1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-11 14:10:34 +00:00
freebsd/sys/kern/kern_kse.c
Juli Mallett 0d29446006 Put an easy-to-miss assignment into the proper place. It was stray in the
middle of a block of code, with no clear assignment.  While here, move one
nearby assignment out of declaration.
2002-10-05 04:49:46 +00:00

1077 lines
27 KiB
C

/*
* Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice(s), this list of conditions and the following disclaimer as
* the first lines of this file unmodified other than the possible
* addition of one or more copyright notices.
* 2. Redistributions in binary form must reproduce the above copyright
* notice(s), this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/filedesc.h>
#include <sys/tty.h>
#include <sys/signalvar.h>
#include <sys/sx.h>
#include <sys/user.h>
#include <sys/jail.h>
#include <sys/kse.h>
#include <sys/ktr.h>
#include <sys/ucontext.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/pmap.h>
#include <vm/uma.h>
#include <vm/vm_map.h>
#include <machine/frame.h>
/*
* KSEGRP related storage.
*/
static uma_zone_t ksegrp_zone;
static uma_zone_t kse_zone;
static uma_zone_t thread_zone;
/* DEBUG ONLY */
SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
static int oiks_debug = 1; /* 0 disable, 1 printf, 2 enter debugger */
SYSCTL_INT(_kern_threads, OID_AUTO, oiks, CTLFLAG_RW,
&oiks_debug, 0, "OIKS thread debug");
static int max_threads_per_proc = 6;
SYSCTL_INT(_kern_threads, OID_AUTO, max_per_proc, CTLFLAG_RW,
&max_threads_per_proc, 0, "Limit on threads per proc");
#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
struct threadqueue zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
struct mtx zombie_thread_lock;
MTX_SYSINIT(zombie_thread_lock, &zombie_thread_lock,
"zombie_thread_lock", MTX_SPIN);
/*
* Pepare a thread for use.
*/
static void
thread_ctor(void *mem, int size, void *arg)
{
struct thread *td;
KASSERT((size == sizeof(struct thread)),
("size mismatch: %d != %d\n", size, (int)sizeof(struct thread)));
td = (struct thread *)mem;
td->td_state = TDS_INACTIVE;
td->td_flags |= TDF_UNBOUND;
}
/*
* Reclaim a thread after use.
*/
static void
thread_dtor(void *mem, int size, void *arg)
{
struct thread *td;
KASSERT((size == sizeof(struct thread)),
("size mismatch: %d != %d\n", size, (int)sizeof(struct thread)));
td = (struct thread *)mem;
#ifdef INVARIANTS
/* Verify that this thread is in a safe state to free. */
switch (td->td_state) {
case TDS_INHIBITED:
case TDS_RUNNING:
case TDS_CAN_RUN:
case TDS_RUNQ:
/*
* We must never unlink a thread that is in one of
* these states, because it is currently active.
*/
panic("bad state for thread unlinking");
/* NOTREACHED */
case TDS_INACTIVE:
break;
default:
panic("bad thread state");
/* NOTREACHED */
}
#endif
}
/*
* Initialize type-stable parts of a thread (when newly created).
*/
static void
thread_init(void *mem, int size)
{
struct thread *td;
KASSERT((size == sizeof(struct thread)),
("size mismatch: %d != %d\n", size, (int)sizeof(struct thread)));
td = (struct thread *)mem;
mtx_lock(&Giant);
pmap_new_thread(td, 0);
mtx_unlock(&Giant);
cpu_thread_setup(td);
}
/*
* Tear down type-stable parts of a thread (just before being discarded).
*/
static void
thread_fini(void *mem, int size)
{
struct thread *td;
KASSERT((size == sizeof(struct thread)),
("size mismatch: %d != %d\n", size, (int)sizeof(struct thread)));
td = (struct thread *)mem;
pmap_dispose_thread(td);
}
/*
* Fill a ucontext_t with a thread's context information.
*
* This is an analogue to getcontext(3).
*/
void
thread_getcontext(struct thread *td, ucontext_t *uc)
{
/*
* XXX this is declared in a MD include file, i386/include/ucontext.h but
* is used in MI code.
*/
#ifdef __i386__
get_mcontext(td, &uc->uc_mcontext);
#endif
uc->uc_sigmask = td->td_proc->p_sigmask;
}
/*
* Set a thread's context from a ucontext_t.
*
* This is an analogue to setcontext(3).
*/
int
thread_setcontext(struct thread *td, ucontext_t *uc)
{
int ret;
/*
* XXX this is declared in a MD include file, i386/include/ucontext.h but
* is used in MI code.
*/
#ifdef __i386__
ret = set_mcontext(td, &uc->uc_mcontext);
#else
ret = ENOSYS;
#endif
if (ret == 0) {
SIG_CANTMASK(uc->uc_sigmask);
PROC_LOCK(td->td_proc);
td->td_proc->p_sigmask = uc->uc_sigmask;
PROC_UNLOCK(td->td_proc);
}
return (ret);
}
/*
* Initialize global thread allocation resources.
*/
void
threadinit(void)
{
#ifndef __ia64__
thread_zone = uma_zcreate("THREAD", sizeof (struct thread),
thread_ctor, thread_dtor, thread_init, thread_fini,
UMA_ALIGN_CACHE, 0);
#else
/*
* XXX the ia64 kstack allocator is really lame and is at the mercy
* of contigmallloc(). This hackery is to pre-construct a whole
* pile of thread structures with associated kernel stacks early
* in the system startup while contigmalloc() still works. Once we
* have them, keep them. Sigh.
*/
thread_zone = uma_zcreate("THREAD", sizeof (struct thread),
thread_ctor, thread_dtor, thread_init, thread_fini,
UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
uma_prealloc(thread_zone, 512); /* XXX arbitary */
#endif
ksegrp_zone = uma_zcreate("KSEGRP", sizeof (struct ksegrp),
NULL, NULL, NULL, NULL,
UMA_ALIGN_CACHE, 0);
kse_zone = uma_zcreate("KSE", sizeof (struct kse),
NULL, NULL, NULL, NULL,
UMA_ALIGN_CACHE, 0);
}
/*
* Stash an embarasingly extra thread into the zombie thread queue.
*/
void
thread_stash(struct thread *td)
{
mtx_lock_spin(&zombie_thread_lock);
TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq);
mtx_unlock_spin(&zombie_thread_lock);
}
/*
* Reap zombie threads.
*/
void
thread_reap(void)
{
struct thread *td_reaped;
/*
* don't even bother to lock if none at this instant
* We really don't care about the next instant..
*/
if (!TAILQ_EMPTY(&zombie_threads)) {
mtx_lock_spin(&zombie_thread_lock);
while (!TAILQ_EMPTY(&zombie_threads)) {
td_reaped = TAILQ_FIRST(&zombie_threads);
TAILQ_REMOVE(&zombie_threads, td_reaped, td_runq);
mtx_unlock_spin(&zombie_thread_lock);
thread_free(td_reaped);
mtx_lock_spin(&zombie_thread_lock);
}
mtx_unlock_spin(&zombie_thread_lock);
}
}
/*
* Allocate a ksegrp.
*/
struct ksegrp *
ksegrp_alloc(void)
{
return (uma_zalloc(ksegrp_zone, M_WAITOK));
}
/*
* Allocate a kse.
*/
struct kse *
kse_alloc(void)
{
return (uma_zalloc(kse_zone, M_WAITOK));
}
/*
* Allocate a thread.
*/
struct thread *
thread_alloc(void)
{
thread_reap(); /* check if any zombies to get */
return (uma_zalloc(thread_zone, M_WAITOK));
}
/*
* Deallocate a ksegrp.
*/
void
ksegrp_free(struct ksegrp *td)
{
uma_zfree(ksegrp_zone, td);
}
/*
* Deallocate a kse.
*/
void
kse_free(struct kse *td)
{
uma_zfree(kse_zone, td);
}
/*
* Deallocate a thread.
*/
void
thread_free(struct thread *td)
{
uma_zfree(thread_zone, td);
}
/*
* Store the thread context in the UTS's mailbox.
* then add the mailbox at the head of a list we are building in user space.
* The list is anchored in the ksegrp structure.
*/
int
thread_export_context(struct thread *td)
{
struct proc *p;
struct ksegrp *kg;
uintptr_t mbx;
void *addr;
int error;
ucontext_t uc;
p = td->td_proc;
kg = td->td_ksegrp;
/* Export the user/machine context. */
#if 0
addr = (caddr_t)td->td_mailbox +
offsetof(struct kse_thr_mailbox, tm_context);
#else /* if user pointer arithmetic is valid in the kernel */
addr = (void *)(&td->td_mailbox->tm_context);
#endif
error = copyin(addr, &uc, sizeof(ucontext_t));
if (error == 0) {
thread_getcontext(td, &uc);
error = copyout(&uc, addr, sizeof(ucontext_t));
}
if (error) {
PROC_LOCK(p);
psignal(p, SIGSEGV);
PROC_UNLOCK(p);
return (error);
}
/* get address in latest mbox of list pointer */
#if 0
addr = (caddr_t)td->td_mailbox
+ offsetof(struct kse_thr_mailbox , tm_next);
#else /* if user pointer arithmetic is valid in the kernel */
addr = (void *)(&td->td_mailbox->tm_next);
#endif
/*
* Put the saved address of the previous first
* entry into this one
*/
for (;;) {
mbx = (uintptr_t)kg->kg_completed;
if (suword(addr, mbx)) {
PROC_LOCK(p);
psignal(p, SIGSEGV);
PROC_UNLOCK(p);
return (EFAULT);
}
PROC_LOCK(p);
if (mbx == (uintptr_t)kg->kg_completed) {
kg->kg_completed = td->td_mailbox;
PROC_UNLOCK(p);
break;
}
PROC_UNLOCK(p);
}
return (0);
}
/*
* Take the list of completed mailboxes for this KSEGRP and put them on this
* KSE's mailbox as it's the next one going up.
*/
static int
thread_link_mboxes(struct ksegrp *kg, struct kse *ke)
{
struct proc *p = kg->kg_proc;
void *addr;
uintptr_t mbx;
#if 0
addr = (caddr_t)ke->ke_mailbox
+ offsetof(struct kse_mailbox, km_completed);
#else /* if user pointer arithmetic is valid in the kernel */
addr = (void *)(&ke->ke_mailbox->km_completed);
#endif
for (;;) {
mbx = (uintptr_t)kg->kg_completed;
if (suword(addr, mbx)) {
PROC_LOCK(p);
psignal(p, SIGSEGV);
PROC_UNLOCK(p);
return (EFAULT);
}
/* XXXKSE could use atomic CMPXCH here */
PROC_LOCK(p);
if (mbx == (uintptr_t)kg->kg_completed) {
kg->kg_completed = NULL;
PROC_UNLOCK(p);
break;
}
PROC_UNLOCK(p);
}
return (0);
}
/*
* Discard the current thread and exit from its context.
*
* Because we can't free a thread while we're operating under its context,
* push the current thread into our KSE's ke_tdspare slot, freeing the
* thread that might be there currently. Because we know that only this
* processor will run our KSE, we needn't worry about someone else grabbing
* our context before we do a cpu_throw.
*/
void
thread_exit(void)
{
struct thread *td;
struct kse *ke;
struct proc *p;
struct ksegrp *kg;
td = curthread;
kg = td->td_ksegrp;
p = td->td_proc;
ke = td->td_kse;
mtx_assert(&sched_lock, MA_OWNED);
KASSERT(p != NULL, ("thread exiting without a process"));
KASSERT(ke != NULL, ("thread exiting without a kse"));
KASSERT(kg != NULL, ("thread exiting without a kse group"));
PROC_LOCK_ASSERT(p, MA_OWNED);
CTR1(KTR_PROC, "thread_exit: thread %p", td);
KASSERT(!mtx_owned(&Giant), ("dying thread owns giant"));
if (ke->ke_tdspare != NULL) {
thread_stash(ke->ke_tdspare);
ke->ke_tdspare = NULL;
}
cpu_thread_exit(td); /* XXXSMP */
/*
* The last thread is left attached to the process
* So that the whole bundle gets recycled. Skip
* all this stuff.
*/
if (p->p_numthreads > 1) {
/* Reassign this thread's KSE. */
ke->ke_thread = NULL;
td->td_kse = NULL;
ke->ke_state = KES_UNQUEUED;
if (ke->ke_bound == td)
ke->ke_bound = NULL;
kse_reassign(ke);
/* Unlink this thread from its proc. and the kseg */
TAILQ_REMOVE(&p->p_threads, td, td_plist);
p->p_numthreads--;
TAILQ_REMOVE(&kg->kg_threads, td, td_kglist);
kg->kg_numthreads--;
/*
* The test below is NOT true if we are the
* sole exiting thread. P_STOPPED_SNGL is unset
* in exit1() after it is the only survivor.
*/
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
if (p->p_numthreads == p->p_suspcount) {
thread_unsuspend_one(p->p_singlethread);
}
}
PROC_UNLOCK(p);
td->td_state = TDS_INACTIVE;
td->td_proc = NULL;
td->td_ksegrp = NULL;
td->td_last_kse = NULL;
ke->ke_tdspare = td;
} else {
PROC_UNLOCK(p);
}
cpu_throw();
/* NOTREACHED */
}
/*
* Link a thread to a process.
* set up anything that needs to be initialized for it to
* be used by the process.
*
* Note that we do not link to the proc's ucred here.
* The thread is linked as if running but no KSE assigned.
*/
void
thread_link(struct thread *td, struct ksegrp *kg)
{
struct proc *p;
p = kg->kg_proc;
td->td_state = TDS_INACTIVE;
td->td_proc = p;
td->td_ksegrp = kg;
td->td_last_kse = NULL;
LIST_INIT(&td->td_contested);
callout_init(&td->td_slpcallout, 1);
TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist);
p->p_numthreads++;
kg->kg_numthreads++;
if (oiks_debug && p->p_numthreads > max_threads_per_proc) {
printf("OIKS %d\n", p->p_numthreads);
if (oiks_debug > 1)
Debugger("OIKS");
}
td->td_kse = NULL;
}
/*
* Create a thread and schedule it for upcall on the KSE given.
*/
struct thread *
thread_schedule_upcall(struct thread *td, struct kse *ke)
{
struct thread *td2;
mtx_assert(&sched_lock, MA_OWNED);
if (ke->ke_tdspare != NULL) {
td2 = ke->ke_tdspare;
ke->ke_tdspare = NULL;
} else {
mtx_unlock_spin(&sched_lock);
td2 = thread_alloc();
mtx_lock_spin(&sched_lock);
}
CTR3(KTR_PROC, "thread_schedule_upcall: thread %p (pid %d, %s)",
td, td->td_proc->p_pid, td->td_proc->p_comm);
bzero(&td2->td_startzero,
(unsigned)RANGEOF(struct thread, td_startzero, td_endzero));
bcopy(&td->td_startcopy, &td2->td_startcopy,
(unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
thread_link(td2, ke->ke_ksegrp);
cpu_set_upcall(td2, td->td_pcb);
bcopy(td->td_frame, td2->td_frame, sizeof(struct trapframe));
/*
* The user context for this thread is selected when we choose
* a KSE and return to userland on it. All we need do here is
* note that the thread exists in order to perform an upcall.
*
* Since selecting a KSE to perform the upcall involves locking
* that KSE's context to our upcall, its best to wait until the
* last possible moment before grabbing a KSE. We do this in
* userret().
*/
td2->td_ucred = crhold(td->td_ucred);
td2->td_flags = TDF_UNBOUND|TDF_UPCALLING;
TD_SET_CAN_RUN(td2);
setrunqueue(td2);
return (td2);
}
/*
* Schedule an upcall to notify a KSE process recieved signals.
*
* XXX - Modifying a sigset_t like this is totally bogus.
*/
struct thread *
signal_upcall(struct proc *p, int sig)
{
struct thread *td, *td2;
struct kse *ke;
sigset_t ss;
int error;
PROC_LOCK_ASSERT(p, MA_OWNED);
td = FIRST_THREAD_IN_PROC(p);
ke = td->td_kse;
PROC_UNLOCK(p);
error = copyin(&ke->ke_mailbox->km_sigscaught, &ss, sizeof(sigset_t));
PROC_LOCK(p);
if (error)
return (NULL);
SIGADDSET(ss, sig);
PROC_UNLOCK(p);
error = copyout(&ss, &ke->ke_mailbox->km_sigscaught, sizeof(sigset_t));
PROC_LOCK(p);
if (error)
return (NULL);
mtx_lock_spin(&sched_lock);
td2 = thread_schedule_upcall(td, ke);
mtx_unlock_spin(&sched_lock);
return (td2);
}
/*
* Consider whether or not an upcall should be made, and update the
* TDF_UPCALLING flag appropriately.
*
* This function is called when the current thread had been bound to a user
* thread that performed a syscall that blocked, and is now returning.
* Got that? syscall -> msleep -> wakeup -> syscall_return -> us.
*
* This thread will be returned to the UTS in its mailbox as a completed
* thread. We need to decide whether or not to perform an upcall now,
* or simply queue the thread for later.
*
* XXXKSE Future enhancement: We could also return back to
* the thread if we haven't had to do an upcall since then.
* If the KSE's copy is == the thread's copy, and there are
* no other completed threads.
*/
static int
thread_consider_upcalling(struct thread *td)
{
struct proc *p;
struct ksegrp *kg;
int error;
/*
* Save the thread's context, and link it
* into the KSEGRP's list of completed threads.
*/
error = thread_export_context(td);
td->td_flags &= ~TDF_UNBOUND;
td->td_mailbox = NULL;
if (error)
/*
* Failing to do the KSE operation just defaults
* back to synchonous operation, so just return from
* the syscall.
*/
return (error);
/*
* Decide whether to perform an upcall now.
*/
/* Make sure there are no other threads waiting to run. */
p = td->td_proc;
kg = td->td_ksegrp;
PROC_LOCK(p);
mtx_lock_spin(&sched_lock);
/* bogus test, ok for testing though */
if (TAILQ_FIRST(&kg->kg_runq) &&
(TAILQ_LAST(&kg->kg_runq, threadqueue)
!= kg->kg_last_assigned)) {
/*
* Another thread in this KSEG needs to run.
* Switch to it instead of performing an upcall,
* abondoning this thread. Perform the upcall
* later; discard this thread for now.
*
* XXXKSE - As for the other threads to run;
* we COULD rush through all the threads
* in this KSEG at this priority, or we
* could throw the ball back into the court
* and just run the highest prio kse available.
* What is OUR priority? The priority of the highest
* sycall waiting to be returned?
* For now, just let another KSE run (easiest).
*/
thread_exit(); /* Abandon current thread. */
/* NOTREACHED */
}
/*
* Perform an upcall now.
*
* XXXKSE - Assumes we are going to userland, and not
* nested in the kernel.
*/
td->td_flags |= TDF_UPCALLING;
mtx_unlock_spin(&sched_lock);
PROC_UNLOCK(p);
return (0);
}
/*
* The extra work we go through if we are a threaded process when we
* return to userland.
*
* If we are a KSE process and returning to user mode, check for
* extra work to do before we return (e.g. for more syscalls
* to complete first). If we were in a critical section, we should
* just return to let it finish. Same if we were in the UTS (in
* which case the mailbox's context's busy indicator will be set).
* The only traps we suport will have set the mailbox.
* We will clear it here.
*/
int
thread_userret(struct thread *td, struct trapframe *frame)
{
int error;
int unbound;
struct kse *ke;
if (td->td_kse->ke_bound) {
thread_export_context(td);
PROC_LOCK(td->td_proc);
mtx_lock_spin(&sched_lock);
thread_exit();
}
/* Make the thread bound from now on, but remember what it was. */
unbound = td->td_flags & TDF_UNBOUND;
td->td_flags &= ~TDF_UNBOUND;
/*
* Ensure that we have a spare thread available.
*/
ke = td->td_kse;
if (ke->ke_tdspare == NULL) {
mtx_lock(&Giant);
ke->ke_tdspare = thread_alloc();
mtx_unlock(&Giant);
}
/*
* Originally bound threads need no additional work.
*/
if (unbound == 0)
return (0);
error = 0;
/*
* Decide whether or not we should perform an upcall now.
*/
if (((td->td_flags & TDF_UPCALLING) == 0) && unbound) {
/* if we have other threads to run we will not return */
if ((error = thread_consider_upcalling(td)))
return (error); /* coundn't go async , just go sync. */
}
if (td->td_flags & TDF_UPCALLING) {
/*
* There is no more work to do and we are going to ride
* this thead/KSE up to userland as an upcall.
*/
CTR3(KTR_PROC, "userret: upcall thread %p (pid %d, %s)",
td, td->td_proc->p_pid, td->td_proc->p_comm);
/*
* Set user context to the UTS.
*/
cpu_set_upcall_kse(td, ke);
/*
* Put any completed mailboxes on this KSE's list.
*/
error = thread_link_mboxes(td->td_ksegrp, ke);
if (error)
goto bad;
/*
* Set state and mailbox.
*/
td->td_flags &= ~TDF_UPCALLING;
#if 0
error = suword((caddr_t)ke->ke_mailbox +
offsetof(struct kse_mailbox, km_curthread),
0);
#else /* if user pointer arithmetic is ok in the kernel */
error = suword((caddr_t)&ke->ke_mailbox->km_curthread, 0);
#endif
if (error)
goto bad;
}
/*
* Stop any chance that we may be separated from
* the KSE we are currently on. This is "biting the bullet",
* we are committing to go to user space as as this KSE here.
*/
return (error);
bad:
/*
* Things are going to be so screwed we should just kill the process.
* how do we do that?
*/
panic ("thread_userret.. need to kill proc..... how?");
}
/*
* Enforce single-threading.
*
* Returns 1 if the caller must abort (another thread is waiting to
* exit the process or similar). Process is locked!
* Returns 0 when you are successfully the only thread running.
* A process has successfully single threaded in the suspend mode when
* There are no threads in user mode. Threads in the kernel must be
* allowed to continue until they get to the user boundary. They may even
* copy out their return values and data before suspending. They may however be
* accellerated in reaching the user boundary as we will wake up
* any sleeping threads that are interruptable. (PCATCH).
*/
int
thread_single(int force_exit)
{
struct thread *td;
struct thread *td2;
struct proc *p;
td = curthread;
p = td->td_proc;
PROC_LOCK_ASSERT(p, MA_OWNED);
KASSERT((td != NULL), ("curthread is NULL"));
if ((p->p_flag & P_KSES) == 0)
return (0);
/* Is someone already single threading? */
if (p->p_singlethread)
return (1);
if (force_exit == SINGLE_EXIT)
p->p_flag |= P_SINGLE_EXIT;
else
p->p_flag &= ~P_SINGLE_EXIT;
p->p_flag |= P_STOPPED_SINGLE;
p->p_singlethread = td;
while ((p->p_numthreads - p->p_suspcount) != 1) {
mtx_lock_spin(&sched_lock);
FOREACH_THREAD_IN_PROC(p, td2) {
if (td2 == td)
continue;
if (TD_IS_INHIBITED(td2)) {
if (TD_IS_SUSPENDED(td2)) {
if (force_exit == SINGLE_EXIT) {
thread_unsuspend_one(td2);
}
}
if ( TD_IS_SLEEPING(td2)) {
if (td2->td_flags & TDF_CVWAITQ)
cv_waitq_remove(td2);
else
unsleep(td2);
break;
}
if (TD_CAN_RUN(td2))
setrunqueue(td2);
}
}
/*
* Wake us up when everyone else has suspended.
* In the mean time we suspend as well.
*/
thread_suspend_one(td);
mtx_unlock(&Giant);
PROC_UNLOCK(p);
mi_switch();
mtx_unlock_spin(&sched_lock);
mtx_lock(&Giant);
PROC_LOCK(p);
}
return (0);
}
/*
* Called in from locations that can safely check to see
* whether we have to suspend or at least throttle for a
* single-thread event (e.g. fork).
*
* Such locations include userret().
* If the "return_instead" argument is non zero, the thread must be able to
* accept 0 (caller may continue), or 1 (caller must abort) as a result.
*
* The 'return_instead' argument tells the function if it may do a
* thread_exit() or suspend, or whether the caller must abort and back
* out instead.
*
* If the thread that set the single_threading request has set the
* P_SINGLE_EXIT bit in the process flags then this call will never return
* if 'return_instead' is false, but will exit.
*
* P_SINGLE_EXIT | return_instead == 0| return_instead != 0
*---------------+--------------------+---------------------
* 0 | returns 0 | returns 0 or 1
* | when ST ends | immediatly
*---------------+--------------------+---------------------
* 1 | thread exits | returns 1
* | | immediatly
* 0 = thread_exit() or suspension ok,
* other = return error instead of stopping the thread.
*
* While a full suspension is under effect, even a single threading
* thread would be suspended if it made this call (but it shouldn't).
* This call should only be made from places where
* thread_exit() would be safe as that may be the outcome unless
* return_instead is set.
*/
int
thread_suspend_check(int return_instead)
{
struct thread *td;
struct proc *p;
td = curthread;
p = td->td_proc;
PROC_LOCK_ASSERT(p, MA_OWNED);
while (P_SHOULDSTOP(p)) {
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
KASSERT(p->p_singlethread != NULL,
("singlethread not set"));
/*
* The only suspension in action is a
* single-threading. Single threader need not stop.
* XXX Should be safe to access unlocked
* as it can only be set to be true by us.
*/
if (p->p_singlethread == td)
return (0); /* Exempt from stopping. */
}
if (return_instead)
return (1);
/*
* If the process is waiting for us to exit,
* this thread should just suicide.
* Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
*/
if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
mtx_lock_spin(&sched_lock);
while (mtx_owned(&Giant))
mtx_unlock(&Giant);
thread_exit();
}
/*
* When a thread suspends, it just
* moves to the processes's suspend queue
* and stays there.
*
* XXXKSE if TDF_BOUND is true
* it will not release it's KSE which might
* lead to deadlock if there are not enough KSEs
* to complete all waiting threads.
* Maybe be able to 'lend' it out again.
* (lent kse's can not go back to userland?)
* and can only be lent in STOPPED state.
*/
mtx_lock_spin(&sched_lock);
if ((p->p_flag & P_STOPPED_SIG) &&
(p->p_suspcount+1 == p->p_numthreads)) {
mtx_unlock_spin(&sched_lock);
PROC_LOCK(p->p_pptr);
if ((p->p_pptr->p_procsig->ps_flag &
PS_NOCLDSTOP) == 0) {
psignal(p->p_pptr, SIGCHLD);
}
PROC_UNLOCK(p->p_pptr);
mtx_lock_spin(&sched_lock);
}
mtx_assert(&Giant, MA_NOTOWNED);
thread_suspend_one(td);
PROC_UNLOCK(p);
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
if (p->p_numthreads == p->p_suspcount) {
thread_unsuspend_one(p->p_singlethread);
}
}
p->p_stats->p_ru.ru_nivcsw++;
mi_switch();
mtx_unlock_spin(&sched_lock);
PROC_LOCK(p);
}
return (0);
}
void
thread_suspend_one(struct thread *td)
{
struct proc *p = td->td_proc;
mtx_assert(&sched_lock, MA_OWNED);
p->p_suspcount++;
TD_SET_SUSPENDED(td);
TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq);
/*
* Hack: If we are suspending but are on the sleep queue
* then we are in msleep or the cv equivalent. We
* want to look like we have two Inhibitors.
*/
if (TD_ON_SLEEPQ(td))
TD_SET_SLEEPING(td);
}
void
thread_unsuspend_one(struct thread *td)
{
struct proc *p = td->td_proc;
mtx_assert(&sched_lock, MA_OWNED);
TAILQ_REMOVE(&p->p_suspended, td, td_runq);
TD_CLR_SUSPENDED(td);
p->p_suspcount--;
setrunnable(td);
}
/*
* Allow all threads blocked by single threading to continue running.
*/
void
thread_unsuspend(struct proc *p)
{
struct thread *td;
mtx_assert(&sched_lock, MA_OWNED);
PROC_LOCK_ASSERT(p, MA_OWNED);
if (!P_SHOULDSTOP(p)) {
while (( td = TAILQ_FIRST(&p->p_suspended))) {
thread_unsuspend_one(td);
}
} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
(p->p_numthreads == p->p_suspcount)) {
/*
* Stopping everything also did the job for the single
* threading request. Now we've downgraded to single-threaded,
* let it continue.
*/
thread_unsuspend_one(p->p_singlethread);
}
}
void
thread_single_end(void)
{
struct thread *td;
struct proc *p;
td = curthread;
p = td->td_proc;
PROC_LOCK_ASSERT(p, MA_OWNED);
p->p_flag &= ~P_STOPPED_SINGLE;
p->p_singlethread = NULL;
/*
* If there are other threads they mey now run,
* unless of course there is a blanket 'stop order'
* on the process. The single threader must be allowed
* to continue however as this is a bad place to stop.
*/
if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
mtx_lock_spin(&sched_lock);
while (( td = TAILQ_FIRST(&p->p_suspended))) {
thread_unsuspend_one(td);
}
mtx_unlock_spin(&sched_lock);
}
}