes[(int) NAME]) \
|
||
decl_attributes (&decl, built_in_attributes[(int) ATTRS], \
|
||
ATTR_FLAG_BUILT_IN);
|
||
#include "builtin-attrs.def"
|
||
#undef DEF_ATTR_NULL_TREE
|
||
#undef DEF_ATTR_INT
|
||
#undef DEF_ATTR_IDENT
|
||
#undef DEF_ATTR_TREE_LIST
|
||
#undef DEF_FN_ATTR
|
||
}
|
||
|
||
/* Output a -Wshadow warning MSGID about NAME, an IDENTIFIER_NODE, and
|
||
additionally give the location of the previous declaration DECL. */
|
||
void
|
||
shadow_warning (msgid, name, decl)
|
||
const char *msgid;
|
||
tree name, decl;
|
||
{
|
||
warning ("declaration of `%s' shadows %s", IDENTIFIER_POINTER (name), msgid);
|
||
warning_with_file_and_line (DECL_SOURCE_FILE (decl),
|
||
DECL_SOURCE_LINE (decl),
|
||
"shadowed declaration is here");
|
||
}
|
||
|
||
/* Attribute handlers common to C front ends. */
|
||
|
||
/* Handle a "packed" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_packed_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree *type = NULL;
|
||
if (DECL_P (*node))
|
||
{
|
||
if (TREE_CODE (*node) == TYPE_DECL)
|
||
type = &TREE_TYPE (*node);
|
||
}
|
||
else
|
||
type = node;
|
||
|
||
if (type)
|
||
{
|
||
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
|
||
*type = build_type_copy (*type);
|
||
TYPE_PACKED (*type) = 1;
|
||
}
|
||
else if (TREE_CODE (*node) == FIELD_DECL)
|
||
DECL_PACKED (*node) = 1;
|
||
/* We can't set DECL_PACKED for a VAR_DECL, because the bit is
|
||
used for DECL_REGISTER. It wouldn't mean anything anyway. */
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "nocommon" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_nocommon_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
if (TREE_CODE (*node) == VAR_DECL)
|
||
DECL_COMMON (*node) = 0;
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "common" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_common_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
if (TREE_CODE (*node) == VAR_DECL)
|
||
DECL_COMMON (*node) = 1;
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "noreturn" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_noreturn_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree type = TREE_TYPE (*node);
|
||
|
||
/* See FIXME comment in c_common_attribute_table. */
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
TREE_THIS_VOLATILE (*node) = 1;
|
||
else if (TREE_CODE (type) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
|
||
TREE_TYPE (*node)
|
||
= build_pointer_type
|
||
(build_type_variant (TREE_TYPE (type),
|
||
TREE_READONLY (TREE_TYPE (type)), 1));
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "noinline" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_noinline_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
DECL_UNINLINABLE (*node) = 1;
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "always_inline" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_always_inline_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
{
|
||
/* Do nothing else, just set the attribute. We'll get at
|
||
it later with lookup_attribute. */
|
||
}
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "used" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_used_attribute (pnode, name, args, flags, no_add_attrs)
|
||
tree *pnode;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree node = *pnode;
|
||
|
||
if (TREE_CODE (node) == FUNCTION_DECL
|
||
|| (TREE_CODE (node) == VAR_DECL && TREE_STATIC (node)))
|
||
TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (node))
|
||
= TREE_USED (node) = 1;
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "unused" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_unused_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags;
|
||
bool *no_add_attrs;
|
||
{
|
||
if (DECL_P (*node))
|
||
{
|
||
tree decl = *node;
|
||
|
||
if (TREE_CODE (decl) == PARM_DECL
|
||
|| TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == FUNCTION_DECL
|
||
|| TREE_CODE (decl) == LABEL_DECL
|
||
|| TREE_CODE (decl) == TYPE_DECL)
|
||
TREE_USED (decl) = 1;
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
|
||
*node = build_type_copy (*node);
|
||
TREE_USED (*node) = 1;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "const" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_const_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree type = TREE_TYPE (*node);
|
||
|
||
/* See FIXME comment on noreturn in c_common_attribute_table. */
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
TREE_READONLY (*node) = 1;
|
||
else if (TREE_CODE (type) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
|
||
TREE_TYPE (*node)
|
||
= build_pointer_type
|
||
(build_type_variant (TREE_TYPE (type), 1,
|
||
TREE_THIS_VOLATILE (TREE_TYPE (type))));
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "transparent_union" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_transparent_union_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree decl = NULL_TREE;
|
||
tree *type = NULL;
|
||
int is_type = 0;
|
||
|
||
if (DECL_P (*node))
|
||
{
|
||
decl = *node;
|
||
type = &TREE_TYPE (decl);
|
||
is_type = TREE_CODE (*node) == TYPE_DECL;
|
||
}
|
||
else if (TYPE_P (*node))
|
||
type = node, is_type = 1;
|
||
|
||
if (is_type
|
||
&& TREE_CODE (*type) == UNION_TYPE
|
||
&& (decl == 0
|
||
|| (TYPE_FIELDS (*type) != 0
|
||
&& TYPE_MODE (*type) == DECL_MODE (TYPE_FIELDS (*type)))))
|
||
{
|
||
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
|
||
*type = build_type_copy (*type);
|
||
TYPE_TRANSPARENT_UNION (*type) = 1;
|
||
}
|
||
else if (decl != 0 && TREE_CODE (decl) == PARM_DECL
|
||
&& TREE_CODE (*type) == UNION_TYPE
|
||
&& TYPE_MODE (*type) == DECL_MODE (TYPE_FIELDS (*type)))
|
||
DECL_TRANSPARENT_UNION (decl) = 1;
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "constructor" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_constructor_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree decl = *node;
|
||
tree type = TREE_TYPE (decl);
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& TREE_CODE (type) == FUNCTION_TYPE
|
||
&& decl_function_context (decl) == 0)
|
||
{
|
||
DECL_STATIC_CONSTRUCTOR (decl) = 1;
|
||
TREE_USED (decl) = 1;
|
||
}
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "destructor" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_destructor_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree decl = *node;
|
||
tree type = TREE_TYPE (decl);
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& TREE_CODE (type) == FUNCTION_TYPE
|
||
&& decl_function_context (decl) == 0)
|
||
{
|
||
DECL_STATIC_DESTRUCTOR (decl) = 1;
|
||
TREE_USED (decl) = 1;
|
||
}
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "mode" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_mode_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree type = *node;
|
||
|
||
*no_add_attrs = true;
|
||
|
||
if (TREE_CODE (TREE_VALUE (args)) != IDENTIFIER_NODE)
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
else
|
||
{
|
||
int j;
|
||
const char *p = IDENTIFIER_POINTER (TREE_VALUE (args));
|
||
int len = strlen (p);
|
||
enum machine_mode mode = VOIDmode;
|
||
tree typefm;
|
||
|
||
if (len > 4 && p[0] == '_' && p[1] == '_'
|
||
&& p[len - 1] == '_' && p[len - 2] == '_')
|
||
{
|
||
char *newp = (char *) alloca (len - 1);
|
||
|
||
strcpy (newp, &p[2]);
|
||
newp[len - 4] = '\0';
|
||
p = newp;
|
||
}
|
||
|
||
/* Change this type to have a type with the specified mode.
|
||
First check for the special modes. */
|
||
if (! strcmp (p, "byte"))
|
||
mode = byte_mode;
|
||
else if (!strcmp (p, "word"))
|
||
mode = word_mode;
|
||
else if (! strcmp (p, "pointer"))
|
||
mode = ptr_mode;
|
||
else
|
||
for (j = 0; j < NUM_MACHINE_MODES; j++)
|
||
if (!strcmp (p, GET_MODE_NAME (j)))
|
||
mode = (enum machine_mode) j;
|
||
|
||
if (mode == VOIDmode)
|
||
error ("unknown machine mode `%s'", p);
|
||
else if (0 == (typefm = (*lang_hooks.types.type_for_mode)
|
||
(mode, TREE_UNSIGNED (type))))
|
||
error ("no data type for mode `%s'", p);
|
||
else
|
||
{
|
||
/* If this is a vector, make sure we either have hardware
|
||
support, or we can emulate it. */
|
||
if ((GET_MODE_CLASS (mode) == MODE_VECTOR_INT
|
||
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
|
||
&& !vector_mode_valid_p (mode))
|
||
{
|
||
error ("unable to emulate '%s'", GET_MODE_NAME (mode));
|
||
return NULL_TREE;
|
||
}
|
||
|
||
*node = typefm;
|
||
/* No need to layout the type here. The caller should do this. */
|
||
}
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "section" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_section_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name ATTRIBUTE_UNUSED;
|
||
tree args;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree decl = *node;
|
||
|
||
if (targetm.have_named_sections)
|
||
{
|
||
if ((TREE_CODE (decl) == FUNCTION_DECL
|
||
|| TREE_CODE (decl) == VAR_DECL)
|
||
&& TREE_CODE (TREE_VALUE (args)) == STRING_CST)
|
||
{
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
&& current_function_decl != NULL_TREE
|
||
&& ! TREE_STATIC (decl))
|
||
{
|
||
error_with_decl (decl,
|
||
"section attribute cannot be specified for local variables");
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
/* The decl may have already been given a section attribute
|
||
from a previous declaration. Ensure they match. */
|
||
else if (DECL_SECTION_NAME (decl) != NULL_TREE
|
||
&& strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (decl)),
|
||
TREE_STRING_POINTER (TREE_VALUE (args))) != 0)
|
||
{
|
||
error_with_decl (*node,
|
||
"section of `%s' conflicts with previous declaration");
|
||
*no_add_attrs = true;
|
||
}
|
||
else
|
||
DECL_SECTION_NAME (decl) = TREE_VALUE (args);
|
||
}
|
||
else
|
||
{
|
||
error_with_decl (*node,
|
||
"section attribute not allowed for `%s'");
|
||
*no_add_attrs = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
error_with_decl (*node,
|
||
"section attributes are not supported for this target");
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "aligned" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_aligned_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name ATTRIBUTE_UNUSED;
|
||
tree args;
|
||
int flags;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree decl = NULL_TREE;
|
||
tree *type = NULL;
|
||
int is_type = 0;
|
||
tree align_expr = (args ? TREE_VALUE (args)
|
||
: size_int (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
|
||
int i;
|
||
|
||
if (DECL_P (*node))
|
||
{
|
||
decl = *node;
|
||
type = &TREE_TYPE (decl);
|
||
is_type = TREE_CODE (*node) == TYPE_DECL;
|
||
}
|
||
else if (TYPE_P (*node))
|
||
type = node, is_type = 1;
|
||
|
||
/* Strip any NOPs of any kind. */
|
||
while (TREE_CODE (align_expr) == NOP_EXPR
|
||
|| TREE_CODE (align_expr) == CONVERT_EXPR
|
||
|| TREE_CODE (align_expr) == NON_LVALUE_EXPR)
|
||
align_expr = TREE_OPERAND (align_expr, 0);
|
||
|
||
if (TREE_CODE (align_expr) != INTEGER_CST)
|
||
{
|
||
error ("requested alignment is not a constant");
|
||
*no_add_attrs = true;
|
||
}
|
||
else if ((i = tree_log2 (align_expr)) == -1)
|
||
{
|
||
error ("requested alignment is not a power of 2");
|
||
*no_add_attrs = true;
|
||
}
|
||
else if (i > HOST_BITS_PER_INT - 2)
|
||
{
|
||
error ("requested alignment is too large");
|
||
*no_add_attrs = true;
|
||
}
|
||
else if (is_type)
|
||
{
|
||
/* If we have a TYPE_DECL, then copy the type, so that we
|
||
don't accidentally modify a builtin type. See pushdecl. */
|
||
if (decl && TREE_TYPE (decl) != error_mark_node
|
||
&& DECL_ORIGINAL_TYPE (decl) == NULL_TREE)
|
||
{
|
||
tree tt = TREE_TYPE (decl);
|
||
*type = build_type_copy (*type);
|
||
DECL_ORIGINAL_TYPE (decl) = tt;
|
||
TYPE_NAME (*type) = decl;
|
||
TREE_USED (*type) = TREE_USED (decl);
|
||
TREE_TYPE (decl) = *type;
|
||
}
|
||
else if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
|
||
*type = build_type_copy (*type);
|
||
|
||
TYPE_ALIGN (*type) = (1 << i) * BITS_PER_UNIT;
|
||
TYPE_USER_ALIGN (*type) = 1;
|
||
}
|
||
else if (TREE_CODE (decl) != VAR_DECL
|
||
&& TREE_CODE (decl) != FIELD_DECL)
|
||
{
|
||
error_with_decl (decl,
|
||
"alignment may not be specified for `%s'");
|
||
*no_add_attrs = true;
|
||
}
|
||
else
|
||
{
|
||
DECL_ALIGN (decl) = (1 << i) * BITS_PER_UNIT;
|
||
DECL_USER_ALIGN (decl) = 1;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "weak" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_weak_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name ATTRIBUTE_UNUSED;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs ATTRIBUTE_UNUSED;
|
||
{
|
||
declare_weak (*node);
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle an "alias" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_alias_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree decl = *node;
|
||
|
||
if ((TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
|
||
|| (TREE_CODE (decl) != FUNCTION_DECL && ! DECL_EXTERNAL (decl)))
|
||
{
|
||
error_with_decl (decl,
|
||
"`%s' defined both normally and as an alias");
|
||
*no_add_attrs = true;
|
||
}
|
||
else if (decl_function_context (decl) == 0)
|
||
{
|
||
tree id;
|
||
|
||
id = TREE_VALUE (args);
|
||
if (TREE_CODE (id) != STRING_CST)
|
||
{
|
||
error ("alias arg not a string");
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
id = get_identifier (TREE_STRING_POINTER (id));
|
||
/* This counts as a use of the object pointed to. */
|
||
TREE_USED (id) = 1;
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
DECL_INITIAL (decl) = error_mark_node;
|
||
else
|
||
DECL_EXTERNAL (decl) = 0;
|
||
}
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle an "visibility" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_visibility_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree decl = *node;
|
||
|
||
if (decl_function_context (decl) != 0 || ! TREE_PUBLIC (decl))
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
else
|
||
{
|
||
tree id;
|
||
|
||
id = TREE_VALUE (args);
|
||
if (TREE_CODE (id) != STRING_CST)
|
||
{
|
||
error ("visibility arg not a string");
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
if (strcmp (TREE_STRING_POINTER (id), "hidden")
|
||
&& strcmp (TREE_STRING_POINTER (id), "protected")
|
||
&& strcmp (TREE_STRING_POINTER (id), "internal")
|
||
&& strcmp (TREE_STRING_POINTER (id), "default"))
|
||
{
|
||
error ("visibility arg must be one of \"default\", \"hidden\", \"protected\" or \"internal\"");
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle an "tls_model" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_tls_model_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree decl = *node;
|
||
|
||
if (! DECL_THREAD_LOCAL (decl))
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
else
|
||
{
|
||
tree id;
|
||
|
||
id = TREE_VALUE (args);
|
||
if (TREE_CODE (id) != STRING_CST)
|
||
{
|
||
error ("tls_model arg not a string");
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
if (strcmp (TREE_STRING_POINTER (id), "local-exec")
|
||
&& strcmp (TREE_STRING_POINTER (id), "initial-exec")
|
||
&& strcmp (TREE_STRING_POINTER (id), "local-dynamic")
|
||
&& strcmp (TREE_STRING_POINTER (id), "global-dynamic"))
|
||
{
|
||
error ("tls_model arg must be one of \"local-exec\", \"initial-exec\", \"local-dynamic\" or \"global-dynamic\"");
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "no_instrument_function" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_no_instrument_function_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree decl = *node;
|
||
|
||
if (TREE_CODE (decl) != FUNCTION_DECL)
|
||
{
|
||
error_with_decl (decl,
|
||
"`%s' attribute applies only to functions",
|
||
IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
else if (DECL_INITIAL (decl))
|
||
{
|
||
error_with_decl (decl,
|
||
"can't set `%s' attribute after definition",
|
||
IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
else
|
||
DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (decl) = 1;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "malloc" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_malloc_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
DECL_IS_MALLOC (*node) = 1;
|
||
/* ??? TODO: Support types. */
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "no_limit_stack" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_no_limit_stack_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree decl = *node;
|
||
|
||
if (TREE_CODE (decl) != FUNCTION_DECL)
|
||
{
|
||
error_with_decl (decl,
|
||
"`%s' attribute applies only to functions",
|
||
IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
else if (DECL_INITIAL (decl))
|
||
{
|
||
error_with_decl (decl,
|
||
"can't set `%s' attribute after definition",
|
||
IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
else
|
||
DECL_NO_LIMIT_STACK (decl) = 1;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "pure" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_pure_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
DECL_IS_PURE (*node) = 1;
|
||
/* ??? TODO: Support types. */
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "cleanup" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_cleanup_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree decl = *node;
|
||
tree cleanup_id, cleanup_decl;
|
||
|
||
/* ??? Could perhaps support cleanups on TREE_STATIC, much like we do
|
||
for global destructors in C++. This requires infrastructure that
|
||
we don't have generically at the moment. It's also not a feature
|
||
we'd be missing too much, since we do have attribute constructor. */
|
||
if (TREE_CODE (decl) != VAR_DECL || TREE_STATIC (decl))
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Verify that the argument is a function in scope. */
|
||
/* ??? We could support pointers to functions here as well, if
|
||
that was considered desirable. */
|
||
cleanup_id = TREE_VALUE (args);
|
||
if (TREE_CODE (cleanup_id) != IDENTIFIER_NODE)
|
||
{
|
||
error ("cleanup arg not an identifier");
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
cleanup_decl = lookup_name (cleanup_id);
|
||
if (!cleanup_decl || TREE_CODE (cleanup_decl) != FUNCTION_DECL)
|
||
{
|
||
error ("cleanup arg not a function");
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* That the function has proper type is checked with the
|
||
eventual call to build_function_call. */
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "deprecated" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_deprecated_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree type = NULL_TREE;
|
||
int warn = 0;
|
||
const char *what = NULL;
|
||
|
||
if (DECL_P (*node))
|
||
{
|
||
tree decl = *node;
|
||
type = TREE_TYPE (decl);
|
||
|
||
if (TREE_CODE (decl) == TYPE_DECL
|
||
|| TREE_CODE (decl) == PARM_DECL
|
||
|| TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == FUNCTION_DECL
|
||
|| TREE_CODE (decl) == FIELD_DECL)
|
||
TREE_DEPRECATED (decl) = 1;
|
||
else
|
||
warn = 1;
|
||
}
|
||
else if (TYPE_P (*node))
|
||
{
|
||
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
|
||
*node = build_type_copy (*node);
|
||
TREE_DEPRECATED (*node) = 1;
|
||
type = *node;
|
||
}
|
||
else
|
||
warn = 1;
|
||
|
||
if (warn)
|
||
{
|
||
*no_add_attrs = true;
|
||
if (type && TYPE_NAME (type))
|
||
{
|
||
if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
|
||
what = IDENTIFIER_POINTER (TYPE_NAME (*node));
|
||
else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
|
||
&& DECL_NAME (TYPE_NAME (type)))
|
||
what = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
|
||
}
|
||
if (what)
|
||
warning ("`%s' attribute ignored for `%s'",
|
||
IDENTIFIER_POINTER (name), what);
|
||
else
|
||
warning ("`%s' attribute ignored",
|
||
IDENTIFIER_POINTER (name));
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Keep a list of vector type nodes we created in handle_vector_size_attribute,
|
||
to prevent us from duplicating type nodes unnecessarily.
|
||
The normal mechanism to prevent duplicates is to use type_hash_canon, but
|
||
since we want to distinguish types that are essentially identical (except
|
||
for their debug representation), we use a local list here. */
|
||
static GTY(()) tree vector_type_node_list = 0;
|
||
|
||
/* Handle a "vector_size" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_vector_size_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
unsigned HOST_WIDE_INT vecsize, nunits;
|
||
enum machine_mode mode, orig_mode, new_mode;
|
||
tree type = *node, new_type = NULL_TREE;
|
||
tree type_list_node;
|
||
|
||
*no_add_attrs = true;
|
||
|
||
if (! host_integerp (TREE_VALUE (args), 1))
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Get the vector size (in bytes). */
|
||
vecsize = tree_low_cst (TREE_VALUE (args), 1);
|
||
|
||
/* We need to provide for vector pointers, vector arrays, and
|
||
functions returning vectors. For example:
|
||
|
||
__attribute__((vector_size(16))) short *foo;
|
||
|
||
In this case, the mode is SI, but the type being modified is
|
||
HI, so we need to look further. */
|
||
|
||
while (POINTER_TYPE_P (type)
|
||
|| TREE_CODE (type) == FUNCTION_TYPE
|
||
|| TREE_CODE (type) == ARRAY_TYPE)
|
||
type = TREE_TYPE (type);
|
||
|
||
/* Get the mode of the type being modified. */
|
||
orig_mode = TYPE_MODE (type);
|
||
|
||
if (TREE_CODE (type) == RECORD_TYPE
|
||
|| (GET_MODE_CLASS (orig_mode) != MODE_FLOAT
|
||
&& GET_MODE_CLASS (orig_mode) != MODE_INT)
|
||
|| ! host_integerp (TYPE_SIZE_UNIT (type), 1))
|
||
{
|
||
error ("invalid vector type for attribute `%s'",
|
||
IDENTIFIER_POINTER (name));
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Calculate how many units fit in the vector. */
|
||
nunits = vecsize / tree_low_cst (TYPE_SIZE_UNIT (type), 1);
|
||
|
||
/* Find a suitably sized vector. */
|
||
new_mode = VOIDmode;
|
||
for (mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_mode) == MODE_INT
|
||
? MODE_VECTOR_INT
|
||
: MODE_VECTOR_FLOAT);
|
||
mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
if (vecsize == GET_MODE_SIZE (mode)
|
||
&& nunits == (unsigned HOST_WIDE_INT) GET_MODE_NUNITS (mode))
|
||
{
|
||
new_mode = mode;
|
||
break;
|
||
}
|
||
|
||
if (new_mode == VOIDmode)
|
||
{
|
||
error ("no vector mode with the size and type specified could be found");
|
||
return NULL_TREE;
|
||
}
|
||
|
||
for (type_list_node = vector_type_node_list; type_list_node;
|
||
type_list_node = TREE_CHAIN (type_list_node))
|
||
{
|
||
tree other_type = TREE_VALUE (type_list_node);
|
||
tree record = TYPE_DEBUG_REPRESENTATION_TYPE (other_type);
|
||
tree fields = TYPE_FIELDS (record);
|
||
tree field_type = TREE_TYPE (fields);
|
||
tree array_type = TREE_TYPE (field_type);
|
||
if (TREE_CODE (fields) != FIELD_DECL
|
||
|| TREE_CODE (field_type) != ARRAY_TYPE)
|
||
abort ();
|
||
|
||
if (TYPE_MODE (other_type) == mode && type == array_type)
|
||
{
|
||
new_type = other_type;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (new_type == NULL_TREE)
|
||
{
|
||
tree index, array, rt, list_node;
|
||
|
||
new_type = (*lang_hooks.types.type_for_mode) (new_mode,
|
||
TREE_UNSIGNED (type));
|
||
|
||
if (!new_type)
|
||
{
|
||
error ("no vector mode with the size and type specified could be found");
|
||
return NULL_TREE;
|
||
}
|
||
|
||
new_type = build_type_copy (new_type);
|
||
|
||
/* If this is a vector, make sure we either have hardware
|
||
support, or we can emulate it. */
|
||
if ((GET_MODE_CLASS (mode) == MODE_VECTOR_INT
|
||
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
|
||
&& !vector_mode_valid_p (mode))
|
||
{
|
||
error ("unable to emulate '%s'", GET_MODE_NAME (mode));
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Set the debug information here, because this is the only
|
||
place where we know the underlying type for a vector made
|
||
with vector_size. For debugging purposes we pretend a vector
|
||
is an array within a structure. */
|
||
index = build_int_2 (TYPE_VECTOR_SUBPARTS (new_type) - 1, 0);
|
||
array = build_array_type (type, build_index_type (index));
|
||
rt = make_node (RECORD_TYPE);
|
||
|
||
TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
|
||
DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
|
||
layout_type (rt);
|
||
TYPE_DEBUG_REPRESENTATION_TYPE (new_type) = rt;
|
||
|
||
list_node = build_tree_list (NULL, new_type);
|
||
TREE_CHAIN (list_node) = vector_type_node_list;
|
||
vector_type_node_list = list_node;
|
||
}
|
||
|
||
/* Build back pointers if needed. */
|
||
*node = vector_size_helper (*node, new_type);
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* HACK. GROSS. This is absolutely disgusting. I wish there was a
|
||
better way.
|
||
|
||
If we requested a pointer to a vector, build up the pointers that
|
||
we stripped off while looking for the inner type. Similarly for
|
||
return values from functions.
|
||
|
||
The argument "type" is the top of the chain, and "bottom" is the
|
||
new type which we will point to. */
|
||
|
||
static tree
|
||
vector_size_helper (type, bottom)
|
||
tree type, bottom;
|
||
{
|
||
tree inner, outer;
|
||
|
||
if (POINTER_TYPE_P (type))
|
||
{
|
||
inner = vector_size_helper (TREE_TYPE (type), bottom);
|
||
outer = build_pointer_type (inner);
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
inner = vector_size_helper (TREE_TYPE (type), bottom);
|
||
outer = build_array_type (inner, TYPE_VALUES (type));
|
||
}
|
||
else if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
inner = vector_size_helper (TREE_TYPE (type), bottom);
|
||
outer = build_function_type (inner, TYPE_VALUES (type));
|
||
}
|
||
else
|
||
return bottom;
|
||
|
||
TREE_READONLY (outer) = TREE_READONLY (type);
|
||
TREE_THIS_VOLATILE (outer) = TREE_THIS_VOLATILE (type);
|
||
|
||
return outer;
|
||
}
|
||
|
||
/* Handle the "nonnull" attribute. */
|
||
static tree
|
||
handle_nonnull_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name ATTRIBUTE_UNUSED;
|
||
tree args;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
tree type = *node;
|
||
unsigned HOST_WIDE_INT attr_arg_num;
|
||
|
||
/* If no arguments are specified, all pointer arguments should be
|
||
non-null. Veryify a full prototype is given so that the arguments
|
||
will have the correct types when we actually check them later. */
|
||
if (! args)
|
||
{
|
||
if (! TYPE_ARG_TYPES (type))
|
||
{
|
||
error ("nonnull attribute without arguments on a non-prototype");
|
||
*no_add_attrs = true;
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Argument list specified. Verify that each argument number references
|
||
a pointer argument. */
|
||
for (attr_arg_num = 1; args; args = TREE_CHAIN (args))
|
||
{
|
||
tree argument;
|
||
unsigned HOST_WIDE_INT arg_num, ck_num;
|
||
|
||
if (! get_nonnull_operand (TREE_VALUE (args), &arg_num))
|
||
{
|
||
error ("nonnull argument has invalid operand number (arg %lu)",
|
||
(unsigned long) attr_arg_num);
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
argument = TYPE_ARG_TYPES (type);
|
||
if (argument)
|
||
{
|
||
for (ck_num = 1; ; ck_num++)
|
||
{
|
||
if (! argument || ck_num == arg_num)
|
||
break;
|
||
argument = TREE_CHAIN (argument);
|
||
}
|
||
|
||
if (! argument
|
||
|| TREE_CODE (TREE_VALUE (argument)) == VOID_TYPE)
|
||
{
|
||
error ("nonnull argument with out-of-range operand number (arg %lu, operand %lu)",
|
||
(unsigned long) attr_arg_num, (unsigned long) arg_num);
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (TREE_CODE (TREE_VALUE (argument)) != POINTER_TYPE)
|
||
{
|
||
error ("nonnull argument references non-pointer operand (arg %lu, operand %lu)",
|
||
(unsigned long) attr_arg_num, (unsigned long) arg_num);
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Check the argument list of a function call for null in argument slots
|
||
that are marked as requiring a non-null pointer argument. */
|
||
|
||
static void
|
||
check_function_nonnull (attrs, params)
|
||
tree attrs;
|
||
tree params;
|
||
{
|
||
tree a, args, param;
|
||
int param_num;
|
||
|
||
for (a = attrs; a; a = TREE_CHAIN (a))
|
||
{
|
||
if (is_attribute_p ("nonnull", TREE_PURPOSE (a)))
|
||
{
|
||
args = TREE_VALUE (a);
|
||
|
||
/* Walk the argument list. If we encounter an argument number we
|
||
should check for non-null, do it. If the attribute has no args,
|
||
then every pointer argument is checked (in which case the check
|
||
for pointer type is done in check_nonnull_arg). */
|
||
for (param = params, param_num = 1; ;
|
||
param_num++, param = TREE_CHAIN (param))
|
||
{
|
||
if (! param)
|
||
break;
|
||
if (! args || nonnull_check_p (args, param_num))
|
||
check_function_arguments_recurse (check_nonnull_arg, NULL,
|
||
TREE_VALUE (param),
|
||
param_num);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Helper for check_function_nonnull; given a list of operands which
|
||
must be non-null in ARGS, determine if operand PARAM_NUM should be
|
||
checked. */
|
||
|
||
static bool
|
||
nonnull_check_p (args, param_num)
|
||
tree args;
|
||
unsigned HOST_WIDE_INT param_num;
|
||
{
|
||
unsigned HOST_WIDE_INT arg_num;
|
||
|
||
for (; args; args = TREE_CHAIN (args))
|
||
{
|
||
if (! get_nonnull_operand (TREE_VALUE (args), &arg_num))
|
||
abort ();
|
||
|
||
if (arg_num == param_num)
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Check that the function argument PARAM (which is operand number
|
||
PARAM_NUM) is non-null. This is called by check_function_nonnull
|
||
via check_function_arguments_recurse. */
|
||
|
||
static void
|
||
check_nonnull_arg (ctx, param, param_num)
|
||
void *ctx ATTRIBUTE_UNUSED;
|
||
tree param;
|
||
unsigned HOST_WIDE_INT param_num;
|
||
{
|
||
/* Just skip checking the argument if it's not a pointer. This can
|
||
happen if the "nonnull" attribute was given without an operand
|
||
list (which means to check every pointer argument). */
|
||
|
||
if (TREE_CODE (TREE_TYPE (param)) != POINTER_TYPE)
|
||
return;
|
||
|
||
if (integer_zerop (param))
|
||
warning ("null argument where non-null required (arg %lu)",
|
||
(unsigned long) param_num);
|
||
}
|
||
|
||
/* Helper for nonnull attribute handling; fetch the operand number
|
||
from the attribute argument list. */
|
||
|
||
static bool
|
||
get_nonnull_operand (arg_num_expr, valp)
|
||
tree arg_num_expr;
|
||
unsigned HOST_WIDE_INT *valp;
|
||
{
|
||
/* Strip any conversions from the arg number and verify they
|
||
are constants. */
|
||
while (TREE_CODE (arg_num_expr) == NOP_EXPR
|
||
|| TREE_CODE (arg_num_expr) == CONVERT_EXPR
|
||
|| TREE_CODE (arg_num_expr) == NON_LVALUE_EXPR)
|
||
arg_num_expr = TREE_OPERAND (arg_num_expr, 0);
|
||
|
||
if (TREE_CODE (arg_num_expr) != INTEGER_CST
|
||
|| TREE_INT_CST_HIGH (arg_num_expr) != 0)
|
||
return false;
|
||
|
||
*valp = TREE_INT_CST_LOW (arg_num_expr);
|
||
return true;
|
||
}
|
||
|
||
/* Handle a "nothrow" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_nothrow_attribute (node, name, args, flags, no_add_attrs)
|
||
tree *node;
|
||
tree name;
|
||
tree args ATTRIBUTE_UNUSED;
|
||
int flags ATTRIBUTE_UNUSED;
|
||
bool *no_add_attrs;
|
||
{
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
TREE_NOTHROW (*node) = 1;
|
||
/* ??? TODO: Support types. */
|
||
else
|
||
{
|
||
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Check for valid arguments being passed to a function. */
|
||
void
|
||
check_function_arguments (attrs, params)
|
||
tree attrs;
|
||
tree params;
|
||
{
|
||
/* Check for null being passed in a pointer argument that must be
|
||
non-null. We also need to do this if format checking is enabled. */
|
||
|
||
if (warn_nonnull)
|
||
check_function_nonnull (attrs, params);
|
||
|
||
/* Check for errors in format strings. */
|
||
|
||
if (warn_format)
|
||
check_function_format (NULL, attrs, params);
|
||
}
|
||
|
||
/* Generic argument checking recursion routine. PARAM is the argument to
|
||
be checked. PARAM_NUM is the number of the argument. CALLBACK is invoked
|
||
once the argument is resolved. CTX is context for the callback. */
|
||
void
|
||
check_function_arguments_recurse (callback, ctx, param, param_num)
|
||
void (*callback) PARAMS ((void *, tree, unsigned HOST_WIDE_INT));
|
||
void *ctx;
|
||
tree param;
|
||
unsigned HOST_WIDE_INT param_num;
|
||
{
|
||
if (TREE_CODE (param) == NOP_EXPR)
|
||
{
|
||
/* Strip coercion. */
|
||
check_function_arguments_recurse (callback, ctx,
|
||
TREE_OPERAND (param, 0), param_num);
|
||
return;
|
||
}
|
||
|
||
if (TREE_CODE (param) == CALL_EXPR)
|
||
{
|
||
tree type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (param, 0)));
|
||
tree attrs;
|
||
bool found_format_arg = false;
|
||
|
||
/* See if this is a call to a known internationalization function
|
||
that modifies a format arg. Such a function may have multiple
|
||
format_arg attributes (for example, ngettext). */
|
||
|
||
for (attrs = TYPE_ATTRIBUTES (type);
|
||
attrs;
|
||
attrs = TREE_CHAIN (attrs))
|
||
if (is_attribute_p ("format_arg", TREE_PURPOSE (attrs)))
|
||
{
|
||
tree inner_args;
|
||
tree format_num_expr;
|
||
int format_num;
|
||
int i;
|
||
|
||
/* Extract the argument number, which was previously checked
|
||
to be valid. */
|
||
format_num_expr = TREE_VALUE (TREE_VALUE (attrs));
|
||
while (TREE_CODE (format_num_expr) == NOP_EXPR
|
||
|| TREE_CODE (format_num_expr) == CONVERT_EXPR
|
||
|| TREE_CODE (format_num_expr) == NON_LVALUE_EXPR)
|
||
format_num_expr = TREE_OPERAND (format_num_expr, 0);
|
||
|
||
if (TREE_CODE (format_num_expr) != INTEGER_CST
|
||
|| TREE_INT_CST_HIGH (format_num_expr) != 0)
|
||
abort ();
|
||
|
||
format_num = TREE_INT_CST_LOW (format_num_expr);
|
||
|
||
for (inner_args = TREE_OPERAND (param, 1), i = 1;
|
||
inner_args != 0;
|
||
inner_args = TREE_CHAIN (inner_args), i++)
|
||
if (i == format_num)
|
||
{
|
||
check_function_arguments_recurse (callback, ctx,
|
||
TREE_VALUE (inner_args),
|
||
param_num);
|
||
found_format_arg = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we found a format_arg attribute and did a recursive check,
|
||
we are done with checking this argument. Otherwise, we continue
|
||
and this will be considered a non-literal. */
|
||
if (found_format_arg)
|
||
return;
|
||
}
|
||
|
||
if (TREE_CODE (param) == COND_EXPR)
|
||
{
|
||
/* Check both halves of the conditional expression. */
|
||
check_function_arguments_recurse (callback, ctx,
|
||
TREE_OPERAND (param, 1), param_num);
|
||
check_function_arguments_recurse (callback, ctx,
|
||
TREE_OPERAND (param, 2), param_num);
|
||
return;
|
||
}
|
||
|
||
(*callback) (ctx, param, param_num);
|
||
}
|
||
|
||
#include "gt-c-common.h"
|