mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-20 11:11:24 +00:00
463 lines
9.9 KiB
C
463 lines
9.9 KiB
C
/*
|
|
* util.c
|
|
*
|
|
* some general memory functions
|
|
*
|
|
* a Net::DNS like library for C
|
|
*
|
|
* (c) NLnet Labs, 2004-2006
|
|
*
|
|
* See the file LICENSE for the license
|
|
*/
|
|
|
|
#include <ldns/config.h>
|
|
|
|
#include <ldns/rdata.h>
|
|
#include <ldns/rr.h>
|
|
#include <ldns/util.h>
|
|
#include <strings.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <sys/time.h>
|
|
#include <time.h>
|
|
|
|
#ifdef HAVE_SSL
|
|
#include <openssl/rand.h>
|
|
#endif
|
|
|
|
ldns_lookup_table *
|
|
ldns_lookup_by_name(ldns_lookup_table *table, const char *name)
|
|
{
|
|
while (table->name != NULL) {
|
|
if (strcasecmp(name, table->name) == 0)
|
|
return table;
|
|
table++;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
ldns_lookup_table *
|
|
ldns_lookup_by_id(ldns_lookup_table *table, int id)
|
|
{
|
|
while (table->name != NULL) {
|
|
if (table->id == id)
|
|
return table;
|
|
table++;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
ldns_get_bit(uint8_t bits[], size_t index)
|
|
{
|
|
/*
|
|
* The bits are counted from left to right, so bit #0 is the
|
|
* left most bit.
|
|
*/
|
|
return (int) (bits[index / 8] & (1 << (7 - index % 8)));
|
|
}
|
|
|
|
int
|
|
ldns_get_bit_r(uint8_t bits[], size_t index)
|
|
{
|
|
/*
|
|
* The bits are counted from right to left, so bit #0 is the
|
|
* right most bit.
|
|
*/
|
|
return (int) bits[index / 8] & (1 << (index % 8));
|
|
}
|
|
|
|
void
|
|
ldns_set_bit(uint8_t *byte, int bit_nr, bool value)
|
|
{
|
|
/*
|
|
* The bits are counted from right to left, so bit #0 is the
|
|
* right most bit.
|
|
*/
|
|
if (bit_nr >= 0 && bit_nr < 8) {
|
|
if (value) {
|
|
*byte = *byte | (0x01 << bit_nr);
|
|
} else {
|
|
*byte = *byte & ~(0x01 << bit_nr);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
ldns_hexdigit_to_int(char ch)
|
|
{
|
|
switch (ch) {
|
|
case '0': return 0;
|
|
case '1': return 1;
|
|
case '2': return 2;
|
|
case '3': return 3;
|
|
case '4': return 4;
|
|
case '5': return 5;
|
|
case '6': return 6;
|
|
case '7': return 7;
|
|
case '8': return 8;
|
|
case '9': return 9;
|
|
case 'a': case 'A': return 10;
|
|
case 'b': case 'B': return 11;
|
|
case 'c': case 'C': return 12;
|
|
case 'd': case 'D': return 13;
|
|
case 'e': case 'E': return 14;
|
|
case 'f': case 'F': return 15;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
char
|
|
ldns_int_to_hexdigit(int i)
|
|
{
|
|
switch (i) {
|
|
case 0: return '0';
|
|
case 1: return '1';
|
|
case 2: return '2';
|
|
case 3: return '3';
|
|
case 4: return '4';
|
|
case 5: return '5';
|
|
case 6: return '6';
|
|
case 7: return '7';
|
|
case 8: return '8';
|
|
case 9: return '9';
|
|
case 10: return 'a';
|
|
case 11: return 'b';
|
|
case 12: return 'c';
|
|
case 13: return 'd';
|
|
case 14: return 'e';
|
|
case 15: return 'f';
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
|
|
int
|
|
ldns_hexstring_to_data(uint8_t *data, const char *str)
|
|
{
|
|
size_t i;
|
|
|
|
if (!str || !data) {
|
|
return -1;
|
|
}
|
|
|
|
if (strlen(str) % 2 != 0) {
|
|
return -2;
|
|
}
|
|
|
|
for (i = 0; i < strlen(str) / 2; i++) {
|
|
data[i] =
|
|
16 * (uint8_t) ldns_hexdigit_to_int(str[i*2]) +
|
|
(uint8_t) ldns_hexdigit_to_int(str[i*2 + 1]);
|
|
}
|
|
|
|
return (int) i;
|
|
}
|
|
|
|
const char *
|
|
ldns_version(void)
|
|
{
|
|
return (char*)LDNS_VERSION;
|
|
}
|
|
|
|
/* Number of days per month (except for February in leap years). */
|
|
static const int mdays[] = {
|
|
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
|
|
};
|
|
|
|
#define LDNS_MOD(x,y) (((x) % (y) < 0) ? ((x) % (y) + (y)) : ((x) % (y)))
|
|
#define LDNS_DIV(x,y) (((x) % (y) < 0) ? ((x) / (y) - 1 ) : ((x) / (y)))
|
|
|
|
static int
|
|
is_leap_year(int year)
|
|
{
|
|
return LDNS_MOD(year, 4) == 0 && (LDNS_MOD(year, 100) != 0
|
|
|| LDNS_MOD(year, 400) == 0);
|
|
}
|
|
|
|
static int
|
|
leap_days(int y1, int y2)
|
|
{
|
|
--y1;
|
|
--y2;
|
|
return (LDNS_DIV(y2, 4) - LDNS_DIV(y1, 4)) -
|
|
(LDNS_DIV(y2, 100) - LDNS_DIV(y1, 100)) +
|
|
(LDNS_DIV(y2, 400) - LDNS_DIV(y1, 400));
|
|
}
|
|
|
|
/*
|
|
* Code adapted from Python 2.4.1 sources (Lib/calendar.py).
|
|
*/
|
|
time_t
|
|
ldns_mktime_from_utc(const struct tm *tm)
|
|
{
|
|
int year = 1900 + tm->tm_year;
|
|
time_t days = 365 * ((time_t) year - 1970) + leap_days(1970, year);
|
|
time_t hours;
|
|
time_t minutes;
|
|
time_t seconds;
|
|
int i;
|
|
|
|
for (i = 0; i < tm->tm_mon; ++i) {
|
|
days += mdays[i];
|
|
}
|
|
if (tm->tm_mon > 1 && is_leap_year(year)) {
|
|
++days;
|
|
}
|
|
days += tm->tm_mday - 1;
|
|
|
|
hours = days * 24 + tm->tm_hour;
|
|
minutes = hours * 60 + tm->tm_min;
|
|
seconds = minutes * 60 + tm->tm_sec;
|
|
|
|
return seconds;
|
|
}
|
|
|
|
time_t
|
|
mktime_from_utc(const struct tm *tm)
|
|
{
|
|
return ldns_mktime_from_utc(tm);
|
|
}
|
|
|
|
#if SIZEOF_TIME_T <= 4
|
|
|
|
static void
|
|
ldns_year_and_yday_from_days_since_epoch(int64_t days, struct tm *result)
|
|
{
|
|
int year = 1970;
|
|
int new_year;
|
|
|
|
while (days < 0 || days >= (int64_t) (is_leap_year(year) ? 366 : 365)) {
|
|
new_year = year + (int) LDNS_DIV(days, 365);
|
|
days -= (new_year - year) * 365;
|
|
days -= leap_days(year, new_year);
|
|
year = new_year;
|
|
}
|
|
result->tm_year = year;
|
|
result->tm_yday = (int) days;
|
|
}
|
|
|
|
/* Number of days per month in a leap year. */
|
|
static const int leap_year_mdays[] = {
|
|
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
|
|
};
|
|
|
|
static void
|
|
ldns_mon_and_mday_from_year_and_yday(struct tm *result)
|
|
{
|
|
int idays = result->tm_yday;
|
|
const int *mon_lengths = is_leap_year(result->tm_year) ?
|
|
leap_year_mdays : mdays;
|
|
|
|
result->tm_mon = 0;
|
|
while (idays >= mon_lengths[result->tm_mon]) {
|
|
idays -= mon_lengths[result->tm_mon++];
|
|
}
|
|
result->tm_mday = idays + 1;
|
|
}
|
|
|
|
static void
|
|
ldns_wday_from_year_and_yday(struct tm *result)
|
|
{
|
|
result->tm_wday = 4 /* 1-1-1970 was a thursday */
|
|
+ LDNS_MOD((result->tm_year - 1970), 7) * LDNS_MOD(365, 7)
|
|
+ leap_days(1970, result->tm_year)
|
|
+ result->tm_yday;
|
|
result->tm_wday = LDNS_MOD(result->tm_wday, 7);
|
|
if (result->tm_wday < 0) {
|
|
result->tm_wday += 7;
|
|
}
|
|
}
|
|
|
|
static struct tm *
|
|
ldns_gmtime64_r(int64_t clock, struct tm *result)
|
|
{
|
|
result->tm_isdst = 0;
|
|
result->tm_sec = (int) LDNS_MOD(clock, 60);
|
|
clock = LDNS_DIV(clock, 60);
|
|
result->tm_min = (int) LDNS_MOD(clock, 60);
|
|
clock = LDNS_DIV(clock, 60);
|
|
result->tm_hour = (int) LDNS_MOD(clock, 24);
|
|
clock = LDNS_DIV(clock, 24);
|
|
|
|
ldns_year_and_yday_from_days_since_epoch(clock, result);
|
|
ldns_mon_and_mday_from_year_and_yday(result);
|
|
ldns_wday_from_year_and_yday(result);
|
|
result->tm_year -= 1900;
|
|
|
|
return result;
|
|
}
|
|
|
|
#endif /* SIZEOF_TIME_T <= 4 */
|
|
|
|
static int64_t
|
|
ldns_serial_arithmitics_time(int32_t time, time_t now)
|
|
{
|
|
int32_t offset = time - (int32_t) now;
|
|
return (int64_t) now + offset;
|
|
}
|
|
|
|
|
|
struct tm *
|
|
ldns_serial_arithmitics_gmtime_r(int32_t time, time_t now, struct tm *result)
|
|
{
|
|
#if SIZEOF_TIME_T <= 4
|
|
int64_t secs_since_epoch = ldns_serial_arithmitics_time(time, now);
|
|
return ldns_gmtime64_r(secs_since_epoch, result);
|
|
#else
|
|
time_t secs_since_epoch = ldns_serial_arithmitics_time(time, now);
|
|
return gmtime_r(&secs_since_epoch, result);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Init the random source
|
|
* applications should call this if they need entropy data within ldns
|
|
* If openSSL is available, it is automatically seeded from /dev/urandom
|
|
* or /dev/random
|
|
*
|
|
* If you need more entropy, or have no openssl available, this function
|
|
* MUST be called at the start of the program
|
|
*
|
|
* If openssl *is* available, this function just adds more entropy
|
|
**/
|
|
int
|
|
ldns_init_random(FILE *fd, unsigned int size)
|
|
{
|
|
/* if fp is given, seed srandom with data from file
|
|
otherwise use /dev/urandom */
|
|
FILE *rand_f;
|
|
uint8_t *seed;
|
|
size_t read = 0;
|
|
unsigned int seed_i;
|
|
struct timeval tv;
|
|
|
|
/* we'll need at least sizeof(unsigned int) bytes for the
|
|
standard prng seed */
|
|
if (size < (unsigned int) sizeof(seed_i)){
|
|
size = (unsigned int) sizeof(seed_i);
|
|
}
|
|
|
|
seed = LDNS_XMALLOC(uint8_t, size);
|
|
if(!seed) {
|
|
return 1;
|
|
}
|
|
|
|
if (!fd) {
|
|
if ((rand_f = fopen("/dev/urandom", "r")) == NULL) {
|
|
/* no readable /dev/urandom, try /dev/random */
|
|
if ((rand_f = fopen("/dev/random", "r")) == NULL) {
|
|
/* no readable /dev/random either, and no entropy
|
|
source given. we'll have to improvise */
|
|
for (read = 0; read < size; read++) {
|
|
gettimeofday(&tv, NULL);
|
|
seed[read] = (uint8_t) (tv.tv_usec % 256);
|
|
}
|
|
} else {
|
|
read = fread(seed, 1, size, rand_f);
|
|
}
|
|
} else {
|
|
read = fread(seed, 1, size, rand_f);
|
|
}
|
|
} else {
|
|
rand_f = fd;
|
|
read = fread(seed, 1, size, rand_f);
|
|
}
|
|
|
|
if (read < size) {
|
|
LDNS_FREE(seed);
|
|
if (!fd) fclose(rand_f);
|
|
return 1;
|
|
} else {
|
|
#ifdef HAVE_SSL
|
|
/* Seed the OpenSSL prng (most systems have it seeded
|
|
automatically, in that case this call just adds entropy */
|
|
RAND_seed(seed, (int) size);
|
|
#else
|
|
/* Seed the standard prng, only uses the first
|
|
* unsigned sizeof(unsiged int) bytes found in the entropy pool
|
|
*/
|
|
memcpy(&seed_i, seed, sizeof(seed_i));
|
|
srandom(seed_i);
|
|
#endif
|
|
LDNS_FREE(seed);
|
|
}
|
|
|
|
if (!fd) {
|
|
if (rand_f) fclose(rand_f);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Get random number.
|
|
*
|
|
*/
|
|
uint16_t
|
|
ldns_get_random(void)
|
|
{
|
|
uint16_t rid = 0;
|
|
#ifdef HAVE_SSL
|
|
if (RAND_bytes((unsigned char*)&rid, 2) != 1) {
|
|
rid = (uint16_t) random();
|
|
}
|
|
#else
|
|
rid = (uint16_t) random();
|
|
#endif
|
|
return rid;
|
|
}
|
|
|
|
/*
|
|
* BubbleBabble code taken from OpenSSH
|
|
* Copyright (c) 2001 Carsten Raskgaard. All rights reserved.
|
|
*/
|
|
char *
|
|
ldns_bubblebabble(uint8_t *data, size_t len)
|
|
{
|
|
char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
|
|
char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
|
|
'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
|
|
size_t i, j = 0, rounds, seed = 1;
|
|
char *retval;
|
|
|
|
rounds = (len / 2) + 1;
|
|
retval = LDNS_XMALLOC(char, rounds * 6);
|
|
if(!retval) return NULL;
|
|
retval[j++] = 'x';
|
|
for (i = 0; i < rounds; i++) {
|
|
size_t idx0, idx1, idx2, idx3, idx4;
|
|
if ((i + 1 < rounds) || (len % 2 != 0)) {
|
|
idx0 = (((((size_t)(data[2 * i])) >> 6) & 3) +
|
|
seed) % 6;
|
|
idx1 = (((size_t)(data[2 * i])) >> 2) & 15;
|
|
idx2 = ((((size_t)(data[2 * i])) & 3) +
|
|
(seed / 6)) % 6;
|
|
retval[j++] = vowels[idx0];
|
|
retval[j++] = consonants[idx1];
|
|
retval[j++] = vowels[idx2];
|
|
if ((i + 1) < rounds) {
|
|
idx3 = (((size_t)(data[(2 * i) + 1])) >> 4) & 15;
|
|
idx4 = (((size_t)(data[(2 * i) + 1]))) & 15;
|
|
retval[j++] = consonants[idx3];
|
|
retval[j++] = '-';
|
|
retval[j++] = consonants[idx4];
|
|
seed = ((seed * 5) +
|
|
((((size_t)(data[2 * i])) * 7) +
|
|
((size_t)(data[(2 * i) + 1])))) % 36;
|
|
}
|
|
} else {
|
|
idx0 = seed % 6;
|
|
idx1 = 16;
|
|
idx2 = seed / 6;
|
|
retval[j++] = vowels[idx0];
|
|
retval[j++] = consonants[idx1];
|
|
retval[j++] = vowels[idx2];
|
|
}
|
|
}
|
|
retval[j++] = 'x';
|
|
retval[j++] = '\0';
|
|
return retval;
|
|
}
|