1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-24 16:10:11 +00:00
freebsd/sys/net80211/ieee80211_superg.c

901 lines
25 KiB
C

/*-
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/endian.h>
#include <sys/socket.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_input.h>
#include <net80211/ieee80211_phy.h>
#include <net80211/ieee80211_superg.h>
/*
* Atheros fast-frame encapsulation format.
* FF max payload:
* 802.2 + FFHDR + HPAD + 802.3 + 802.2 + 1500 + SPAD + 802.3 + 802.2 + 1500:
* 8 + 4 + 4 + 14 + 8 + 1500 + 6 + 14 + 8 + 1500
* = 3066
*/
/* fast frame header is 32-bits */
#define ATH_FF_PROTO 0x0000003f /* protocol */
#define ATH_FF_PROTO_S 0
#define ATH_FF_FTYPE 0x000000c0 /* frame type */
#define ATH_FF_FTYPE_S 6
#define ATH_FF_HLEN32 0x00000300 /* optional hdr length */
#define ATH_FF_HLEN32_S 8
#define ATH_FF_SEQNUM 0x001ffc00 /* sequence number */
#define ATH_FF_SEQNUM_S 10
#define ATH_FF_OFFSET 0xffe00000 /* offset to 2nd payload */
#define ATH_FF_OFFSET_S 21
#define ATH_FF_MAX_HDR_PAD 4
#define ATH_FF_MAX_SEP_PAD 6
#define ATH_FF_MAX_HDR 30
#define ATH_FF_PROTO_L2TUNNEL 0 /* L2 tunnel protocol */
#define ATH_FF_ETH_TYPE 0x88bd /* Ether type for encapsulated frames */
#define ATH_FF_SNAP_ORGCODE_0 0x00
#define ATH_FF_SNAP_ORGCODE_1 0x03
#define ATH_FF_SNAP_ORGCODE_2 0x7f
#define ATH_FF_TXQMIN 2 /* min txq depth for staging */
#define ATH_FF_TXQMAX 50 /* maximum # of queued frames allowed */
#define ATH_FF_STAGEMAX 5 /* max waiting period for staged frame*/
#define ETHER_HEADER_COPY(dst, src) \
memcpy(dst, src, sizeof(struct ether_header))
static int ieee80211_ffppsmin = 2; /* pps threshold for ff aggregation */
SYSCTL_INT(_net_wlan, OID_AUTO, ffppsmin, CTLTYPE_INT | CTLFLAG_RW,
&ieee80211_ffppsmin, 0, "min packet rate before fast-frame staging");
static int ieee80211_ffagemax = -1; /* max time frames held on stage q */
SYSCTL_PROC(_net_wlan, OID_AUTO, ffagemax, CTLTYPE_INT | CTLFLAG_RW,
&ieee80211_ffagemax, 0, ieee80211_sysctl_msecs_ticks, "I",
"max hold time for fast-frame staging (ms)");
void
ieee80211_superg_attach(struct ieee80211com *ic)
{
struct ieee80211_superg *sg;
if (ic->ic_caps & IEEE80211_C_FF) {
sg = (struct ieee80211_superg *) malloc(
sizeof(struct ieee80211_superg), M_80211_VAP,
M_NOWAIT | M_ZERO);
if (sg == NULL) {
printf("%s: cannot allocate SuperG state block\n",
__func__);
return;
}
ic->ic_superg = sg;
}
ieee80211_ffagemax = msecs_to_ticks(150);
}
void
ieee80211_superg_detach(struct ieee80211com *ic)
{
if (ic->ic_superg != NULL) {
free(ic->ic_superg, M_80211_VAP);
ic->ic_superg = NULL;
}
}
void
ieee80211_superg_vattach(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
if (ic->ic_superg == NULL) /* NB: can't do fast-frames w/o state */
vap->iv_caps &= ~IEEE80211_C_FF;
if (vap->iv_caps & IEEE80211_C_FF)
vap->iv_flags |= IEEE80211_F_FF;
/* NB: we only implement sta mode */
if (vap->iv_opmode == IEEE80211_M_STA &&
(vap->iv_caps & IEEE80211_C_TURBOP))
vap->iv_flags |= IEEE80211_F_TURBOP;
}
void
ieee80211_superg_vdetach(struct ieee80211vap *vap)
{
}
#define ATH_OUI_BYTES 0x00, 0x03, 0x7f
/*
* Add a WME information element to a frame.
*/
uint8_t *
ieee80211_add_ath(uint8_t *frm, uint8_t caps, ieee80211_keyix defkeyix)
{
static const struct ieee80211_ath_ie info = {
.ath_id = IEEE80211_ELEMID_VENDOR,
.ath_len = sizeof(struct ieee80211_ath_ie) - 2,
.ath_oui = { ATH_OUI_BYTES },
.ath_oui_type = ATH_OUI_TYPE,
.ath_oui_subtype= ATH_OUI_SUBTYPE,
.ath_version = ATH_OUI_VERSION,
};
struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
memcpy(frm, &info, sizeof(info));
ath->ath_capability = caps;
if (defkeyix != IEEE80211_KEYIX_NONE) {
ath->ath_defkeyix[0] = (defkeyix & 0xff);
ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
} else {
ath->ath_defkeyix[0] = 0xff;
ath->ath_defkeyix[1] = 0x7f;
}
return frm + sizeof(info);
}
#undef ATH_OUI_BYTES
uint8_t *
ieee80211_add_athcaps(uint8_t *frm, const struct ieee80211_node *bss)
{
const struct ieee80211vap *vap = bss->ni_vap;
return ieee80211_add_ath(frm,
vap->iv_flags & IEEE80211_F_ATHEROS,
((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
bss->ni_authmode != IEEE80211_AUTH_8021X) ?
vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
}
void
ieee80211_parse_ath(struct ieee80211_node *ni, uint8_t *ie)
{
const struct ieee80211_ath_ie *ath =
(const struct ieee80211_ath_ie *) ie;
ni->ni_ath_flags = ath->ath_capability;
ni->ni_ath_defkeyix = LE_READ_2(&ath->ath_defkeyix);
}
int
ieee80211_parse_athparams(struct ieee80211_node *ni, uint8_t *frm,
const struct ieee80211_frame *wh)
{
struct ieee80211vap *vap = ni->ni_vap;
const struct ieee80211_ath_ie *ath;
u_int len = frm[1];
int capschanged;
uint16_t defkeyix;
if (len < sizeof(struct ieee80211_ath_ie)-2) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_SUPERG,
wh, "Atheros", "too short, len %u", len);
return -1;
}
ath = (const struct ieee80211_ath_ie *)frm;
capschanged = (ni->ni_ath_flags != ath->ath_capability);
defkeyix = LE_READ_2(ath->ath_defkeyix);
if (capschanged || defkeyix != ni->ni_ath_defkeyix) {
ni->ni_ath_flags = ath->ath_capability;
ni->ni_ath_defkeyix = defkeyix;
IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
"ath ie change: new caps 0x%x defkeyix 0x%x",
ni->ni_ath_flags, ni->ni_ath_defkeyix);
}
if (IEEE80211_ATH_CAP(vap, ni, ATHEROS_CAP_TURBO_PRIME)) {
uint16_t curflags, newflags;
/*
* Check for turbo mode switch. Calculate flags
* for the new mode and effect the switch.
*/
newflags = curflags = vap->iv_ic->ic_bsschan->ic_flags;
/* NB: BOOST is not in ic_flags, so get it from the ie */
if (ath->ath_capability & ATHEROS_CAP_BOOST)
newflags |= IEEE80211_CHAN_TURBO;
else
newflags &= ~IEEE80211_CHAN_TURBO;
if (newflags != curflags)
ieee80211_dturbo_switch(vap, newflags);
}
return capschanged;
}
/*
* Decap the encapsulated frame pair and dispatch the first
* for delivery. The second frame is returned for delivery
* via the normal path.
*/
struct mbuf *
ieee80211_ff_decap(struct ieee80211_node *ni, struct mbuf *m)
{
#define FF_LLC_SIZE (sizeof(struct ether_header) + sizeof(struct llc))
#define MS(x,f) (((x) & f) >> f##_S)
struct ieee80211vap *vap = ni->ni_vap;
struct llc *llc;
uint32_t ath;
struct mbuf *n;
int framelen;
/* NB: we assume caller does this check for us */
KASSERT(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF),
("ff not negotiated"));
/*
* Check for fast-frame tunnel encapsulation.
*/
if (m->m_pkthdr.len < 3*FF_LLC_SIZE)
return m;
if (m->m_len < FF_LLC_SIZE &&
(m = m_pullup(m, FF_LLC_SIZE)) == NULL) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, "fast-frame",
"%s", "m_pullup(llc) failed");
vap->iv_stats.is_rx_tooshort++;
return NULL;
}
llc = (struct llc *)(mtod(m, uint8_t *) +
sizeof(struct ether_header));
if (llc->llc_snap.ether_type != htons(ATH_FF_ETH_TYPE))
return m;
m_adj(m, FF_LLC_SIZE);
m_copydata(m, 0, sizeof(uint32_t), (caddr_t) &ath);
if (MS(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, "fast-frame",
"unsupport tunnel protocol, header 0x%x", ath);
vap->iv_stats.is_ff_badhdr++;
m_freem(m);
return NULL;
}
/* NB: skip header and alignment padding */
m_adj(m, roundup(sizeof(uint32_t) - 2, 4) + 2);
vap->iv_stats.is_ff_decap++;
/*
* Decap the first frame, bust it apart from the
* second and deliver; then decap the second frame
* and return it to the caller for normal delivery.
*/
m = ieee80211_decap1(m, &framelen);
if (m == NULL) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, "fast-frame", "%s", "first decap failed");
vap->iv_stats.is_ff_tooshort++;
return NULL;
}
n = m_split(m, framelen, M_NOWAIT);
if (n == NULL) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, "fast-frame",
"%s", "unable to split encapsulated frames");
vap->iv_stats.is_ff_split++;
m_freem(m); /* NB: must reclaim */
return NULL;
}
/* XXX not right for WDS */
vap->iv_deliver_data(vap, ni, m); /* 1st of pair */
/*
* Decap second frame.
*/
m_adj(n, roundup2(framelen, 4) - framelen); /* padding */
n = ieee80211_decap1(n, &framelen);
if (n == NULL) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, "fast-frame", "%s", "second decap failed");
vap->iv_stats.is_ff_tooshort++;
}
/* XXX verify framelen against mbuf contents */
return n; /* 2nd delivered by caller */
#undef MS
#undef FF_LLC_SIZE
}
/*
* Do Ethernet-LLC encapsulation for each payload in a fast frame
* tunnel encapsulation. The frame is assumed to have an Ethernet
* header at the front that must be stripped before prepending the
* LLC followed by the Ethernet header passed in (with an Ethernet
* type that specifies the payload size).
*/
static struct mbuf *
ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
const struct ether_header *eh)
{
struct llc *llc;
uint16_t payload;
/* XXX optimize by combining m_adj+M_PREPEND */
m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
llc = mtod(m, struct llc *);
llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
llc->llc_control = LLC_UI;
llc->llc_snap.org_code[0] = 0;
llc->llc_snap.org_code[1] = 0;
llc->llc_snap.org_code[2] = 0;
llc->llc_snap.ether_type = eh->ether_type;
payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */
M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
if (m == NULL) { /* XXX cannot happen */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: no space for ether_header\n", __func__);
vap->iv_stats.is_tx_nobuf++;
return NULL;
}
ETHER_HEADER_COPY(mtod(m, void *), eh);
mtod(m, struct ether_header *)->ether_type = htons(payload);
return m;
}
/*
* Fast frame encapsulation. There must be two packets
* chained with m_nextpkt. We do header adjustment for
* each, add the tunnel encapsulation, and then concatenate
* the mbuf chains to form a single frame for transmission.
*/
struct mbuf *
ieee80211_ff_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace,
struct ieee80211_key *key)
{
struct mbuf *m2;
struct ether_header eh1, eh2;
struct llc *llc;
struct mbuf *m;
int pad;
m2 = m1->m_nextpkt;
if (m2 == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: only one frame\n", __func__);
goto bad;
}
m1->m_nextpkt = NULL;
/*
* Include fast frame headers in adjusting header layout.
*/
KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!"));
ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t));
m1 = ieee80211_mbuf_adjust(vap,
hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 2 +
sizeof(struct ether_header),
key, m1);
if (m1 == NULL) {
/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
m_freem(m2);
goto bad;
}
/*
* Copy second frame's Ethernet header out of line
* and adjust for encapsulation headers. Note that
* we make room for padding in case there isn't room
* at the end of first frame.
*/
KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
m2 = ieee80211_mbuf_adjust(vap,
ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header),
NULL, m2);
if (m2 == NULL) {
/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
goto bad;
}
/*
* Now do tunnel encapsulation. First, each
* frame gets a standard encapsulation.
*/
m1 = ff_encap1(vap, m1, &eh1);
if (m1 == NULL)
goto bad;
m2 = ff_encap1(vap, m2, &eh2);
if (m2 == NULL)
goto bad;
/*
* Pad leading frame to a 4-byte boundary. If there
* is space at the end of the first frame, put it
* there; otherwise prepend to the front of the second
* frame. We know doing the second will always work
* because we reserve space above. We prefer appending
* as this typically has better DMA alignment properties.
*/
for (m = m1; m->m_next != NULL; m = m->m_next)
;
pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
if (pad) {
if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */
m2->m_data -= pad;
m2->m_len += pad;
m2->m_pkthdr.len += pad;
} else { /* append to first */
m->m_len += pad;
m1->m_pkthdr.len += pad;
}
}
/*
* Now, stick 'em together and prepend the tunnel headers;
* first the Atheros tunnel header (all zero for now) and
* then a special fast frame LLC.
*
* XXX optimize by prepending together
*/
m->m_next = m2; /* NB: last mbuf from above */
m1->m_pkthdr.len += m2->m_pkthdr.len;
M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT);
if (m1 == NULL) { /* XXX cannot happen */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: no space for tunnel header\n", __func__);
vap->iv_stats.is_tx_nobuf++;
return NULL;
}
memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT);
if (m1 == NULL) { /* XXX cannot happen */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: no space for llc header\n", __func__);
vap->iv_stats.is_tx_nobuf++;
return NULL;
}
llc = mtod(m1, struct llc *);
llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
llc->llc_control = LLC_UI;
llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
vap->iv_stats.is_ff_encap++;
return m1;
bad:
if (m1 != NULL)
m_freem(m1);
if (m2 != NULL)
m_freem(m2);
return NULL;
}
static void
ff_transmit(struct ieee80211_node *ni, struct mbuf *m)
{
struct ieee80211vap *vap = ni->ni_vap;
int error;
/* encap and xmit */
m = ieee80211_encap(vap, ni, m);
if (m != NULL) {
struct ifnet *ifp = vap->iv_ifp;
struct ifnet *parent = ni->ni_ic->ic_ifp;
error = parent->if_transmit(parent, m);
if (error != 0) {
/* NB: IFQ_HANDOFF reclaims mbuf */
ieee80211_free_node(ni);
} else {
ifp->if_opackets++;
}
} else
ieee80211_free_node(ni);
}
/*
* Flush frames to device; note we re-use the linked list
* the frames were stored on and use the sentinel (unchanged)
* which may be non-NULL.
*/
static void
ff_flush(struct mbuf *head, struct mbuf *last)
{
struct mbuf *m, *next;
struct ieee80211_node *ni;
struct ieee80211vap *vap;
for (m = head; m != last; m = next) {
next = m->m_nextpkt;
m->m_nextpkt = NULL;
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
vap = ni->ni_vap;
IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
"%s: flush frame, age %u", __func__, M_AGE_GET(m));
vap->iv_stats.is_ff_flush++;
ff_transmit(ni, m);
}
}
/*
* Age frames on the staging queue.
*/
void
ieee80211_ff_age(struct ieee80211com *ic, struct ieee80211_stageq *sq,
int quanta)
{
struct ieee80211_superg *sg = ic->ic_superg;
struct mbuf *m, *head;
struct ieee80211_node *ni;
struct ieee80211_tx_ampdu *tap;
KASSERT(sq->head != NULL, ("stageq empty"));
IEEE80211_LOCK(ic);
head = sq->head;
while ((m = sq->head) != NULL && M_AGE_GET(m) < quanta) {
/* clear tap ref to frame */
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
tap = &ni->ni_tx_ampdu[M_WME_GETAC(m)];
KASSERT(tap->txa_private == m, ("staging queue empty"));
tap->txa_private = NULL;
sq->head = m->m_nextpkt;
sq->depth--;
sg->ff_stageqdepth--;
}
if (m == NULL)
sq->tail = NULL;
else
M_AGE_SUB(m, quanta);
IEEE80211_UNLOCK(ic);
ff_flush(head, m);
}
static void
stageq_add(struct ieee80211_stageq *sq, struct mbuf *m)
{
int age = ieee80211_ffagemax;
if (sq->tail != NULL) {
sq->tail->m_nextpkt = m;
age -= M_AGE_GET(sq->head);
} else
sq->head = m;
KASSERT(age >= 0, ("age %d", age));
M_AGE_SET(m, age);
m->m_nextpkt = NULL;
sq->tail = m;
sq->depth++;
}
static void
stageq_remove(struct ieee80211_stageq *sq, struct mbuf *mstaged)
{
struct mbuf *m, *mprev;
mprev = NULL;
for (m = sq->head; m != NULL; m = m->m_nextpkt) {
if (m == mstaged) {
if (mprev == NULL)
sq->head = m->m_nextpkt;
else
mprev->m_nextpkt = m->m_nextpkt;
if (sq->tail == m)
sq->tail = mprev;
sq->depth--;
return;
}
mprev = m;
}
printf("%s: packet not found\n", __func__);
}
static uint32_t
ff_approx_txtime(struct ieee80211_node *ni,
const struct mbuf *m1, const struct mbuf *m2)
{
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211vap *vap = ni->ni_vap;
uint32_t framelen;
/*
* Approximate the frame length to be transmitted. A swag to add
* the following maximal values to the skb payload:
* - 32: 802.11 encap + CRC
* - 24: encryption overhead (if wep bit)
* - 4 + 6: fast-frame header and padding
* - 16: 2 LLC FF tunnel headers
* - 14: 1 802.3 FF tunnel header (mbuf already accounts for 2nd)
*/
framelen = m1->m_pkthdr.len + 32 +
ATH_FF_MAX_HDR_PAD + ATH_FF_MAX_SEP_PAD + ATH_FF_MAX_HDR;
if (vap->iv_flags & IEEE80211_F_PRIVACY)
framelen += 24;
if (m2 != NULL)
framelen += m2->m_pkthdr.len;
return ieee80211_compute_duration(ic->ic_rt, framelen, ni->ni_txrate, 0);
}
/*
* Check if the supplied frame can be partnered with an existing
* or pending frame. Return a reference to any frame that should be
* sent on return; otherwise return NULL.
*/
struct mbuf *
ieee80211_ff_check(struct ieee80211_node *ni, struct mbuf *m)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_superg *sg = ic->ic_superg;
const int pri = M_WME_GETAC(m);
struct ieee80211_stageq *sq;
struct ieee80211_tx_ampdu *tap;
struct mbuf *mstaged;
uint32_t txtime, limit;
/*
* Check if the supplied frame can be aggregated.
*
* NB: we allow EAPOL frames to be aggregated with other ucast traffic.
* Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
* be aggregated with other types of frames when encryption is on?
*/
IEEE80211_LOCK(ic);
tap = &ni->ni_tx_ampdu[pri];
mstaged = tap->txa_private; /* NB: we reuse AMPDU state */
ieee80211_txampdu_count_packet(tap);
/*
* When not in station mode never aggregate a multicast
* frame; this insures, for example, that a combined frame
* does not require multiple encryption keys.
*/
if (vap->iv_opmode != IEEE80211_M_STA &&
ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) {
/* XXX flush staged frame? */
IEEE80211_UNLOCK(ic);
return m;
}
/*
* If there is no frame to combine with and the pps is
* too low; then do not attempt to aggregate this frame.
*/
if (mstaged == NULL &&
ieee80211_txampdu_getpps(tap) < ieee80211_ffppsmin) {
IEEE80211_UNLOCK(ic);
return m;
}
sq = &sg->ff_stageq[pri];
/*
* Check the txop limit to insure the aggregate fits.
*/
limit = IEEE80211_TXOP_TO_US(
ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
if (limit != 0 &&
(txtime = ff_approx_txtime(ni, m, mstaged)) > limit) {
/*
* Aggregate too long, return to the caller for direct
* transmission. In addition, flush any pending frame
* before sending this one.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: txtime %u exceeds txop limit %u\n",
__func__, txtime, limit);
tap->txa_private = NULL;
if (mstaged != NULL)
stageq_remove(sq, mstaged);
IEEE80211_UNLOCK(ic);
if (mstaged != NULL) {
IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
"%s: flush staged frame", __func__);
/* encap and xmit */
ff_transmit(ni, mstaged);
}
return m; /* NB: original frame */
}
/*
* An aggregation candidate. If there's a frame to partner
* with then combine and return for processing. Otherwise
* save this frame and wait for a partner to show up (or
* the frame to be flushed). Note that staged frames also
* hold their node reference.
*/
if (mstaged != NULL) {
tap->txa_private = NULL;
stageq_remove(sq, mstaged);
IEEE80211_UNLOCK(ic);
IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
"%s: aggregate fast-frame", __func__);
/*
* Release the node reference; we only need
* the one already in mstaged.
*/
KASSERT(mstaged->m_pkthdr.rcvif == (void *)ni,
("rcvif %p ni %p", mstaged->m_pkthdr.rcvif, ni));
ieee80211_free_node(ni);
m->m_nextpkt = NULL;
mstaged->m_nextpkt = m;
mstaged->m_flags |= M_FF; /* NB: mark for encap work */
} else {
KASSERT(tap->txa_private == NULL,
("txa_private %p", tap->txa_private));
tap->txa_private = m;
stageq_add(sq, m);
sg->ff_stageqdepth++;
IEEE80211_UNLOCK(ic);
IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
"%s: stage frame, %u queued", __func__, sq->depth);
/* NB: mstaged is NULL */
}
return mstaged;
}
void
ieee80211_ff_node_init(struct ieee80211_node *ni)
{
/*
* Clean FF state on re-associate. This handles the case
* where a station leaves w/o notifying us and then returns
* before node is reaped for inactivity.
*/
ieee80211_ff_node_cleanup(ni);
}
void
ieee80211_ff_node_cleanup(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_superg *sg = ic->ic_superg;
struct ieee80211_tx_ampdu *tap;
struct mbuf *m, *head;
int ac;
IEEE80211_LOCK(ic);
head = NULL;
for (ac = 0; ac < WME_NUM_AC; ac++) {
tap = &ni->ni_tx_ampdu[ac];
m = tap->txa_private;
if (m != NULL) {
tap->txa_private = NULL;
stageq_remove(&sg->ff_stageq[ac], m);
m->m_nextpkt = head;
head = m;
}
}
IEEE80211_UNLOCK(ic);
for (m = head; m != NULL; m = m->m_nextpkt) {
m_freem(m);
ieee80211_free_node(ni);
}
}
/*
* Switch between turbo and non-turbo operating modes.
* Use the specified channel flags to locate the new
* channel, update 802.11 state, and then call back into
* the driver to effect the change.
*/
void
ieee80211_dturbo_switch(struct ieee80211vap *vap, int newflags)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_channel *chan;
chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags);
if (chan == NULL) { /* XXX should not happen */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: no channel with freq %u flags 0x%x\n",
__func__, ic->ic_bsschan->ic_freq, newflags);
return;
}
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: %s -> %s (freq %u flags 0x%x)\n", __func__,
ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)],
ieee80211_phymode_name[ieee80211_chan2mode(chan)],
chan->ic_freq, chan->ic_flags);
ic->ic_bsschan = chan;
ic->ic_prevchan = ic->ic_curchan;
ic->ic_curchan = chan;
ic->ic_rt = ieee80211_get_ratetable(chan);
ic->ic_set_channel(ic);
ieee80211_radiotap_chan_change(ic);
/* NB: do not need to reset ERP state 'cuz we're in sta mode */
}
/*
* Return the current ``state'' of an Atheros capbility.
* If associated in station mode report the negotiated
* setting. Otherwise report the current setting.
*/
static int
getathcap(struct ieee80211vap *vap, int cap)
{
if (vap->iv_opmode == IEEE80211_M_STA &&
vap->iv_state == IEEE80211_S_RUN)
return IEEE80211_ATH_CAP(vap, vap->iv_bss, cap) != 0;
else
return (vap->iv_flags & cap) != 0;
}
static int
superg_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq)
{
switch (ireq->i_type) {
case IEEE80211_IOC_FF:
ireq->i_val = getathcap(vap, IEEE80211_F_FF);
break;
case IEEE80211_IOC_TURBOP:
ireq->i_val = getathcap(vap, IEEE80211_F_TURBOP);
break;
default:
return ENOSYS;
}
return 0;
}
IEEE80211_IOCTL_GET(superg, superg_ioctl_get80211);
static int
superg_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq)
{
switch (ireq->i_type) {
case IEEE80211_IOC_FF:
if (ireq->i_val) {
if ((vap->iv_caps & IEEE80211_C_FF) == 0)
return EOPNOTSUPP;
vap->iv_flags |= IEEE80211_F_FF;
} else
vap->iv_flags &= ~IEEE80211_F_FF;
return ENETRESET;
case IEEE80211_IOC_TURBOP:
if (ireq->i_val) {
if ((vap->iv_caps & IEEE80211_C_TURBOP) == 0)
return EOPNOTSUPP;
vap->iv_flags |= IEEE80211_F_TURBOP;
} else
vap->iv_flags &= ~IEEE80211_F_TURBOP;
return ENETRESET;
default:
return ENOSYS;
}
return 0;
}
IEEE80211_IOCTL_SET(superg, superg_ioctl_set80211);