1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-01 12:19:28 +00:00
freebsd/contrib/ldns/util.c
2013-04-09 13:14:39 +00:00

463 lines
9.9 KiB
C

/*
* util.c
*
* some general memory functions
*
* a Net::DNS like library for C
*
* (c) NLnet Labs, 2004-2006
*
* See the file LICENSE for the license
*/
#include <ldns/config.h>
#include <ldns/rdata.h>
#include <ldns/rr.h>
#include <ldns/util.h>
#include <strings.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#ifdef HAVE_SSL
#include <openssl/rand.h>
#endif
ldns_lookup_table *
ldns_lookup_by_name(ldns_lookup_table *table, const char *name)
{
while (table->name != NULL) {
if (strcasecmp(name, table->name) == 0)
return table;
table++;
}
return NULL;
}
ldns_lookup_table *
ldns_lookup_by_id(ldns_lookup_table *table, int id)
{
while (table->name != NULL) {
if (table->id == id)
return table;
table++;
}
return NULL;
}
int
ldns_get_bit(uint8_t bits[], size_t index)
{
/*
* The bits are counted from left to right, so bit #0 is the
* left most bit.
*/
return (int) (bits[index / 8] & (1 << (7 - index % 8)));
}
int
ldns_get_bit_r(uint8_t bits[], size_t index)
{
/*
* The bits are counted from right to left, so bit #0 is the
* right most bit.
*/
return (int) bits[index / 8] & (1 << (index % 8));
}
void
ldns_set_bit(uint8_t *byte, int bit_nr, bool value)
{
/*
* The bits are counted from right to left, so bit #0 is the
* right most bit.
*/
if (bit_nr >= 0 && bit_nr < 8) {
if (value) {
*byte = *byte | (0x01 << bit_nr);
} else {
*byte = *byte & ~(0x01 << bit_nr);
}
}
}
int
ldns_hexdigit_to_int(char ch)
{
switch (ch) {
case '0': return 0;
case '1': return 1;
case '2': return 2;
case '3': return 3;
case '4': return 4;
case '5': return 5;
case '6': return 6;
case '7': return 7;
case '8': return 8;
case '9': return 9;
case 'a': case 'A': return 10;
case 'b': case 'B': return 11;
case 'c': case 'C': return 12;
case 'd': case 'D': return 13;
case 'e': case 'E': return 14;
case 'f': case 'F': return 15;
default:
return -1;
}
}
char
ldns_int_to_hexdigit(int i)
{
switch (i) {
case 0: return '0';
case 1: return '1';
case 2: return '2';
case 3: return '3';
case 4: return '4';
case 5: return '5';
case 6: return '6';
case 7: return '7';
case 8: return '8';
case 9: return '9';
case 10: return 'a';
case 11: return 'b';
case 12: return 'c';
case 13: return 'd';
case 14: return 'e';
case 15: return 'f';
default:
abort();
}
}
int
ldns_hexstring_to_data(uint8_t *data, const char *str)
{
size_t i;
if (!str || !data) {
return -1;
}
if (strlen(str) % 2 != 0) {
return -2;
}
for (i = 0; i < strlen(str) / 2; i++) {
data[i] =
16 * (uint8_t) ldns_hexdigit_to_int(str[i*2]) +
(uint8_t) ldns_hexdigit_to_int(str[i*2 + 1]);
}
return (int) i;
}
const char *
ldns_version(void)
{
return (char*)LDNS_VERSION;
}
/* Number of days per month (except for February in leap years). */
static const int mdays[] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
#define LDNS_MOD(x,y) (((x) % (y) < 0) ? ((x) % (y) + (y)) : ((x) % (y)))
#define LDNS_DIV(x,y) (((x) % (y) < 0) ? ((x) / (y) - 1 ) : ((x) / (y)))
static int
is_leap_year(int year)
{
return LDNS_MOD(year, 4) == 0 && (LDNS_MOD(year, 100) != 0
|| LDNS_MOD(year, 400) == 0);
}
static int
leap_days(int y1, int y2)
{
--y1;
--y2;
return (LDNS_DIV(y2, 4) - LDNS_DIV(y1, 4)) -
(LDNS_DIV(y2, 100) - LDNS_DIV(y1, 100)) +
(LDNS_DIV(y2, 400) - LDNS_DIV(y1, 400));
}
/*
* Code adapted from Python 2.4.1 sources (Lib/calendar.py).
*/
time_t
ldns_mktime_from_utc(const struct tm *tm)
{
int year = 1900 + tm->tm_year;
time_t days = 365 * ((time_t) year - 1970) + leap_days(1970, year);
time_t hours;
time_t minutes;
time_t seconds;
int i;
for (i = 0; i < tm->tm_mon; ++i) {
days += mdays[i];
}
if (tm->tm_mon > 1 && is_leap_year(year)) {
++days;
}
days += tm->tm_mday - 1;
hours = days * 24 + tm->tm_hour;
minutes = hours * 60 + tm->tm_min;
seconds = minutes * 60 + tm->tm_sec;
return seconds;
}
time_t
mktime_from_utc(const struct tm *tm)
{
return ldns_mktime_from_utc(tm);
}
#if SIZEOF_TIME_T <= 4
static void
ldns_year_and_yday_from_days_since_epoch(int64_t days, struct tm *result)
{
int year = 1970;
int new_year;
while (days < 0 || days >= (int64_t) (is_leap_year(year) ? 366 : 365)) {
new_year = year + (int) LDNS_DIV(days, 365);
days -= (new_year - year) * 365;
days -= leap_days(year, new_year);
year = new_year;
}
result->tm_year = year;
result->tm_yday = (int) days;
}
/* Number of days per month in a leap year. */
static const int leap_year_mdays[] = {
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
static void
ldns_mon_and_mday_from_year_and_yday(struct tm *result)
{
int idays = result->tm_yday;
const int *mon_lengths = is_leap_year(result->tm_year) ?
leap_year_mdays : mdays;
result->tm_mon = 0;
while (idays >= mon_lengths[result->tm_mon]) {
idays -= mon_lengths[result->tm_mon++];
}
result->tm_mday = idays + 1;
}
static void
ldns_wday_from_year_and_yday(struct tm *result)
{
result->tm_wday = 4 /* 1-1-1970 was a thursday */
+ LDNS_MOD((result->tm_year - 1970), 7) * LDNS_MOD(365, 7)
+ leap_days(1970, result->tm_year)
+ result->tm_yday;
result->tm_wday = LDNS_MOD(result->tm_wday, 7);
if (result->tm_wday < 0) {
result->tm_wday += 7;
}
}
static struct tm *
ldns_gmtime64_r(int64_t clock, struct tm *result)
{
result->tm_isdst = 0;
result->tm_sec = (int) LDNS_MOD(clock, 60);
clock = LDNS_DIV(clock, 60);
result->tm_min = (int) LDNS_MOD(clock, 60);
clock = LDNS_DIV(clock, 60);
result->tm_hour = (int) LDNS_MOD(clock, 24);
clock = LDNS_DIV(clock, 24);
ldns_year_and_yday_from_days_since_epoch(clock, result);
ldns_mon_and_mday_from_year_and_yday(result);
ldns_wday_from_year_and_yday(result);
result->tm_year -= 1900;
return result;
}
#endif /* SIZEOF_TIME_T <= 4 */
static int64_t
ldns_serial_arithmitics_time(int32_t time, time_t now)
{
int32_t offset = time - (int32_t) now;
return (int64_t) now + offset;
}
struct tm *
ldns_serial_arithmitics_gmtime_r(int32_t time, time_t now, struct tm *result)
{
#if SIZEOF_TIME_T <= 4
int64_t secs_since_epoch = ldns_serial_arithmitics_time(time, now);
return ldns_gmtime64_r(secs_since_epoch, result);
#else
time_t secs_since_epoch = ldns_serial_arithmitics_time(time, now);
return gmtime_r(&secs_since_epoch, result);
#endif
}
/**
* Init the random source
* applications should call this if they need entropy data within ldns
* If openSSL is available, it is automatically seeded from /dev/urandom
* or /dev/random
*
* If you need more entropy, or have no openssl available, this function
* MUST be called at the start of the program
*
* If openssl *is* available, this function just adds more entropy
**/
int
ldns_init_random(FILE *fd, unsigned int size)
{
/* if fp is given, seed srandom with data from file
otherwise use /dev/urandom */
FILE *rand_f;
uint8_t *seed;
size_t read = 0;
unsigned int seed_i;
struct timeval tv;
/* we'll need at least sizeof(unsigned int) bytes for the
standard prng seed */
if (size < (unsigned int) sizeof(seed_i)){
size = (unsigned int) sizeof(seed_i);
}
seed = LDNS_XMALLOC(uint8_t, size);
if(!seed) {
return 1;
}
if (!fd) {
if ((rand_f = fopen("/dev/urandom", "r")) == NULL) {
/* no readable /dev/urandom, try /dev/random */
if ((rand_f = fopen("/dev/random", "r")) == NULL) {
/* no readable /dev/random either, and no entropy
source given. we'll have to improvise */
for (read = 0; read < size; read++) {
gettimeofday(&tv, NULL);
seed[read] = (uint8_t) (tv.tv_usec % 256);
}
} else {
read = fread(seed, 1, size, rand_f);
}
} else {
read = fread(seed, 1, size, rand_f);
}
} else {
rand_f = fd;
read = fread(seed, 1, size, rand_f);
}
if (read < size) {
LDNS_FREE(seed);
if (!fd) fclose(rand_f);
return 1;
} else {
#ifdef HAVE_SSL
/* Seed the OpenSSL prng (most systems have it seeded
automatically, in that case this call just adds entropy */
RAND_seed(seed, (int) size);
#else
/* Seed the standard prng, only uses the first
* unsigned sizeof(unsiged int) bytes found in the entropy pool
*/
memcpy(&seed_i, seed, sizeof(seed_i));
srandom(seed_i);
#endif
LDNS_FREE(seed);
}
if (!fd) {
if (rand_f) fclose(rand_f);
}
return 0;
}
/**
* Get random number.
*
*/
uint16_t
ldns_get_random(void)
{
uint16_t rid = 0;
#ifdef HAVE_SSL
if (RAND_bytes((unsigned char*)&rid, 2) != 1) {
rid = (uint16_t) random();
}
#else
rid = (uint16_t) random();
#endif
return rid;
}
/*
* BubbleBabble code taken from OpenSSH
* Copyright (c) 2001 Carsten Raskgaard. All rights reserved.
*/
char *
ldns_bubblebabble(uint8_t *data, size_t len)
{
char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
size_t i, j = 0, rounds, seed = 1;
char *retval;
rounds = (len / 2) + 1;
retval = LDNS_XMALLOC(char, rounds * 6);
if(!retval) return NULL;
retval[j++] = 'x';
for (i = 0; i < rounds; i++) {
size_t idx0, idx1, idx2, idx3, idx4;
if ((i + 1 < rounds) || (len % 2 != 0)) {
idx0 = (((((size_t)(data[2 * i])) >> 6) & 3) +
seed) % 6;
idx1 = (((size_t)(data[2 * i])) >> 2) & 15;
idx2 = ((((size_t)(data[2 * i])) & 3) +
(seed / 6)) % 6;
retval[j++] = vowels[idx0];
retval[j++] = consonants[idx1];
retval[j++] = vowels[idx2];
if ((i + 1) < rounds) {
idx3 = (((size_t)(data[(2 * i) + 1])) >> 4) & 15;
idx4 = (((size_t)(data[(2 * i) + 1]))) & 15;
retval[j++] = consonants[idx3];
retval[j++] = '-';
retval[j++] = consonants[idx4];
seed = ((seed * 5) +
((((size_t)(data[2 * i])) * 7) +
((size_t)(data[(2 * i) + 1])))) % 36;
}
} else {
idx0 = seed % 6;
idx1 = 16;
idx2 = seed / 6;
retval[j++] = vowels[idx0];
retval[j++] = consonants[idx1];
retval[j++] = vowels[idx2];
}
}
retval[j++] = 'x';
retval[j++] = '\0';
return retval;
}