1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-11 14:10:34 +00:00
freebsd/sys/kern/vfs_aio.c
Attilio Rao 22db15c06f VOP_LOCK1() (and so VOP_LOCK()) and VOP_UNLOCK() are only used in
conjuction with 'thread' argument passing which is always curthread.
Remove the unuseful extra-argument and pass explicitly curthread to lower
layer functions, when necessary.

KPI results broken by this change, which should affect several ports, so
version bumping and manpage update will be further committed.

Tested by: kris, pho, Diego Sardina <siarodx at gmail dot com>
2008-01-13 14:44:15 +00:00

2324 lines
58 KiB
C

/*-
* Copyright (c) 1997 John S. Dyson. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. John S. Dyson's name may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* DISCLAIMER: This code isn't warranted to do anything useful. Anything
* bad that happens because of using this software isn't the responsibility
* of the author. This software is distributed AS-IS.
*/
/*
* This file contains support for the POSIX 1003.1B AIO/LIO facility.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/eventhandler.h>
#include <sys/sysproto.h>
#include <sys/filedesc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/kthread.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/unistd.h>
#include <sys/posix4.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/protosw.h>
#include <sys/sema.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/syscall.h>
#include <sys/sysent.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <sys/taskqueue.h>
#include <sys/vnode.h>
#include <sys/conf.h>
#include <sys/event.h>
#include <sys/mount.h>
#include <machine/atomic.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/uma.h>
#include <sys/aio.h>
#include "opt_vfs_aio.h"
/*
* Counter for allocating reference ids to new jobs. Wrapped to 1 on
* overflow. (XXX will be removed soon.)
*/
static u_long jobrefid;
/*
* Counter for aio_fsync.
*/
static uint64_t jobseqno;
#define JOBST_NULL 0
#define JOBST_JOBQSOCK 1
#define JOBST_JOBQGLOBAL 2
#define JOBST_JOBRUNNING 3
#define JOBST_JOBFINISHED 4
#define JOBST_JOBQBUF 5
#define JOBST_JOBQSYNC 6
#ifndef MAX_AIO_PER_PROC
#define MAX_AIO_PER_PROC 32
#endif
#ifndef MAX_AIO_QUEUE_PER_PROC
#define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */
#endif
#ifndef MAX_AIO_PROCS
#define MAX_AIO_PROCS 32
#endif
#ifndef MAX_AIO_QUEUE
#define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */
#endif
#ifndef TARGET_AIO_PROCS
#define TARGET_AIO_PROCS 4
#endif
#ifndef MAX_BUF_AIO
#define MAX_BUF_AIO 16
#endif
#ifndef AIOD_TIMEOUT_DEFAULT
#define AIOD_TIMEOUT_DEFAULT (10 * hz)
#endif
#ifndef AIOD_LIFETIME_DEFAULT
#define AIOD_LIFETIME_DEFAULT (30 * hz)
#endif
static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
static int max_aio_procs = MAX_AIO_PROCS;
SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
CTLFLAG_RW, &max_aio_procs, 0,
"Maximum number of kernel threads to use for handling async IO ");
static int num_aio_procs = 0;
SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
CTLFLAG_RD, &num_aio_procs, 0,
"Number of presently active kernel threads for async IO");
/*
* The code will adjust the actual number of AIO processes towards this
* number when it gets a chance.
*/
static int target_aio_procs = TARGET_AIO_PROCS;
SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
0, "Preferred number of ready kernel threads for async IO");
static int max_queue_count = MAX_AIO_QUEUE;
SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
"Maximum number of aio requests to queue, globally");
static int num_queue_count = 0;
SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
"Number of queued aio requests");
static int num_buf_aio = 0;
SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
"Number of aio requests presently handled by the buf subsystem");
/* Number of async I/O thread in the process of being started */
/* XXX This should be local to aio_aqueue() */
static int num_aio_resv_start = 0;
static int aiod_timeout;
SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
"Timeout value for synchronous aio operations");
static int aiod_lifetime;
SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
"Maximum lifetime for idle aiod");
static int unloadable = 0;
SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0,
"Allow unload of aio (not recommended)");
static int max_aio_per_proc = MAX_AIO_PER_PROC;
SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
0, "Maximum active aio requests per process (stored in the process)");
static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
&max_aio_queue_per_proc, 0,
"Maximum queued aio requests per process (stored in the process)");
static int max_buf_aio = MAX_BUF_AIO;
SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
"Maximum buf aio requests per process (stored in the process)");
typedef struct oaiocb {
int aio_fildes; /* File descriptor */
off_t aio_offset; /* File offset for I/O */
volatile void *aio_buf; /* I/O buffer in process space */
size_t aio_nbytes; /* Number of bytes for I/O */
struct osigevent aio_sigevent; /* Signal to deliver */
int aio_lio_opcode; /* LIO opcode */
int aio_reqprio; /* Request priority -- ignored */
struct __aiocb_private _aiocb_private;
} oaiocb_t;
/*
* Below is a key of locks used to protect each member of struct aiocblist
* aioliojob and kaioinfo and any backends.
*
* * - need not protected
* a - locked by kaioinfo lock
* b - locked by backend lock, the backend lock can be null in some cases,
* for example, BIO belongs to this type, in this case, proc lock is
* reused.
* c - locked by aio_job_mtx, the lock for the generic file I/O backend.
*/
/*
* Current, there is only two backends: BIO and generic file I/O.
* socket I/O is served by generic file I/O, this is not a good idea, since
* disk file I/O and any other types without O_NONBLOCK flag can block daemon
* threads, if there is no thread to serve socket I/O, the socket I/O will be
* delayed too long or starved, we should create some threads dedicated to
* sockets to do non-blocking I/O, same for pipe and fifo, for these I/O
* systems we really need non-blocking interface, fiddling O_NONBLOCK in file
* structure is not safe because there is race between userland and aio
* daemons.
*/
struct aiocblist {
TAILQ_ENTRY(aiocblist) list; /* (b) internal list of for backend */
TAILQ_ENTRY(aiocblist) plist; /* (a) list of jobs for each backend */
TAILQ_ENTRY(aiocblist) allist; /* (a) list of all jobs in proc */
int jobflags; /* (a) job flags */
int jobstate; /* (b) job state */
int inputcharge; /* (*) input blockes */
int outputcharge; /* (*) output blockes */
struct buf *bp; /* (*) private to BIO backend,
* buffer pointer
*/
struct proc *userproc; /* (*) user process */
struct ucred *cred; /* (*) active credential when created */
struct file *fd_file; /* (*) pointer to file structure */
struct aioliojob *lio; /* (*) optional lio job */
struct aiocb *uuaiocb; /* (*) pointer in userspace of aiocb */
struct knlist klist; /* (a) list of knotes */
struct aiocb uaiocb; /* (*) kernel I/O control block */
ksiginfo_t ksi; /* (a) realtime signal info */
struct task biotask; /* (*) private to BIO backend */
uint64_t seqno; /* (*) job number */
int pending; /* (a) number of pending I/O, aio_fsync only */
};
/* jobflags */
#define AIOCBLIST_DONE 0x01
#define AIOCBLIST_BUFDONE 0x02
#define AIOCBLIST_RUNDOWN 0x04
#define AIOCBLIST_CHECKSYNC 0x08
/*
* AIO process info
*/
#define AIOP_FREE 0x1 /* proc on free queue */
struct aiothreadlist {
int aiothreadflags; /* (c) AIO proc flags */
TAILQ_ENTRY(aiothreadlist) list; /* (c) list of processes */
struct thread *aiothread; /* (*) the AIO thread */
};
/*
* data-structure for lio signal management
*/
struct aioliojob {
int lioj_flags; /* (a) listio flags */
int lioj_count; /* (a) listio flags */
int lioj_finished_count; /* (a) listio flags */
struct sigevent lioj_signal; /* (a) signal on all I/O done */
TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */
struct knlist klist; /* (a) list of knotes */
ksiginfo_t lioj_ksi; /* (a) Realtime signal info */
};
#define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */
#define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */
#define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */
/*
* per process aio data structure
*/
struct kaioinfo {
struct mtx kaio_mtx; /* the lock to protect this struct */
int kaio_flags; /* (a) per process kaio flags */
int kaio_maxactive_count; /* (*) maximum number of AIOs */
int kaio_active_count; /* (c) number of currently used AIOs */
int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */
int kaio_count; /* (a) size of AIO queue */
int kaio_ballowed_count; /* (*) maximum number of buffers */
int kaio_buffer_count; /* (a) number of physio buffers */
TAILQ_HEAD(,aiocblist) kaio_all; /* (a) all AIOs in the process */
TAILQ_HEAD(,aiocblist) kaio_done; /* (a) done queue for process */
TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* (a) job queue for process */
TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* (a) buffer job queue for process */
TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* (a) queue for aios waiting on sockets,
* NOT USED YET.
*/
TAILQ_HEAD(,aiocblist) kaio_syncqueue; /* (a) queue for aio_fsync */
struct task kaio_task; /* (*) task to kick aio threads */
};
#define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx)
#define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx)
#define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f))
#define AIO_MTX(ki) (&(ki)->kaio_mtx)
#define KAIO_RUNDOWN 0x1 /* process is being run down */
#define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */
static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* (c) Idle daemons */
static struct sema aio_newproc_sem;
static struct mtx aio_job_mtx;
static struct mtx aio_sock_mtx;
static TAILQ_HEAD(,aiocblist) aio_jobs; /* (c) Async job list */
static struct unrhdr *aiod_unr;
void aio_init_aioinfo(struct proc *p);
static void aio_onceonly(void);
static int aio_free_entry(struct aiocblist *aiocbe);
static void aio_process(struct aiocblist *aiocbe);
static int aio_newproc(int *);
int aio_aqueue(struct thread *td, struct aiocb *job,
struct aioliojob *lio, int type, int osigev);
static void aio_physwakeup(struct buf *bp);
static void aio_proc_rundown(void *arg, struct proc *p);
static void aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp);
static int aio_qphysio(struct proc *p, struct aiocblist *iocb);
static void biohelper(void *, int);
static void aio_daemon(void *param);
static void aio_swake_cb(struct socket *, struct sockbuf *);
static int aio_unload(void);
static void aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type);
#define DONE_BUF 1
#define DONE_QUEUE 2
static int do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev);
static int aio_kick(struct proc *userp);
static void aio_kick_nowait(struct proc *userp);
static void aio_kick_helper(void *context, int pending);
static int filt_aioattach(struct knote *kn);
static void filt_aiodetach(struct knote *kn);
static int filt_aio(struct knote *kn, long hint);
static int filt_lioattach(struct knote *kn);
static void filt_liodetach(struct knote *kn);
static int filt_lio(struct knote *kn, long hint);
/*
* Zones for:
* kaio Per process async io info
* aiop async io thread data
* aiocb async io jobs
* aiol list io job pointer - internal to aio_suspend XXX
* aiolio list io jobs
*/
static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
/* kqueue filters for aio */
static struct filterops aio_filtops =
{ 0, filt_aioattach, filt_aiodetach, filt_aio };
static struct filterops lio_filtops =
{ 0, filt_lioattach, filt_liodetach, filt_lio };
static eventhandler_tag exit_tag, exec_tag;
TASKQUEUE_DEFINE_THREAD(aiod_bio);
/*
* Main operations function for use as a kernel module.
*/
static int
aio_modload(struct module *module, int cmd, void *arg)
{
int error = 0;
switch (cmd) {
case MOD_LOAD:
aio_onceonly();
break;
case MOD_UNLOAD:
error = aio_unload();
break;
case MOD_SHUTDOWN:
break;
default:
error = EINVAL;
break;
}
return (error);
}
static moduledata_t aio_mod = {
"aio",
&aio_modload,
NULL
};
SYSCALL_MODULE_HELPER(aio_cancel);
SYSCALL_MODULE_HELPER(aio_error);
SYSCALL_MODULE_HELPER(aio_fsync);
SYSCALL_MODULE_HELPER(aio_read);
SYSCALL_MODULE_HELPER(aio_return);
SYSCALL_MODULE_HELPER(aio_suspend);
SYSCALL_MODULE_HELPER(aio_waitcomplete);
SYSCALL_MODULE_HELPER(aio_write);
SYSCALL_MODULE_HELPER(lio_listio);
SYSCALL_MODULE_HELPER(oaio_read);
SYSCALL_MODULE_HELPER(oaio_write);
SYSCALL_MODULE_HELPER(olio_listio);
DECLARE_MODULE(aio, aio_mod,
SI_SUB_VFS, SI_ORDER_ANY);
MODULE_VERSION(aio, 1);
/*
* Startup initialization
*/
static void
aio_onceonly(void)
{
/* XXX: should probably just use so->callback */
aio_swake = &aio_swake_cb;
exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
EVENTHANDLER_PRI_ANY);
exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL,
EVENTHANDLER_PRI_ANY);
kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
TAILQ_INIT(&aio_freeproc);
sema_init(&aio_newproc_sem, 0, "aio_new_proc");
mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF);
TAILQ_INIT(&aio_jobs);
aiod_unr = new_unrhdr(1, INT_MAX, NULL);
kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL,
NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL,
NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
aiod_timeout = AIOD_TIMEOUT_DEFAULT;
aiod_lifetime = AIOD_LIFETIME_DEFAULT;
jobrefid = 1;
async_io_version = _POSIX_VERSION;
p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX);
p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
}
/*
* Callback for unload of AIO when used as a module.
*/
static int
aio_unload(void)
{
int error;
/*
* XXX: no unloads by default, it's too dangerous.
* perhaps we could do it if locked out callers and then
* did an aio_proc_rundown() on each process.
*
* jhb: aio_proc_rundown() needs to run on curproc though,
* so I don't think that would fly.
*/
if (!unloadable)
return (EOPNOTSUPP);
error = kqueue_del_filteropts(EVFILT_AIO);
if (error)
return error;
error = kqueue_del_filteropts(EVFILT_LIO);
if (error)
return error;
async_io_version = 0;
aio_swake = NULL;
taskqueue_free(taskqueue_aiod_bio);
delete_unrhdr(aiod_unr);
uma_zdestroy(kaio_zone);
uma_zdestroy(aiop_zone);
uma_zdestroy(aiocb_zone);
uma_zdestroy(aiol_zone);
uma_zdestroy(aiolio_zone);
EVENTHANDLER_DEREGISTER(process_exit, exit_tag);
EVENTHANDLER_DEREGISTER(process_exec, exec_tag);
mtx_destroy(&aio_job_mtx);
mtx_destroy(&aio_sock_mtx);
sema_destroy(&aio_newproc_sem);
p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1);
p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1);
p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1);
return (0);
}
/*
* Init the per-process aioinfo structure. The aioinfo limits are set
* per-process for user limit (resource) management.
*/
void
aio_init_aioinfo(struct proc *p)
{
struct kaioinfo *ki;
ki = uma_zalloc(kaio_zone, M_WAITOK);
mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF);
ki->kaio_flags = 0;
ki->kaio_maxactive_count = max_aio_per_proc;
ki->kaio_active_count = 0;
ki->kaio_qallowed_count = max_aio_queue_per_proc;
ki->kaio_count = 0;
ki->kaio_ballowed_count = max_buf_aio;
ki->kaio_buffer_count = 0;
TAILQ_INIT(&ki->kaio_all);
TAILQ_INIT(&ki->kaio_done);
TAILQ_INIT(&ki->kaio_jobqueue);
TAILQ_INIT(&ki->kaio_bufqueue);
TAILQ_INIT(&ki->kaio_liojoblist);
TAILQ_INIT(&ki->kaio_sockqueue);
TAILQ_INIT(&ki->kaio_syncqueue);
TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
PROC_LOCK(p);
if (p->p_aioinfo == NULL) {
p->p_aioinfo = ki;
PROC_UNLOCK(p);
} else {
PROC_UNLOCK(p);
mtx_destroy(&ki->kaio_mtx);
uma_zfree(kaio_zone, ki);
}
while (num_aio_procs < target_aio_procs)
aio_newproc(NULL);
}
static int
aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
{
int ret = 0;
PROC_LOCK(p);
if (!KSI_ONQ(ksi)) {
ksi->ksi_code = SI_ASYNCIO;
ksi->ksi_flags |= KSI_EXT | KSI_INS;
ret = psignal_event(p, sigev, ksi);
}
PROC_UNLOCK(p);
return (ret);
}
/*
* Free a job entry. Wait for completion if it is currently active, but don't
* delay forever. If we delay, we return a flag that says that we have to
* restart the queue scan.
*/
static int
aio_free_entry(struct aiocblist *aiocbe)
{
struct kaioinfo *ki;
struct aioliojob *lj;
struct proc *p;
p = aiocbe->userproc;
MPASS(curproc == p);
ki = p->p_aioinfo;
MPASS(ki != NULL);
AIO_LOCK_ASSERT(ki, MA_OWNED);
MPASS(aiocbe->jobstate == JOBST_JOBFINISHED);
atomic_subtract_int(&num_queue_count, 1);
ki->kaio_count--;
MPASS(ki->kaio_count >= 0);
TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist);
TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist);
lj = aiocbe->lio;
if (lj) {
lj->lioj_count--;
lj->lioj_finished_count--;
if (lj->lioj_count == 0) {
TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
/* lio is going away, we need to destroy any knotes */
knlist_delete(&lj->klist, curthread, 1);
PROC_LOCK(p);
sigqueue_take(&lj->lioj_ksi);
PROC_UNLOCK(p);
uma_zfree(aiolio_zone, lj);
}
}
/* aiocbe is going away, we need to destroy any knotes */
knlist_delete(&aiocbe->klist, curthread, 1);
PROC_LOCK(p);
sigqueue_take(&aiocbe->ksi);
PROC_UNLOCK(p);
MPASS(aiocbe->bp == NULL);
aiocbe->jobstate = JOBST_NULL;
AIO_UNLOCK(ki);
/*
* The thread argument here is used to find the owning process
* and is also passed to fo_close() which may pass it to various
* places such as devsw close() routines. Because of that, we
* need a thread pointer from the process owning the job that is
* persistent and won't disappear out from under us or move to
* another process.
*
* Currently, all the callers of this function call it to remove
* an aiocblist from the current process' job list either via a
* syscall or due to the current process calling exit() or
* execve(). Thus, we know that p == curproc. We also know that
* curthread can't exit since we are curthread.
*
* Therefore, we use curthread as the thread to pass to
* knlist_delete(). This does mean that it is possible for the
* thread pointer at close time to differ from the thread pointer
* at open time, but this is already true of file descriptors in
* a multithreaded process.
*/
fdrop(aiocbe->fd_file, curthread);
crfree(aiocbe->cred);
uma_zfree(aiocb_zone, aiocbe);
AIO_LOCK(ki);
return (0);
}
static void
aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
{
aio_proc_rundown(arg, p);
}
/*
* Rundown the jobs for a given process.
*/
static void
aio_proc_rundown(void *arg, struct proc *p)
{
struct kaioinfo *ki;
struct aioliojob *lj;
struct aiocblist *cbe, *cbn;
struct file *fp;
struct socket *so;
int remove;
KASSERT(curthread->td_proc == p,
("%s: called on non-curproc", __func__));
ki = p->p_aioinfo;
if (ki == NULL)
return;
AIO_LOCK(ki);
ki->kaio_flags |= KAIO_RUNDOWN;
restart:
/*
* Try to cancel all pending requests. This code simulates
* aio_cancel on all pending I/O requests.
*/
TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
remove = 0;
mtx_lock(&aio_job_mtx);
if (cbe->jobstate == JOBST_JOBQGLOBAL) {
TAILQ_REMOVE(&aio_jobs, cbe, list);
remove = 1;
} else if (cbe->jobstate == JOBST_JOBQSOCK) {
fp = cbe->fd_file;
MPASS(fp->f_type == DTYPE_SOCKET);
so = fp->f_data;
TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
remove = 1;
} else if (cbe->jobstate == JOBST_JOBQSYNC) {
TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
remove = 1;
}
mtx_unlock(&aio_job_mtx);
if (remove) {
cbe->jobstate = JOBST_JOBFINISHED;
cbe->uaiocb._aiocb_private.status = -1;
cbe->uaiocb._aiocb_private.error = ECANCELED;
TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
aio_bio_done_notify(p, cbe, DONE_QUEUE);
}
}
/* Wait for all running I/O to be finished */
if (TAILQ_FIRST(&ki->kaio_bufqueue) ||
TAILQ_FIRST(&ki->kaio_jobqueue)) {
ki->kaio_flags |= KAIO_WAKEUP;
msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
goto restart;
}
/* Free all completed I/O requests. */
while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL)
aio_free_entry(cbe);
while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
if (lj->lioj_count == 0) {
TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
knlist_delete(&lj->klist, curthread, 1);
PROC_LOCK(p);
sigqueue_take(&lj->lioj_ksi);
PROC_UNLOCK(p);
uma_zfree(aiolio_zone, lj);
} else {
panic("LIO job not cleaned up: C:%d, FC:%d\n",
lj->lioj_count, lj->lioj_finished_count);
}
}
AIO_UNLOCK(ki);
taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task);
mtx_destroy(&ki->kaio_mtx);
uma_zfree(kaio_zone, ki);
p->p_aioinfo = NULL;
}
/*
* Select a job to run (called by an AIO daemon).
*/
static struct aiocblist *
aio_selectjob(struct aiothreadlist *aiop)
{
struct aiocblist *aiocbe;
struct kaioinfo *ki;
struct proc *userp;
mtx_assert(&aio_job_mtx, MA_OWNED);
TAILQ_FOREACH(aiocbe, &aio_jobs, list) {
userp = aiocbe->userproc;
ki = userp->p_aioinfo;
if (ki->kaio_active_count < ki->kaio_maxactive_count) {
TAILQ_REMOVE(&aio_jobs, aiocbe, list);
/* Account for currently active jobs. */
ki->kaio_active_count++;
aiocbe->jobstate = JOBST_JOBRUNNING;
break;
}
}
return (aiocbe);
}
/*
* Move all data to a permanent storage device, this code
* simulates fsync syscall.
*/
static int
aio_fsync_vnode(struct thread *td, struct vnode *vp)
{
struct mount *mp;
int vfslocked;
int error;
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
goto drop;
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
if (vp->v_object != NULL) {
VM_OBJECT_LOCK(vp->v_object);
vm_object_page_clean(vp->v_object, 0, 0, 0);
VM_OBJECT_UNLOCK(vp->v_object);
}
error = VOP_FSYNC(vp, MNT_WAIT, td);
VOP_UNLOCK(vp, 0);
vn_finished_write(mp);
drop:
VFS_UNLOCK_GIANT(vfslocked);
return (error);
}
/*
* The AIO processing activity. This is the code that does the I/O request for
* the non-physio version of the operations. The normal vn operations are used,
* and this code should work in all instances for every type of file, including
* pipes, sockets, fifos, and regular files.
*
* XXX I don't think it works well for socket, pipe, and fifo.
*/
static void
aio_process(struct aiocblist *aiocbe)
{
struct ucred *td_savedcred;
struct thread *td;
struct aiocb *cb;
struct file *fp;
struct socket *so;
struct uio auio;
struct iovec aiov;
int cnt;
int error;
int oublock_st, oublock_end;
int inblock_st, inblock_end;
td = curthread;
td_savedcred = td->td_ucred;
td->td_ucred = aiocbe->cred;
cb = &aiocbe->uaiocb;
fp = aiocbe->fd_file;
if (cb->aio_lio_opcode == LIO_SYNC) {
error = 0;
cnt = 0;
if (fp->f_vnode != NULL)
error = aio_fsync_vnode(td, fp->f_vnode);
cb->_aiocb_private.error = error;
cb->_aiocb_private.status = 0;
td->td_ucred = td_savedcred;
return;
}
aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
aiov.iov_len = cb->aio_nbytes;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = cb->aio_offset;
auio.uio_resid = cb->aio_nbytes;
cnt = cb->aio_nbytes;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_td = td;
inblock_st = td->td_ru.ru_inblock;
oublock_st = td->td_ru.ru_oublock;
/*
* aio_aqueue() acquires a reference to the file that is
* released in aio_free_entry().
*/
if (cb->aio_lio_opcode == LIO_READ) {
auio.uio_rw = UIO_READ;
if (auio.uio_resid == 0)
error = 0;
else
error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
} else {
if (fp->f_type == DTYPE_VNODE)
bwillwrite();
auio.uio_rw = UIO_WRITE;
error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
}
inblock_end = td->td_ru.ru_inblock;
oublock_end = td->td_ru.ru_oublock;
aiocbe->inputcharge = inblock_end - inblock_st;
aiocbe->outputcharge = oublock_end - oublock_st;
if ((error) && (auio.uio_resid != cnt)) {
if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
error = 0;
if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
int sigpipe = 1;
if (fp->f_type == DTYPE_SOCKET) {
so = fp->f_data;
if (so->so_options & SO_NOSIGPIPE)
sigpipe = 0;
}
if (sigpipe) {
PROC_LOCK(aiocbe->userproc);
psignal(aiocbe->userproc, SIGPIPE);
PROC_UNLOCK(aiocbe->userproc);
}
}
}
cnt -= auio.uio_resid;
cb->_aiocb_private.error = error;
cb->_aiocb_private.status = cnt;
td->td_ucred = td_savedcred;
}
static void
aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type)
{
struct aioliojob *lj;
struct kaioinfo *ki;
struct aiocblist *scb, *scbn;
int lj_done;
ki = userp->p_aioinfo;
AIO_LOCK_ASSERT(ki, MA_OWNED);
lj = aiocbe->lio;
lj_done = 0;
if (lj) {
lj->lioj_finished_count++;
if (lj->lioj_count == lj->lioj_finished_count)
lj_done = 1;
}
if (type == DONE_QUEUE) {
aiocbe->jobflags |= AIOCBLIST_DONE;
} else {
aiocbe->jobflags |= AIOCBLIST_BUFDONE;
}
TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist);
aiocbe->jobstate = JOBST_JOBFINISHED;
if (ki->kaio_flags & KAIO_RUNDOWN)
goto notification_done;
if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi);
KNOTE_LOCKED(&aiocbe->klist, 1);
if (lj_done) {
if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
lj->lioj_flags |= LIOJ_KEVENT_POSTED;
KNOTE_LOCKED(&lj->klist, 1);
}
if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
== LIOJ_SIGNAL
&& (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
}
}
notification_done:
if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) {
TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) {
if (aiocbe->fd_file == scb->fd_file &&
aiocbe->seqno < scb->seqno) {
if (--scb->pending == 0) {
mtx_lock(&aio_job_mtx);
scb->jobstate = JOBST_JOBQGLOBAL;
TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list);
TAILQ_INSERT_TAIL(&aio_jobs, scb, list);
aio_kick_nowait(userp);
mtx_unlock(&aio_job_mtx);
}
}
}
}
if (ki->kaio_flags & KAIO_WAKEUP) {
ki->kaio_flags &= ~KAIO_WAKEUP;
wakeup(&userp->p_aioinfo);
}
}
/*
* The AIO daemon, most of the actual work is done in aio_process,
* but the setup (and address space mgmt) is done in this routine.
*/
static void
aio_daemon(void *_id)
{
struct aiocblist *aiocbe;
struct aiothreadlist *aiop;
struct kaioinfo *ki;
struct proc *curcp, *mycp, *userp;
struct vmspace *myvm, *tmpvm;
struct thread *td = curthread;
int id = (intptr_t)_id;
/*
* Local copies of curproc (cp) and vmspace (myvm)
*/
mycp = td->td_proc;
myvm = mycp->p_vmspace;
KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp"));
/*
* Allocate and ready the aio control info. There is one aiop structure
* per daemon.
*/
aiop = uma_zalloc(aiop_zone, M_WAITOK);
aiop->aiothread = td;
aiop->aiothreadflags = 0;
/* The daemon resides in its own pgrp. */
setsid(td, NULL);
/*
* Wakeup parent process. (Parent sleeps to keep from blasting away
* and creating too many daemons.)
*/
sema_post(&aio_newproc_sem);
mtx_lock(&aio_job_mtx);
for (;;) {
/*
* curcp is the current daemon process context.
* userp is the current user process context.
*/
curcp = mycp;
/*
* Take daemon off of free queue
*/
if (aiop->aiothreadflags & AIOP_FREE) {
TAILQ_REMOVE(&aio_freeproc, aiop, list);
aiop->aiothreadflags &= ~AIOP_FREE;
}
/*
* Check for jobs.
*/
while ((aiocbe = aio_selectjob(aiop)) != NULL) {
mtx_unlock(&aio_job_mtx);
userp = aiocbe->userproc;
/*
* Connect to process address space for user program.
*/
if (userp != curcp) {
/*
* Save the current address space that we are
* connected to.
*/
tmpvm = mycp->p_vmspace;
/*
* Point to the new user address space, and
* refer to it.
*/
mycp->p_vmspace = userp->p_vmspace;
atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1);
/* Activate the new mapping. */
pmap_activate(FIRST_THREAD_IN_PROC(mycp));
/*
* If the old address space wasn't the daemons
* own address space, then we need to remove the
* daemon's reference from the other process
* that it was acting on behalf of.
*/
if (tmpvm != myvm) {
vmspace_free(tmpvm);
}
curcp = userp;
}
ki = userp->p_aioinfo;
/* Do the I/O function. */
aio_process(aiocbe);
mtx_lock(&aio_job_mtx);
/* Decrement the active job count. */
ki->kaio_active_count--;
mtx_unlock(&aio_job_mtx);
AIO_LOCK(ki);
TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
aio_bio_done_notify(userp, aiocbe, DONE_QUEUE);
AIO_UNLOCK(ki);
mtx_lock(&aio_job_mtx);
}
/*
* Disconnect from user address space.
*/
if (curcp != mycp) {
mtx_unlock(&aio_job_mtx);
/* Get the user address space to disconnect from. */
tmpvm = mycp->p_vmspace;
/* Get original address space for daemon. */
mycp->p_vmspace = myvm;
/* Activate the daemon's address space. */
pmap_activate(FIRST_THREAD_IN_PROC(mycp));
#ifdef DIAGNOSTIC
if (tmpvm == myvm) {
printf("AIOD: vmspace problem -- %d\n",
mycp->p_pid);
}
#endif
/* Remove our vmspace reference. */
vmspace_free(tmpvm);
curcp = mycp;
mtx_lock(&aio_job_mtx);
/*
* We have to restart to avoid race, we only sleep if
* no job can be selected, that should be
* curcp == mycp.
*/
continue;
}
mtx_assert(&aio_job_mtx, MA_OWNED);
TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
aiop->aiothreadflags |= AIOP_FREE;
/*
* If daemon is inactive for a long time, allow it to exit,
* thereby freeing resources.
*/
if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy",
aiod_lifetime)) {
if (TAILQ_EMPTY(&aio_jobs)) {
if ((aiop->aiothreadflags & AIOP_FREE) &&
(num_aio_procs > target_aio_procs)) {
TAILQ_REMOVE(&aio_freeproc, aiop, list);
num_aio_procs--;
mtx_unlock(&aio_job_mtx);
uma_zfree(aiop_zone, aiop);
free_unr(aiod_unr, id);
#ifdef DIAGNOSTIC
if (mycp->p_vmspace->vm_refcnt <= 1) {
printf("AIOD: bad vm refcnt for"
" exiting daemon: %d\n",
mycp->p_vmspace->vm_refcnt);
}
#endif
kproc_exit(0);
}
}
}
}
mtx_unlock(&aio_job_mtx);
panic("shouldn't be here\n");
}
/*
* Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
* AIO daemon modifies its environment itself.
*/
static int
aio_newproc(int *start)
{
int error;
struct proc *p;
int id;
id = alloc_unr(aiod_unr);
error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
RFNOWAIT, 0, "aiod%d", id);
if (error == 0) {
/*
* Wait until daemon is started.
*/
sema_wait(&aio_newproc_sem);
mtx_lock(&aio_job_mtx);
num_aio_procs++;
if (start != NULL)
(*start)--;
mtx_unlock(&aio_job_mtx);
} else {
free_unr(aiod_unr, id);
}
return (error);
}
/*
* Try the high-performance, low-overhead physio method for eligible
* VCHR devices. This method doesn't use an aio helper thread, and
* thus has very low overhead.
*
* Assumes that the caller, aio_aqueue(), has incremented the file
* structure's reference count, preventing its deallocation for the
* duration of this call.
*/
static int
aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
{
struct aiocb *cb;
struct file *fp;
struct buf *bp;
struct vnode *vp;
struct kaioinfo *ki;
struct aioliojob *lj;
int error;
cb = &aiocbe->uaiocb;
fp = aiocbe->fd_file;
if (fp->f_type != DTYPE_VNODE)
return (-1);
vp = fp->f_vnode;
/*
* If its not a disk, we don't want to return a positive error.
* It causes the aio code to not fall through to try the thread
* way when you're talking to a regular file.
*/
if (!vn_isdisk(vp, &error)) {
if (error == ENOTBLK)
return (-1);
else
return (error);
}
if (vp->v_bufobj.bo_bsize == 0)
return (-1);
if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
return (-1);
if (cb->aio_nbytes > vp->v_rdev->si_iosize_max)
return (-1);
if (cb->aio_nbytes >
MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK))
return (-1);
ki = p->p_aioinfo;
if (ki->kaio_buffer_count >= ki->kaio_ballowed_count)
return (-1);
/* Create and build a buffer header for a transfer. */
bp = (struct buf *)getpbuf(NULL);
BUF_KERNPROC(bp);
AIO_LOCK(ki);
ki->kaio_count++;
ki->kaio_buffer_count++;
lj = aiocbe->lio;
if (lj)
lj->lioj_count++;
AIO_UNLOCK(ki);
/*
* Get a copy of the kva from the physical buffer.
*/
error = 0;
bp->b_bcount = cb->aio_nbytes;
bp->b_bufsize = cb->aio_nbytes;
bp->b_iodone = aio_physwakeup;
bp->b_saveaddr = bp->b_data;
bp->b_data = (void *)(uintptr_t)cb->aio_buf;
bp->b_offset = cb->aio_offset;
bp->b_iooffset = cb->aio_offset;
bp->b_blkno = btodb(cb->aio_offset);
bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
/*
* Bring buffer into kernel space.
*/
if (vmapbuf(bp) < 0) {
error = EFAULT;
goto doerror;
}
AIO_LOCK(ki);
aiocbe->bp = bp;
bp->b_caller1 = (void *)aiocbe;
TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
aiocbe->jobstate = JOBST_JOBQBUF;
cb->_aiocb_private.status = cb->aio_nbytes;
AIO_UNLOCK(ki);
atomic_add_int(&num_queue_count, 1);
atomic_add_int(&num_buf_aio, 1);
bp->b_error = 0;
TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe);
/* Perform transfer. */
dev_strategy(vp->v_rdev, bp);
return (0);
doerror:
AIO_LOCK(ki);
ki->kaio_count--;
ki->kaio_buffer_count--;
if (lj)
lj->lioj_count--;
aiocbe->bp = NULL;
AIO_UNLOCK(ki);
relpbuf(bp, NULL);
return (error);
}
/*
* Wake up aio requests that may be serviceable now.
*/
static void
aio_swake_cb(struct socket *so, struct sockbuf *sb)
{
struct aiocblist *cb, *cbn;
int opcode;
if (sb == &so->so_snd)
opcode = LIO_WRITE;
else
opcode = LIO_READ;
SOCKBUF_LOCK(sb);
sb->sb_flags &= ~SB_AIO;
mtx_lock(&aio_job_mtx);
TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) {
if (opcode == cb->uaiocb.aio_lio_opcode) {
if (cb->jobstate != JOBST_JOBQSOCK)
panic("invalid queue value");
/* XXX
* We don't have actual sockets backend yet,
* so we simply move the requests to the generic
* file I/O backend.
*/
TAILQ_REMOVE(&so->so_aiojobq, cb, list);
TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
aio_kick_nowait(cb->userproc);
}
}
mtx_unlock(&aio_job_mtx);
SOCKBUF_UNLOCK(sb);
}
/*
* Queue a new AIO request. Choosing either the threaded or direct physio VCHR
* technique is done in this code.
*/
int
aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj,
int type, int oldsigev)
{
struct proc *p = td->td_proc;
struct file *fp;
struct socket *so;
struct aiocblist *aiocbe, *cb;
struct kaioinfo *ki;
struct kevent kev;
struct sockbuf *sb;
int opcode;
int error;
int fd, kqfd;
int jid;
if (p->p_aioinfo == NULL)
aio_init_aioinfo(p);
ki = p->p_aioinfo;
suword(&job->_aiocb_private.status, -1);
suword(&job->_aiocb_private.error, 0);
suword(&job->_aiocb_private.kernelinfo, -1);
if (num_queue_count >= max_queue_count ||
ki->kaio_count >= ki->kaio_qallowed_count) {
suword(&job->_aiocb_private.error, EAGAIN);
return (EAGAIN);
}
aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
aiocbe->inputcharge = 0;
aiocbe->outputcharge = 0;
knlist_init(&aiocbe->klist, AIO_MTX(ki), NULL, NULL, NULL);
if (oldsigev) {
bzero(&aiocbe->uaiocb, sizeof(struct aiocb));
error = copyin(job, &aiocbe->uaiocb, sizeof(struct oaiocb));
bcopy(&aiocbe->uaiocb.__spare__, &aiocbe->uaiocb.aio_sigevent,
sizeof(struct osigevent));
} else {
error = copyin(job, &aiocbe->uaiocb, sizeof(struct aiocb));
}
if (error) {
suword(&job->_aiocb_private.error, error);
uma_zfree(aiocb_zone, aiocbe);
return (error);
}
if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
suword(&job->_aiocb_private.error, EINVAL);
uma_zfree(aiocb_zone, aiocbe);
return (EINVAL);
}
if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
!_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
uma_zfree(aiocb_zone, aiocbe);
return (EINVAL);
}
ksiginfo_init(&aiocbe->ksi);
/* Save userspace address of the job info. */
aiocbe->uuaiocb = job;
/* Get the opcode. */
if (type != LIO_NOP)
aiocbe->uaiocb.aio_lio_opcode = type;
opcode = aiocbe->uaiocb.aio_lio_opcode;
/* Fetch the file object for the specified file descriptor. */
fd = aiocbe->uaiocb.aio_fildes;
switch (opcode) {
case LIO_WRITE:
error = fget_write(td, fd, &fp);
break;
case LIO_READ:
error = fget_read(td, fd, &fp);
break;
default:
error = fget(td, fd, &fp);
}
if (error) {
uma_zfree(aiocb_zone, aiocbe);
suword(&job->_aiocb_private.error, error);
return (error);
}
if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
error = EINVAL;
goto aqueue_fail;
}
if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) {
error = EINVAL;
goto aqueue_fail;
}
aiocbe->fd_file = fp;
mtx_lock(&aio_job_mtx);
jid = jobrefid++;
aiocbe->seqno = jobseqno++;
mtx_unlock(&aio_job_mtx);
error = suword(&job->_aiocb_private.kernelinfo, jid);
if (error) {
error = EINVAL;
goto aqueue_fail;
}
aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
if (opcode == LIO_NOP) {
fdrop(fp, td);
uma_zfree(aiocb_zone, aiocbe);
return (0);
}
if ((opcode != LIO_READ) && (opcode != LIO_WRITE) &&
(opcode != LIO_SYNC)) {
error = EINVAL;
goto aqueue_fail;
}
if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
goto no_kqueue;
kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
kev.ident = (uintptr_t)aiocbe->uuaiocb;
kev.filter = EVFILT_AIO;
kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
kev.data = (intptr_t)aiocbe;
kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr;
error = kqfd_register(kqfd, &kev, td, 1);
aqueue_fail:
if (error) {
fdrop(fp, td);
uma_zfree(aiocb_zone, aiocbe);
suword(&job->_aiocb_private.error, error);
goto done;
}
no_kqueue:
suword(&job->_aiocb_private.error, EINPROGRESS);
aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
aiocbe->userproc = p;
aiocbe->cred = crhold(td->td_ucred);
aiocbe->jobflags = 0;
aiocbe->lio = lj;
if (opcode == LIO_SYNC)
goto queueit;
if (fp->f_type == DTYPE_SOCKET) {
/*
* Alternate queueing for socket ops: Reach down into the
* descriptor to get the socket data. Then check to see if the
* socket is ready to be read or written (based on the requested
* operation).
*
* If it is not ready for io, then queue the aiocbe on the
* socket, and set the flags so we get a call when sbnotify()
* happens.
*
* Note if opcode is neither LIO_WRITE nor LIO_READ we lock
* and unlock the snd sockbuf for no reason.
*/
so = fp->f_data;
sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd;
SOCKBUF_LOCK(sb);
if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
LIO_WRITE) && (!sowriteable(so)))) {
sb->sb_flags |= SB_AIO;
mtx_lock(&aio_job_mtx);
TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
mtx_unlock(&aio_job_mtx);
AIO_LOCK(ki);
TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
aiocbe->jobstate = JOBST_JOBQSOCK;
ki->kaio_count++;
if (lj)
lj->lioj_count++;
AIO_UNLOCK(ki);
SOCKBUF_UNLOCK(sb);
atomic_add_int(&num_queue_count, 1);
error = 0;
goto done;
}
SOCKBUF_UNLOCK(sb);
}
if ((error = aio_qphysio(p, aiocbe)) == 0)
goto done;
#if 0
if (error > 0) {
aiocbe->uaiocb._aiocb_private.error = error;
suword(&job->_aiocb_private.error, error);
goto done;
}
#endif
queueit:
/* No buffer for daemon I/O. */
aiocbe->bp = NULL;
atomic_add_int(&num_queue_count, 1);
AIO_LOCK(ki);
ki->kaio_count++;
if (lj)
lj->lioj_count++;
TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
if (opcode == LIO_SYNC) {
TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) {
if (cb->fd_file == aiocbe->fd_file &&
cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
cb->seqno < aiocbe->seqno) {
cb->jobflags |= AIOCBLIST_CHECKSYNC;
aiocbe->pending++;
}
}
TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) {
if (cb->fd_file == aiocbe->fd_file &&
cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
cb->seqno < aiocbe->seqno) {
cb->jobflags |= AIOCBLIST_CHECKSYNC;
aiocbe->pending++;
}
}
if (aiocbe->pending != 0) {
TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list);
aiocbe->jobstate = JOBST_JOBQSYNC;
AIO_UNLOCK(ki);
goto done;
}
}
mtx_lock(&aio_job_mtx);
TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
aiocbe->jobstate = JOBST_JOBQGLOBAL;
aio_kick_nowait(p);
mtx_unlock(&aio_job_mtx);
AIO_UNLOCK(ki);
error = 0;
done:
return (error);
}
static void
aio_kick_nowait(struct proc *userp)
{
struct kaioinfo *ki = userp->p_aioinfo;
struct aiothreadlist *aiop;
mtx_assert(&aio_job_mtx, MA_OWNED);
if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
TAILQ_REMOVE(&aio_freeproc, aiop, list);
aiop->aiothreadflags &= ~AIOP_FREE;
wakeup(aiop->aiothread);
} else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
((ki->kaio_active_count + num_aio_resv_start) <
ki->kaio_maxactive_count)) {
taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task);
}
}
static int
aio_kick(struct proc *userp)
{
struct kaioinfo *ki = userp->p_aioinfo;
struct aiothreadlist *aiop;
int error, ret = 0;
mtx_assert(&aio_job_mtx, MA_OWNED);
retryproc:
if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
TAILQ_REMOVE(&aio_freeproc, aiop, list);
aiop->aiothreadflags &= ~AIOP_FREE;
wakeup(aiop->aiothread);
} else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
((ki->kaio_active_count + num_aio_resv_start) <
ki->kaio_maxactive_count)) {
num_aio_resv_start++;
mtx_unlock(&aio_job_mtx);
error = aio_newproc(&num_aio_resv_start);
mtx_lock(&aio_job_mtx);
if (error) {
num_aio_resv_start--;
goto retryproc;
}
} else {
ret = -1;
}
return (ret);
}
static void
aio_kick_helper(void *context, int pending)
{
struct proc *userp = context;
mtx_lock(&aio_job_mtx);
while (--pending >= 0) {
if (aio_kick(userp))
break;
}
mtx_unlock(&aio_job_mtx);
}
/*
* Support the aio_return system call, as a side-effect, kernel resources are
* released.
*/
int
aio_return(struct thread *td, struct aio_return_args *uap)
{
struct proc *p = td->td_proc;
struct aiocblist *cb;
struct aiocb *uaiocb;
struct kaioinfo *ki;
int status, error;
ki = p->p_aioinfo;
if (ki == NULL)
return (EINVAL);
uaiocb = uap->aiocbp;
AIO_LOCK(ki);
TAILQ_FOREACH(cb, &ki->kaio_done, plist) {
if (cb->uuaiocb == uaiocb)
break;
}
if (cb != NULL) {
MPASS(cb->jobstate == JOBST_JOBFINISHED);
status = cb->uaiocb._aiocb_private.status;
error = cb->uaiocb._aiocb_private.error;
td->td_retval[0] = status;
if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
td->td_ru.ru_oublock += cb->outputcharge;
cb->outputcharge = 0;
} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
td->td_ru.ru_inblock += cb->inputcharge;
cb->inputcharge = 0;
}
aio_free_entry(cb);
AIO_UNLOCK(ki);
suword(&uaiocb->_aiocb_private.error, error);
suword(&uaiocb->_aiocb_private.status, status);
} else {
error = EINVAL;
AIO_UNLOCK(ki);
}
return (error);
}
/*
* Allow a process to wakeup when any of the I/O requests are completed.
*/
int
aio_suspend(struct thread *td, struct aio_suspend_args *uap)
{
struct proc *p = td->td_proc;
struct timeval atv;
struct timespec ts;
struct aiocb *const *cbptr, *cbp;
struct kaioinfo *ki;
struct aiocblist *cb, *cbfirst;
struct aiocb **ujoblist;
int njoblist;
int error;
int timo;
int i;
if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
return (EINVAL);
timo = 0;
if (uap->timeout) {
/* Get timespec struct. */
if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
return (error);
if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000)
return (EINVAL);
TIMESPEC_TO_TIMEVAL(&atv, &ts);
if (itimerfix(&atv))
return (EINVAL);
timo = tvtohz(&atv);
}
ki = p->p_aioinfo;
if (ki == NULL)
return (EAGAIN);
njoblist = 0;
ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
cbptr = uap->aiocbp;
for (i = 0; i < uap->nent; i++) {
cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
if (cbp == 0)
continue;
ujoblist[njoblist] = cbp;
njoblist++;
}
if (njoblist == 0) {
uma_zfree(aiol_zone, ujoblist);
return (0);
}
AIO_LOCK(ki);
for (;;) {
cbfirst = NULL;
error = 0;
TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
for (i = 0; i < njoblist; i++) {
if (cb->uuaiocb == ujoblist[i]) {
if (cbfirst == NULL)
cbfirst = cb;
if (cb->jobstate == JOBST_JOBFINISHED)
goto RETURN;
}
}
}
/* All tasks were finished. */
if (cbfirst == NULL)
break;
ki->kaio_flags |= KAIO_WAKEUP;
error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
"aiospn", timo);
if (error == ERESTART)
error = EINTR;
if (error)
break;
}
RETURN:
AIO_UNLOCK(ki);
uma_zfree(aiol_zone, ujoblist);
return (error);
}
/*
* aio_cancel cancels any non-physio aio operations not currently in
* progress.
*/
int
aio_cancel(struct thread *td, struct aio_cancel_args *uap)
{
struct proc *p = td->td_proc;
struct kaioinfo *ki;
struct aiocblist *cbe, *cbn;
struct file *fp;
struct socket *so;
int error;
int remove;
int cancelled = 0;
int notcancelled = 0;
struct vnode *vp;
/* Lookup file object. */
error = fget(td, uap->fd, &fp);
if (error)
return (error);
ki = p->p_aioinfo;
if (ki == NULL)
goto done;
if (fp->f_type == DTYPE_VNODE) {
vp = fp->f_vnode;
if (vn_isdisk(vp, &error)) {
fdrop(fp, td);
td->td_retval[0] = AIO_NOTCANCELED;
return (0);
}
}
AIO_LOCK(ki);
TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
if ((uap->fd == cbe->uaiocb.aio_fildes) &&
((uap->aiocbp == NULL) ||
(uap->aiocbp == cbe->uuaiocb))) {
remove = 0;
mtx_lock(&aio_job_mtx);
if (cbe->jobstate == JOBST_JOBQGLOBAL) {
TAILQ_REMOVE(&aio_jobs, cbe, list);
remove = 1;
} else if (cbe->jobstate == JOBST_JOBQSOCK) {
MPASS(fp->f_type == DTYPE_SOCKET);
so = fp->f_data;
TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
remove = 1;
} else if (cbe->jobstate == JOBST_JOBQSYNC) {
TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
remove = 1;
}
mtx_unlock(&aio_job_mtx);
if (remove) {
TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
cbe->uaiocb._aiocb_private.status = -1;
cbe->uaiocb._aiocb_private.error = ECANCELED;
aio_bio_done_notify(p, cbe, DONE_QUEUE);
cancelled++;
} else {
notcancelled++;
}
if (uap->aiocbp != NULL)
break;
}
}
AIO_UNLOCK(ki);
done:
fdrop(fp, td);
if (uap->aiocbp != NULL) {
if (cancelled) {
td->td_retval[0] = AIO_CANCELED;
return (0);
}
}
if (notcancelled) {
td->td_retval[0] = AIO_NOTCANCELED;
return (0);
}
if (cancelled) {
td->td_retval[0] = AIO_CANCELED;
return (0);
}
td->td_retval[0] = AIO_ALLDONE;
return (0);
}
/*
* aio_error is implemented in the kernel level for compatibility purposes
* only. For a user mode async implementation, it would be best to do it in
* a userland subroutine.
*/
int
aio_error(struct thread *td, struct aio_error_args *uap)
{
struct proc *p = td->td_proc;
struct aiocblist *cb;
struct kaioinfo *ki;
int status;
ki = p->p_aioinfo;
if (ki == NULL) {
td->td_retval[0] = EINVAL;
return (0);
}
AIO_LOCK(ki);
TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
if (cb->uuaiocb == uap->aiocbp) {
if (cb->jobstate == JOBST_JOBFINISHED)
td->td_retval[0] =
cb->uaiocb._aiocb_private.error;
else
td->td_retval[0] = EINPROGRESS;
AIO_UNLOCK(ki);
return (0);
}
}
AIO_UNLOCK(ki);
/*
* Hack for failure of aio_aqueue.
*/
status = fuword(&uap->aiocbp->_aiocb_private.status);
if (status == -1) {
td->td_retval[0] = fuword(&uap->aiocbp->_aiocb_private.error);
return (0);
}
td->td_retval[0] = EINVAL;
return (0);
}
/* syscall - asynchronous read from a file (REALTIME) */
int
oaio_read(struct thread *td, struct oaio_read_args *uap)
{
return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 1);
}
int
aio_read(struct thread *td, struct aio_read_args *uap)
{
return aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, 0);
}
/* syscall - asynchronous write to a file (REALTIME) */
int
oaio_write(struct thread *td, struct oaio_write_args *uap)
{
return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 1);
}
int
aio_write(struct thread *td, struct aio_write_args *uap)
{
return aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, 0);
}
/* syscall - list directed I/O (REALTIME) */
int
olio_listio(struct thread *td, struct olio_listio_args *uap)
{
return do_lio_listio(td, (struct lio_listio_args *)uap, 1);
}
/* syscall - list directed I/O (REALTIME) */
int
lio_listio(struct thread *td, struct lio_listio_args *uap)
{
return do_lio_listio(td, uap, 0);
}
static int
do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev)
{
struct proc *p = td->td_proc;
struct aiocb *iocb, * const *cbptr;
struct kaioinfo *ki;
struct aioliojob *lj;
struct kevent kev;
int nent;
int error;
int nerror;
int i;
if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
return (EINVAL);
nent = uap->nent;
if (nent < 0 || nent > AIO_LISTIO_MAX)
return (EINVAL);
if (p->p_aioinfo == NULL)
aio_init_aioinfo(p);
ki = p->p_aioinfo;
lj = uma_zalloc(aiolio_zone, M_WAITOK);
lj->lioj_flags = 0;
lj->lioj_count = 0;
lj->lioj_finished_count = 0;
knlist_init(&lj->klist, AIO_MTX(ki), NULL, NULL, NULL);
ksiginfo_init(&lj->lioj_ksi);
/*
* Setup signal.
*/
if (uap->sig && (uap->mode == LIO_NOWAIT)) {
bzero(&lj->lioj_signal, sizeof(&lj->lioj_signal));
error = copyin(uap->sig, &lj->lioj_signal,
oldsigev ? sizeof(struct osigevent) :
sizeof(struct sigevent));
if (error) {
uma_zfree(aiolio_zone, lj);
return (error);
}
if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
/* Assume only new style KEVENT */
kev.filter = EVFILT_LIO;
kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
kev.ident = (uintptr_t)uap->acb_list; /* something unique */
kev.data = (intptr_t)lj;
/* pass user defined sigval data */
kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
error = kqfd_register(
lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
if (error) {
uma_zfree(aiolio_zone, lj);
return (error);
}
} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
;
} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
uma_zfree(aiolio_zone, lj);
return EINVAL;
}
lj->lioj_flags |= LIOJ_SIGNAL;
} else {
uma_zfree(aiolio_zone, lj);
return EINVAL;
}
}
AIO_LOCK(ki);
TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
/*
* Add extra aiocb count to avoid the lio to be freed
* by other threads doing aio_waitcomplete or aio_return,
* and prevent event from being sent until we have queued
* all tasks.
*/
lj->lioj_count = 1;
AIO_UNLOCK(ki);
/*
* Get pointers to the list of I/O requests.
*/
nerror = 0;
cbptr = uap->acb_list;
for (i = 0; i < uap->nent; i++) {
iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) {
error = aio_aqueue(td, iocb, lj, LIO_NOP, oldsigev);
if (error != 0)
nerror++;
}
}
error = 0;
AIO_LOCK(ki);
if (uap->mode == LIO_WAIT) {
while (lj->lioj_count - 1 != lj->lioj_finished_count) {
ki->kaio_flags |= KAIO_WAKEUP;
error = msleep(&p->p_aioinfo, AIO_MTX(ki),
PRIBIO | PCATCH, "aiospn", 0);
if (error == ERESTART)
error = EINTR;
if (error)
break;
}
} else {
if (lj->lioj_count - 1 == lj->lioj_finished_count) {
if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
lj->lioj_flags |= LIOJ_KEVENT_POSTED;
KNOTE_LOCKED(&lj->klist, 1);
}
if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
== LIOJ_SIGNAL
&& (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
aio_sendsig(p, &lj->lioj_signal,
&lj->lioj_ksi);
lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
}
}
}
lj->lioj_count--;
if (lj->lioj_count == 0) {
TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
knlist_delete(&lj->klist, curthread, 1);
PROC_LOCK(p);
sigqueue_take(&lj->lioj_ksi);
PROC_UNLOCK(p);
AIO_UNLOCK(ki);
uma_zfree(aiolio_zone, lj);
} else
AIO_UNLOCK(ki);
if (nerror)
return (EIO);
return (error);
}
/*
* Called from interrupt thread for physio, we should return as fast
* as possible, so we schedule a biohelper task.
*/
static void
aio_physwakeup(struct buf *bp)
{
struct aiocblist *aiocbe;
aiocbe = (struct aiocblist *)bp->b_caller1;
taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask);
}
/*
* Task routine to perform heavy tasks, process wakeup, and signals.
*/
static void
biohelper(void *context, int pending)
{
struct aiocblist *aiocbe = context;
struct buf *bp;
struct proc *userp;
struct kaioinfo *ki;
int nblks;
bp = aiocbe->bp;
userp = aiocbe->userproc;
ki = userp->p_aioinfo;
AIO_LOCK(ki);
aiocbe->uaiocb._aiocb_private.status -= bp->b_resid;
aiocbe->uaiocb._aiocb_private.error = 0;
if (bp->b_ioflags & BIO_ERROR)
aiocbe->uaiocb._aiocb_private.error = bp->b_error;
nblks = btodb(aiocbe->uaiocb.aio_nbytes);
if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE)
aiocbe->outputcharge += nblks;
else
aiocbe->inputcharge += nblks;
aiocbe->bp = NULL;
TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist);
ki->kaio_buffer_count--;
aio_bio_done_notify(userp, aiocbe, DONE_BUF);
AIO_UNLOCK(ki);
/* Release mapping into kernel space. */
vunmapbuf(bp);
relpbuf(bp, NULL);
atomic_subtract_int(&num_buf_aio, 1);
}
/* syscall - wait for the next completion of an aio request */
int
aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
{
struct proc *p = td->td_proc;
struct timeval atv;
struct timespec ts;
struct kaioinfo *ki;
struct aiocblist *cb;
struct aiocb *uuaiocb;
int error, status, timo;
suword(uap->aiocbp, (long)NULL);
timo = 0;
if (uap->timeout) {
/* Get timespec struct. */
error = copyin(uap->timeout, &ts, sizeof(ts));
if (error)
return (error);
if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000))
return (EINVAL);
TIMESPEC_TO_TIMEVAL(&atv, &ts);
if (itimerfix(&atv))
return (EINVAL);
timo = tvtohz(&atv);
}
if (p->p_aioinfo == NULL)
aio_init_aioinfo(p);
ki = p->p_aioinfo;
error = 0;
cb = NULL;
AIO_LOCK(ki);
while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
ki->kaio_flags |= KAIO_WAKEUP;
error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
"aiowc", timo);
if (timo && error == ERESTART)
error = EINTR;
if (error)
break;
}
if (cb != NULL) {
MPASS(cb->jobstate == JOBST_JOBFINISHED);
uuaiocb = cb->uuaiocb;
status = cb->uaiocb._aiocb_private.status;
error = cb->uaiocb._aiocb_private.error;
td->td_retval[0] = status;
if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
td->td_ru.ru_oublock += cb->outputcharge;
cb->outputcharge = 0;
} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
td->td_ru.ru_inblock += cb->inputcharge;
cb->inputcharge = 0;
}
aio_free_entry(cb);
AIO_UNLOCK(ki);
suword(uap->aiocbp, (long)uuaiocb);
suword(&uuaiocb->_aiocb_private.error, error);
suword(&uuaiocb->_aiocb_private.status, status);
} else
AIO_UNLOCK(ki);
return (error);
}
int
aio_fsync(struct thread *td, struct aio_fsync_args *uap)
{
struct proc *p = td->td_proc;
struct kaioinfo *ki;
if (uap->op != O_SYNC) /* XXX lack of O_DSYNC */
return (EINVAL);
ki = p->p_aioinfo;
if (ki == NULL)
aio_init_aioinfo(p);
return aio_aqueue(td, uap->aiocbp, NULL, LIO_SYNC, 0);
}
/* kqueue attach function */
static int
filt_aioattach(struct knote *kn)
{
struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
/*
* The aiocbe pointer must be validated before using it, so
* registration is restricted to the kernel; the user cannot
* set EV_FLAG1.
*/
if ((kn->kn_flags & EV_FLAG1) == 0)
return (EPERM);
kn->kn_flags &= ~EV_FLAG1;
knlist_add(&aiocbe->klist, kn, 0);
return (0);
}
/* kqueue detach function */
static void
filt_aiodetach(struct knote *kn)
{
struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
if (!knlist_empty(&aiocbe->klist))
knlist_remove(&aiocbe->klist, kn, 0);
}
/* kqueue filter function */
/*ARGSUSED*/
static int
filt_aio(struct knote *kn, long hint)
{
struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
if (aiocbe->jobstate != JOBST_JOBFINISHED)
return (0);
kn->kn_flags |= EV_EOF;
return (1);
}
/* kqueue attach function */
static int
filt_lioattach(struct knote *kn)
{
struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
/*
* The aioliojob pointer must be validated before using it, so
* registration is restricted to the kernel; the user cannot
* set EV_FLAG1.
*/
if ((kn->kn_flags & EV_FLAG1) == 0)
return (EPERM);
kn->kn_flags &= ~EV_FLAG1;
knlist_add(&lj->klist, kn, 0);
return (0);
}
/* kqueue detach function */
static void
filt_liodetach(struct knote *kn)
{
struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
if (!knlist_empty(&lj->klist))
knlist_remove(&lj->klist, kn, 0);
}
/* kqueue filter function */
/*ARGSUSED*/
static int
filt_lio(struct knote *kn, long hint)
{
struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
}