1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-11 14:10:34 +00:00
freebsd/sys/kern/subr_disk.c
Brian Somers 52ae0b7fb5 If dsgetlabel() returns a label with a size of zero in diskdumpconf(),
treat it as an invalid partition.

This fixes a bug where ``dumpon <device>'' will configure the dump
device at a random offset on the disk if <device> isn't a valid
partition.

Reviewed by: phk
2002-10-05 11:24:21 +00:00

630 lines
15 KiB
C

/*
* ----------------------------------------------------------------------------
* "THE BEER-WARE LICENSE" (Revision 42):
* <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
* ----------------------------------------------------------------------------
*
* $FreeBSD$
*
*/
#include "opt_geom.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/stdint.h>
#include <sys/bio.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <sys/diskslice.h>
#include <sys/disklabel.h>
#ifndef GEOM
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/sysctl.h>
#include <machine/md_var.h>
#include <sys/ctype.h>
static MALLOC_DEFINE(M_DISK, "disk", "disk data");
static d_strategy_t diskstrategy;
static d_open_t diskopen;
static d_close_t diskclose;
static d_ioctl_t diskioctl;
static d_psize_t diskpsize;
static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist);
void disk_dev_synth(dev_t dev);
void
disk_dev_synth(dev_t dev)
{
struct disk *dp;
int u, s, p;
dev_t pdev;
if (dksparebits(dev))
return;
LIST_FOREACH(dp, &disklist, d_list) {
if (major(dev) != dp->d_devsw->d_maj)
continue;
u = dkunit(dev);
p = RAW_PART;
s = WHOLE_DISK_SLICE;
pdev = makedev(dp->d_devsw->d_maj, dkmakeminor(u, s, p));
if (pdev->si_devsw == NULL)
return; /* Probably a unit we don't have */
s = dkslice(dev);
p = dkpart(dev);
if (s == WHOLE_DISK_SLICE && p == RAW_PART) {
/* XXX: actually should not happen */
dev = make_dev(pdev->si_devsw, dkmakeminor(u, s, p),
UID_ROOT, GID_OPERATOR, 0640, "%s%d",
dp->d_devsw->d_name, u);
dev_depends(pdev, dev);
return;
}
if (s == COMPATIBILITY_SLICE) {
dev = make_dev(pdev->si_devsw, dkmakeminor(u, s, p),
UID_ROOT, GID_OPERATOR, 0640, "%s%d%c",
dp->d_devsw->d_name, u, 'a' + p);
dev_depends(pdev, dev);
return;
}
if (p != RAW_PART) {
dev = make_dev(pdev->si_devsw, dkmakeminor(u, s, p),
UID_ROOT, GID_OPERATOR, 0640, "%s%ds%d%c",
dp->d_devsw->d_name, u, s - BASE_SLICE + 1,
'a' + p);
} else {
dev = make_dev(pdev->si_devsw, dkmakeminor(u, s, p),
UID_ROOT, GID_OPERATOR, 0640, "%s%ds%d",
dp->d_devsw->d_name, u, s - BASE_SLICE + 1);
make_dev_alias(dev, "%s%ds%dc",
dp->d_devsw->d_name, u, s - BASE_SLICE + 1);
}
dev_depends(pdev, dev);
return;
}
}
static void
disk_clone(void *arg, char *name, int namelen, dev_t *dev)
{
struct disk *dp;
char const *d;
char *e;
int j, u, s, p;
dev_t pdev;
if (*dev != NODEV)
return;
LIST_FOREACH(dp, &disklist, d_list) {
d = dp->d_devsw->d_name;
j = dev_stdclone(name, &e, d, &u);
if (j == 0)
continue;
if (u > DKMAXUNIT)
continue;
p = RAW_PART;
s = WHOLE_DISK_SLICE;
pdev = makedev(dp->d_devsw->d_maj, dkmakeminor(u, s, p));
if (pdev->si_disk == NULL)
continue;
if (*e != '\0') {
j = dev_stdclone(e, &e, "s", &s);
if (j == 0)
s = COMPATIBILITY_SLICE;
else if (j == 1 || j == 2)
s += BASE_SLICE - 1;
if (!*e)
; /* ad0s1 case */
else if (e[1] != '\0')
return; /* can never be a disk name */
else if (*e < 'a' || *e > 'h')
return; /* can never be a disk name */
else
p = *e - 'a';
}
if (s == WHOLE_DISK_SLICE && p == RAW_PART) {
return;
} else if (s >= BASE_SLICE && p != RAW_PART) {
*dev = make_dev(pdev->si_devsw, dkmakeminor(u, s, p),
UID_ROOT, GID_OPERATOR, 0640, "%s%ds%d%c",
pdev->si_devsw->d_name, u, s - BASE_SLICE + 1,
p + 'a');
} else if (s >= BASE_SLICE) {
*dev = make_dev(pdev->si_devsw, dkmakeminor(u, s, p),
UID_ROOT, GID_OPERATOR, 0640, "%s%ds%d",
pdev->si_devsw->d_name, u, s - BASE_SLICE + 1);
make_dev_alias(*dev, "%s%ds%dc",
pdev->si_devsw->d_name, u, s - BASE_SLICE + 1);
} else {
*dev = make_dev(pdev->si_devsw, dkmakeminor(u, s, p),
UID_ROOT, GID_OPERATOR, 0640, "%s%d%c",
pdev->si_devsw->d_name, u, p + 'a');
}
dev_depends(pdev, *dev);
return;
}
}
static void
inherit_raw(dev_t pdev, dev_t dev)
{
dev->si_disk = pdev->si_disk;
dev->si_drv1 = pdev->si_drv1;
dev->si_drv2 = pdev->si_drv2;
dev->si_iosize_max = pdev->si_iosize_max;
dev->si_bsize_phys = pdev->si_bsize_phys;
dev->si_bsize_best = pdev->si_bsize_best;
}
dev_t
disk_create(int unit, struct disk *dp, int flags, struct cdevsw *cdevsw, struct cdevsw *proto)
{
static int once;
dev_t dev;
if (!once) {
EVENTHANDLER_REGISTER(dev_clone, disk_clone, 0, 1000);
once++;
}
bzero(dp, sizeof(*dp));
dp->d_label = malloc(sizeof *dp->d_label, M_DEVBUF, M_WAITOK|M_ZERO);
if (proto->d_open != diskopen) {
*proto = *cdevsw;
proto->d_open = diskopen;
proto->d_close = diskclose;
proto->d_ioctl = diskioctl;
proto->d_strategy = diskstrategy;
proto->d_psize = diskpsize;
}
if (bootverbose)
printf("Creating DISK %s%d\n", cdevsw->d_name, unit);
dev = make_dev(proto, dkmakeminor(unit, WHOLE_DISK_SLICE, RAW_PART),
UID_ROOT, GID_OPERATOR, 0640, "%s%d", cdevsw->d_name, unit);
dev->si_disk = dp;
dp->d_dev = dev;
dp->d_dsflags = flags;
dp->d_devsw = cdevsw;
LIST_INSERT_HEAD(&disklist, dp, d_list);
return (dev);
}
static int
diskdumpconf(u_int onoff, dev_t dev, struct disk *dp)
{
struct dumperinfo di;
struct disklabel *dl;
if (!onoff)
return(set_dumper(NULL));
dl = dsgetlabel(dev, dp->d_slice);
if (!dl)
return (ENXIO);
bzero(&di, sizeof di);
di.dumper = (dumper_t *)dp->d_devsw->d_dump;
di.priv = dp->d_dev;
di.blocksize = dl->d_secsize;
di.mediaoffset = (off_t)(dl->d_partitions[dkpart(dev)].p_offset +
dp->d_slice->dss_slices[dkslice(dev)].ds_offset) * DEV_BSIZE;
di.mediasize =
(off_t)(dl->d_partitions[dkpart(dev)].p_size) * DEV_BSIZE;
if (di.mediasize == 0)
return (EINVAL);
return(set_dumper(&di));
}
void
disk_invalidate (struct disk *disk)
{
if (disk->d_slice)
dsgone(&disk->d_slice);
}
void
disk_destroy(dev_t dev)
{
LIST_REMOVE(dev->si_disk, d_list);
free(dev->si_disk->d_label, M_DEVBUF);
bzero(dev->si_disk, sizeof(*dev->si_disk));
dev->si_disk = NULL;
destroy_dev(dev);
return;
}
struct disk *
disk_enumerate(struct disk *disk)
{
if (!disk)
return (LIST_FIRST(&disklist));
else
return (LIST_NEXT(disk, d_list));
}
static int
sysctl_disks(SYSCTL_HANDLER_ARGS)
{
struct disk *disk;
int error, first;
disk = NULL;
first = 1;
while ((disk = disk_enumerate(disk))) {
if (!first) {
error = SYSCTL_OUT(req, " ", 1);
if (error)
return error;
} else {
first = 0;
}
error = SYSCTL_OUT(req, disk->d_dev->si_name, strlen(disk->d_dev->si_name));
if (error)
return error;
}
error = SYSCTL_OUT(req, "", 1);
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, 0, 0,
sysctl_disks, "A", "names of available disks");
/*
* The cdevsw functions
*/
static int
diskopen(dev_t dev, int oflags, int devtype, struct thread *td)
{
dev_t pdev;
struct disk *dp;
int error;
error = 0;
pdev = dkmodpart(dkmodslice(dev, WHOLE_DISK_SLICE), RAW_PART);
dp = pdev->si_disk;
if (!dp)
return (ENXIO);
while (dp->d_flags & DISKFLAG_LOCK) {
dp->d_flags |= DISKFLAG_WANTED;
error = tsleep(dp, PRIBIO | PCATCH, "diskopen", hz);
if (error)
return (error);
}
dp->d_flags |= DISKFLAG_LOCK;
if (!dsisopen(dp->d_slice)) {
if (!pdev->si_iosize_max)
pdev->si_iosize_max = dev->si_iosize_max;
error = dp->d_devsw->d_open(pdev, oflags, devtype, td);
dp->d_label->d_secsize = dp->d_sectorsize;
dp->d_label->d_secperunit = dp->d_mediasize / dp->d_sectorsize;
}
/* Inherit properties from the whole/raw dev_t */
inherit_raw(pdev, dev);
if (error)
goto out;
error = dsopen(dev, devtype, dp->d_dsflags, &dp->d_slice, dp->d_label);
if (!dsisopen(dp->d_slice))
dp->d_devsw->d_close(pdev, oflags, devtype, td);
out:
dp->d_flags &= ~DISKFLAG_LOCK;
if (dp->d_flags & DISKFLAG_WANTED) {
dp->d_flags &= ~DISKFLAG_WANTED;
wakeup(dp);
}
return(error);
}
static int
diskclose(dev_t dev, int fflag, int devtype, struct thread *td)
{
struct disk *dp;
int error;
dev_t pdev;
error = 0;
pdev = dkmodpart(dkmodslice(dev, WHOLE_DISK_SLICE), RAW_PART);
dp = pdev->si_disk;
if (!dp)
return (ENXIO);
dsclose(dev, devtype, dp->d_slice);
if (!dsisopen(dp->d_slice))
error = dp->d_devsw->d_close(dp->d_dev, fflag, devtype, td);
return (error);
}
static void
diskstrategy(struct bio *bp)
{
dev_t pdev;
struct disk *dp;
pdev = dkmodpart(dkmodslice(bp->bio_dev, WHOLE_DISK_SLICE), RAW_PART);
dp = pdev->si_disk;
bp->bio_resid = bp->bio_bcount;
if (dp != bp->bio_dev->si_disk)
inherit_raw(pdev, bp->bio_dev);
if (!dp) {
biofinish(bp, NULL, ENXIO);
return;
}
if (dscheck(bp, dp->d_slice) <= 0) {
biodone(bp);
return;
}
if (bp->bio_bcount == 0) {
biodone(bp);
return;
}
KASSERT(dp->d_devsw != NULL, ("NULL devsw"));
KASSERT(dp->d_devsw->d_strategy != NULL, ("NULL d_strategy"));
dp->d_devsw->d_strategy(bp);
return;
}
static int
diskioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
{
struct disk *dp;
int error;
u_int u;
dev_t pdev;
pdev = dkmodpart(dkmodslice(dev, WHOLE_DISK_SLICE), RAW_PART);
dp = pdev->si_disk;
if (!dp)
return (ENXIO);
if (cmd == DIOCSKERNELDUMP) {
u = *(u_int *)data;
return (diskdumpconf(u, dev, dp));
}
if (cmd == DIOCGFRONTSTUFF) {
*(off_t *)data = 8192; /* XXX: crude but enough) */
return (0);
}
error = dsioctl(dev, cmd, data, fflag, &dp->d_slice);
if (error == ENOIOCTL)
error = dp->d_devsw->d_ioctl(dev, cmd, data, fflag, td);
return (error);
}
static int
diskpsize(dev_t dev)
{
struct disk *dp;
dev_t pdev;
pdev = dkmodpart(dkmodslice(dev, WHOLE_DISK_SLICE), RAW_PART);
dp = pdev->si_disk;
if (!dp)
return (-1);
if (dp != dev->si_disk) {
dev->si_drv1 = pdev->si_drv1;
dev->si_drv2 = pdev->si_drv2;
/* XXX: don't set bp->b_dev->si_disk (?) */
}
return (dssize(dev, &dp->d_slice));
}
SYSCTL_INT(_debug_sizeof, OID_AUTO, disklabel, CTLFLAG_RD,
0, sizeof(struct disklabel), "sizeof(struct disklabel)");
SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD,
0, sizeof(struct diskslices), "sizeof(struct diskslices)");
SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD,
0, sizeof(struct disk), "sizeof(struct disk)");
#endif
/*-
* Disk error is the preface to plaintive error messages
* about failing disk transfers. It prints messages of the form
* "hp0g: BLABLABLA cmd=read fsbn 12345 of 12344-12347"
* blkdone should be -1 if the position of the error is unknown.
* The message is printed with printf.
*/
void
disk_err(struct bio *bp, const char *what, int blkdone, int nl)
{
daddr_t sn;
printf("%s: %s", devtoname(bp->bio_dev), what);
switch(bp->bio_cmd) {
case BIO_READ: printf("cmd=read"); break;
case BIO_WRITE: printf("cmd=write"); break;
case BIO_DELETE: printf("cmd=delete"); break;
case BIO_GETATTR: printf("cmd=getattr"); break;
case BIO_SETATTR: printf("cmd=setattr"); break;
default: printf("cmd=%x", bp->bio_cmd); break;
}
sn = bp->bio_blkno;
if (bp->bio_bcount <= DEV_BSIZE) {
printf("fsbn %jd%s", (intmax_t)sn, nl ? "\n" : "");
return;
}
if (blkdone >= 0) {
sn += blkdone;
printf("fsbn %jd of ", (intmax_t)sn);
}
printf("%jd-%jd", (intmax_t)bp->bio_blkno,
(intmax_t)(bp->bio_blkno + (bp->bio_bcount - 1) / DEV_BSIZE));
if (nl)
printf("\n");
}
#ifdef notquite
/*
* Mutex to use when delaying niced I/O bound processes in bioq_disksort().
*/
static struct mtx dksort_mtx;
static void
dksort_init(void)
{
mtx_init(&dksort_mtx, "dksort", NULL, MTX_DEF);
}
SYSINIT(dksort, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, dksort_init, NULL)
#endif
/*
* Seek sort for disks.
*
* The buf_queue keep two queues, sorted in ascending block order. The first
* queue holds those requests which are positioned after the current block
* (in the first request); the second, which starts at queue->switch_point,
* holds requests which came in after their block number was passed. Thus
* we implement a one way scan, retracting after reaching the end of the drive
* to the first request on the second queue, at which time it becomes the
* first queue.
*
* A one-way scan is natural because of the way UNIX read-ahead blocks are
* allocated.
*/
void
bioq_disksort(bioq, bp)
struct bio_queue_head *bioq;
struct bio *bp;
{
struct bio *bq;
struct bio *bn;
struct bio *be;
#ifdef notquite
struct thread *td = curthread;
if (td && td->td_ksegrp->kg_nice > 0) {
TAILQ_FOREACH(bn, &bioq->queue, bio_queue)
if (BIOTOBUF(bp)->b_vp != BIOTOBUF(bn)->b_vp)
break;
if (bn != NULL) {
mtx_lock(&dksort_mtx);
msleep(&dksort_mtx, &dksort_mtx,
PPAUSE | PCATCH | PDROP, "ioslow",
td->td_ksegrp->kg_nice);
}
}
#endif
if (!atomic_cmpset_int(&bioq->busy, 0, 1))
panic("Recursing in bioq_disksort()");
be = TAILQ_LAST(&bioq->queue, bio_queue);
/*
* If the queue is empty or we are an
* ordered transaction, then it's easy.
*/
if ((bq = bioq_first(bioq)) == NULL) {
bioq_insert_tail(bioq, bp);
bioq->busy = 0;
return;
} else if (bioq->insert_point != NULL) {
/*
* A certain portion of the list is
* "locked" to preserve ordering, so
* we can only insert after the insert
* point.
*/
bq = bioq->insert_point;
} else {
/*
* If we lie before the last removed (currently active)
* request, and are not inserting ourselves into the
* "locked" portion of the list, then we must add ourselves
* to the second request list.
*/
if (bp->bio_pblkno < bioq->last_pblkno) {
bq = bioq->switch_point;
/*
* If we are starting a new secondary list,
* then it's easy.
*/
if (bq == NULL) {
bioq->switch_point = bp;
bioq_insert_tail(bioq, bp);
bioq->busy = 0;
return;
}
/*
* If we lie ahead of the current switch point,
* insert us before the switch point and move
* the switch point.
*/
if (bp->bio_pblkno < bq->bio_pblkno) {
bioq->switch_point = bp;
TAILQ_INSERT_BEFORE(bq, bp, bio_queue);
bioq->busy = 0;
return;
}
} else {
if (bioq->switch_point != NULL)
be = TAILQ_PREV(bioq->switch_point,
bio_queue, bio_queue);
/*
* If we lie between last_pblkno and bq,
* insert before bq.
*/
if (bp->bio_pblkno < bq->bio_pblkno) {
TAILQ_INSERT_BEFORE(bq, bp, bio_queue);
bioq->busy = 0;
return;
}
}
}
/*
* Request is at/after our current position in the list.
* Optimize for sequential I/O by seeing if we go at the tail.
*/
if (bp->bio_pblkno > be->bio_pblkno) {
TAILQ_INSERT_AFTER(&bioq->queue, be, bp, bio_queue);
bioq->busy = 0;
return;
}
/* Otherwise, insertion sort */
while ((bn = TAILQ_NEXT(bq, bio_queue)) != NULL) {
/*
* We want to go after the current request if it is the end
* of the first request list, or if the next request is a
* larger cylinder than our request.
*/
if (bn == bioq->switch_point
|| bp->bio_pblkno < bn->bio_pblkno)
break;
bq = bn;
}
TAILQ_INSERT_AFTER(&bioq->queue, bq, bp, bio_queue);
bioq->busy = 0;
}