mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-23 11:18:54 +00:00
2f86936a07
and all SCSI devices (except that it's not done quite the way I want). New information added includes: - A text description of the device - A ``state''---unknown, unconfigured, idle, or busy - A generic parent device (with support in the m.i. code) - An interrupt mask type field (which will hopefully go away) so that . ``doconfig'' can be written This requires a new version of the `lsdev' program as well (next commit).
364 lines
14 KiB
C
364 lines
14 KiB
C
/*
|
|
* Written by Julian Elischer (julian@tfs.com)
|
|
* for TRW Financial Systems for use under the MACH(2.5) operating system.
|
|
*
|
|
* TRW Financial Systems, in accordance with their agreement with Carnegie
|
|
* Mellon University, makes this software available to CMU to distribute
|
|
* or use in any manner that they see fit as long as this message is kept with
|
|
* the software. For this reason TFS also grants any other persons or
|
|
* organisations permission to use or modify this software.
|
|
*
|
|
* TFS supplies this software to be publicly redistributed
|
|
* on the understanding that TFS is not responsible for the correct
|
|
* functioning of this software in any circumstances.
|
|
*
|
|
* Ported to run under 386BSD by Julian Elischer (julian@tfs.com) Sept 1992
|
|
*
|
|
* $Id: scsiconf.h,v 1.12 1994/10/19 01:49:23 wollman Exp $
|
|
*/
|
|
#ifndef SCSI_SCSICONF_H
|
|
#define SCSI_SCSICONF_H 1
|
|
typedef int boolean;
|
|
typedef int errval;
|
|
typedef long int int32;
|
|
typedef short int int16;
|
|
typedef char int8;
|
|
typedef unsigned long int u_int32;
|
|
typedef unsigned short int u_int16;
|
|
typedef unsigned char u_int8;
|
|
|
|
#include <scsi/scsi_debug.h>
|
|
|
|
/*
|
|
* The following documentation tries to describe the relationship between the
|
|
* various structures defined in this file:
|
|
*
|
|
* each adapter type has a scsi_adapter struct. This describes the adapter and
|
|
* identifies routines that can be called to use the adapter.
|
|
* each device type has a scsi_device struct. This describes the device and
|
|
* identifies routines that can be called to use the device.
|
|
* each existing device position (scsibus + target + lun)
|
|
* can be described by a scsi_link struct.
|
|
* Only scsi positions that actually have devices, have a scsi_link
|
|
* structure assigned. so in effect each device has scsi_link struct.
|
|
* The scsi_link structure contains information identifying both the
|
|
* device driver and the adapter driver for that position on that scsi bus,
|
|
* and can be said to 'link' the two.
|
|
* each individual scsi bus has an array that points to all the scsi_link
|
|
* structs associated with that scsi bus. Slots with no device have
|
|
* a NULL pointer.
|
|
* each individual device also knows the address of it's own scsi_link
|
|
* structure.
|
|
*
|
|
* -------------
|
|
*
|
|
* The key to all this is the scsi_link structure which associates all the
|
|
* other structures with each other in the correct configuration. The
|
|
* scsi_link is the connecting information that allows each part of the
|
|
* scsi system to find the associated other parts.
|
|
*/
|
|
|
|
|
|
/*
|
|
* These entrypoints are called by the high-end drivers to get services from
|
|
* whatever low-end drivers they are attached to each adapter type has one of
|
|
* these statically allocated.
|
|
*/
|
|
struct scsi_adapter
|
|
{
|
|
/* 04*/ int32 (*scsi_cmd)();
|
|
/* 08*/ void (*scsi_minphys)();
|
|
/* 12*/ int32 (*open_target_lu)();
|
|
/* 16*/ int32 (*close_target_lu)();
|
|
/* 20*/ u_int32 (*adapter_info)(); /* see definitions below */
|
|
/* 24*/ char *name; /* name of scsi bus controller */
|
|
/* 32*/ u_long spare[2];
|
|
};
|
|
|
|
/*
|
|
* return values for scsi_cmd()
|
|
*/
|
|
#define SUCCESSFULLY_QUEUED 0
|
|
#define TRY_AGAIN_LATER 1
|
|
#define COMPLETE 2
|
|
#define HAD_ERROR 3 /* do not use this, use COMPLETE */
|
|
#define ESCAPE_NOT_SUPPORTED 4
|
|
|
|
/*
|
|
* Format of adapter_info() response data
|
|
* e.g. maximum number of entries queuable to a device by the adapter
|
|
*/
|
|
#define AD_INF_MAX_CMDS 0x000000FF
|
|
/* 24 bits of other adapter characteristics go here */
|
|
|
|
/*
|
|
* These entry points are called by the low-end drivers to get services from
|
|
* whatever high-end drivers they are attached to. Each device type has one
|
|
* of these statically allocated.
|
|
*/
|
|
struct scsi_device
|
|
{
|
|
/* 4*/ errval (*err_handler)(); /* returns -1 to say err processing complete */
|
|
/* 8*/ void (*start)();
|
|
/* 12*/ int32 (*async)();
|
|
/* 16*/ int32 (*done)(); /* returns -1 to say done processing complete */
|
|
/* 20*/ char *name; /* name of device type */
|
|
/* 24*/ u_int32 flags; /* device type dependent flags */
|
|
/* 32*/ int32 spare[2];
|
|
};
|
|
|
|
#ifdef NEW_SCSICONF
|
|
/*
|
|
* Define various devices that we know mis-behave in some way,
|
|
* and note how they are bad, so we can correct for them
|
|
*/
|
|
struct st_mode {
|
|
/* 4*/ u_int32 blksiz;
|
|
/* 6*/ u_int16 quirks; /* same definitions as in XXX */
|
|
/* 7*/ char density;
|
|
/* 8*/ char spare[1];
|
|
};
|
|
|
|
typedef struct st_mode st_modes[4];
|
|
|
|
/* define behaviour codes (quirks) */
|
|
/* common to all SCSI devices */
|
|
#define SCSI_Q_NO_SYNC 0x8000
|
|
#define SCSI_Q_NO_FAST 0x4000
|
|
#define SCSI_Q_NO_WIDE 0x2000
|
|
|
|
/* tape specific ST_Q_* */
|
|
#define ST_Q_NEEDS_PAGE_0 0x0001
|
|
#define ST_Q_FORCE_FIXED_MODE 0x0002
|
|
#define ST_Q_FORCE_VAR_MODE 0x0004
|
|
#define ST_Q_SNS_HLP 0x0008 /* must do READ for good MODE SENSE */
|
|
#define ST_Q_IGNORE_LOADS 0x0010
|
|
#define ST_Q_BLKSIZ 0x0020 /* variable-block media_blksiz > 0 */
|
|
#define ST_Q_CC_NOMSG 0x0040 /* no messages accepted in CC state */
|
|
|
|
#define ST_Q_NO_SYNC SCSI_Q_NO_SYNC
|
|
#define ST_Q_NO_FAST SCSI_Q_NO_FAST
|
|
#define ST_Q_NO_WIDE SCSI_Q_NO_WIDE
|
|
|
|
/* disk specific SD_Q_* */
|
|
#define SD_Q_NO_TAGS 0x0001
|
|
|
|
#define SD_Q_NO_SYNC SCSI_Q_NO_SYNC
|
|
#define SD_Q_NO_FAST SCSI_Q_NO_FAST
|
|
#define SD_Q_NO_WIDE SCSI_Q_NO_WIDE
|
|
|
|
#endif
|
|
|
|
/*
|
|
* This structure describes the connection between an adapter driver and
|
|
* a device driver, and is used by each to call services provided by
|
|
* the other, and to allow generic scsi glue code to call these services
|
|
* as well.
|
|
*/
|
|
struct scsi_link
|
|
{
|
|
/* 1*/ u_int8 target; /* targ of this dev */
|
|
/* 2*/ u_int8 lun; /* lun of this dev */
|
|
/* 3*/ u_int8 adapter_targ; /* what are we on the scsi bus */
|
|
/* 4*/ u_int8 adapter_unit; /* e.g. the 0 in aha0 */
|
|
/* 5*/ u_int8 scsibus; /* the Nth scsibus */
|
|
/* 6*/ u_int8 dev_unit; /* e.g. the 0 in sd0 */
|
|
/* 7*/ u_int8 opennings; /* available operations */
|
|
/* 8*/ u_int8 active; /* operations in progress */
|
|
/* 10*/ u_int16 flags; /* flags that all devices have */
|
|
/* 12*/ u_int16 quirks; /* device specific quirks */
|
|
/* 16*/ struct scsi_adapter *adapter; /* adapter entry points etc. */
|
|
/* 20*/ struct scsi_device *device; /* device entry points etc. */
|
|
/* 24*/ struct scsi_xfer *active_xs; /* operations under way */
|
|
/* 28*/ void * fordriver; /* for private use by the driver */
|
|
/* 32*/ void * devmodes; /* device specific mode tables */
|
|
};
|
|
#define SDEV_MEDIA_LOADED 0x01 /* device figures are still valid */
|
|
#define SDEV_WAITING 0x02 /* a process is waiting for this */
|
|
#define SDEV_OPEN 0x04 /* at least 1 open session */
|
|
#define SDEV_BOUNCE 0x08 /* unit requires DMA bounce buffer */
|
|
#define SDEV_DBX 0xF0 /* debuging flags (scsi_debug.h) */
|
|
|
|
/*
|
|
* One of these is allocated and filled in for each scsi bus.
|
|
* it holds pointers to allow the scsi bus to get to the driver
|
|
* That is running each LUN on the bus
|
|
* it also has a template entry which is the prototype struct
|
|
* supplied by the adapter driver, this is used to initialise
|
|
* the others, before they have the rest of the fields filled in
|
|
*/
|
|
struct scsibus_data {
|
|
struct scsi_link *adapter_link; /* prototype supplied by adapter */
|
|
struct scsi_link *sc_link[8][8];
|
|
};
|
|
|
|
/*
|
|
* Each scsi transaction is fully described by one of these structures
|
|
* It includes information about the source of the command and also the
|
|
* device and adapter for which the command is destined.
|
|
* (via the scsi_link structure) *
|
|
*/
|
|
struct scsi_xfer
|
|
{
|
|
/*04*/ struct scsi_xfer *next; /* when free */
|
|
/*08*/ u_int32 flags;
|
|
/*12*/ struct scsi_link *sc_link; /* all about our device and adapter */
|
|
/*13*/ u_int8 retries; /* the number of times to retry */
|
|
/*16*/ u_int8 spare[3];
|
|
/*20*/ int32 timeout; /* in milliseconds */
|
|
/*24*/ struct scsi_generic *cmd; /* The scsi command to execute */
|
|
/*28*/ int32 cmdlen; /* how long it is */
|
|
/*32*/ u_char *data; /* dma address OR a uio address */
|
|
/*36*/ int32 datalen; /* data len (blank if uio) */
|
|
/*40*/ int32 resid; /* how much buffer was not touched */
|
|
/*44*/ int32 error; /* an error value */
|
|
/*48*/ struct buf *bp; /* If we need to associate with a buf */
|
|
/*80*/ struct scsi_sense_data sense; /* 32 bytes*/
|
|
/*
|
|
* Believe it or not, Some targets fall on the ground with
|
|
* anything but a certain sense length.
|
|
*/
|
|
/*84*/ int32 req_sense_length; /* Explicit request sense length */
|
|
/*88*/ int32 status; /* SCSI status */
|
|
/*100*/ struct scsi_generic cmdstore; /* stash the command in here */
|
|
};
|
|
|
|
/*
|
|
* Per-request Flag values
|
|
*/
|
|
#define SCSI_NOSLEEP 0x01 /* Not a user... don't sleep */
|
|
#define SCSI_NOMASK 0x02 /* dont allow interrupts.. booting */
|
|
#define SCSI_NOSTART 0x04 /* left over from ancient history */
|
|
#define SCSI_USER 0x08 /* Is a user cmd, call scsi_user_done */
|
|
#define ITSDONE 0x10 /* the transfer is as done as it gets */
|
|
#define INUSE 0x20 /* The scsi_xfer block is in use */
|
|
#define SCSI_SILENT 0x40 /* Don't report errors to console */
|
|
#define SCSI_ERR_OK 0x80 /* An error on this operation is OK. */
|
|
#define SCSI_RESET 0x100 /* Reset the device in question */
|
|
#define SCSI_DATA_UIO 0x200 /* The data address refers to a UIO */
|
|
#define SCSI_DATA_IN 0x400 /* expect data to come INTO memory */
|
|
#define SCSI_DATA_OUT 0x800 /* expect data to flow OUT of memory */
|
|
#define SCSI_TARGET 0x1000 /* This defines a TARGET mode op. */
|
|
#define SCSI_ESCAPE 0x2000 /* Escape operation */
|
|
|
|
/*
|
|
* Escape op codes. This provides an extensible setup for operations
|
|
* that are not scsi commands. They are intended for modal operations.
|
|
*/
|
|
|
|
#define SCSI_OP_TARGET 0x0001
|
|
#define SCSI_OP_RESET 0x0002
|
|
#define SCSI_OP_BDINFO 0x0003
|
|
|
|
/*
|
|
* Error values an adapter driver may return
|
|
*/
|
|
#define XS_NOERROR 0x0 /* there is no error, (sense is invalid) */
|
|
#define XS_SENSE 0x1 /* Check the returned sense for the error */
|
|
#define XS_DRIVER_STUFFUP 0x2 /* Driver failed to perform operation */
|
|
#define XS_TIMEOUT 0x03 /* The device timed out.. turned off? */
|
|
#define XS_SWTIMEOUT 0x04 /* The Timeout reported was caught by SW */
|
|
#define XS_BUSY 0x08 /* The device busy, try again later? */
|
|
|
|
#ifdef KERNEL
|
|
void scsi_attachdevs __P((struct scsi_link *sc_link_proto));
|
|
struct scsi_xfer *get_xs( struct scsi_link *sc_link, u_int32 flags);
|
|
void free_xs(struct scsi_xfer *xs, struct scsi_link *sc_link,u_int32 flags);
|
|
u_int32 scsi_size( struct scsi_link *sc_link,u_int32 flags);
|
|
errval scsi_test_unit_ready( struct scsi_link *sc_link, u_int32 flags);
|
|
errval scsi_change_def( struct scsi_link *sc_link, u_int32 flags);
|
|
errval scsi_inquire( struct scsi_link *sc_link,
|
|
struct scsi_inquiry_data *inqbuf, u_int32 flags);
|
|
errval scsi_prevent( struct scsi_link *sc_link, u_int32 type,u_int32 flags);
|
|
errval scsi_start_unit( struct scsi_link *sc_link, u_int32 flags);
|
|
void scsi_done(struct scsi_xfer *xs);
|
|
errval scsi_scsi_cmd( struct scsi_link *sc_link, struct scsi_generic *scsi_cmd,
|
|
u_int32 cmdlen, u_char *data_addr,
|
|
u_int32 datalen, u_int32 retries,
|
|
u_int32 timeout, struct buf *bp,
|
|
u_int32 flags);
|
|
errval scsi_do_ioctl __P((struct scsi_link *sc_link, int cmd, caddr_t addr, int f));
|
|
|
|
void show_scsi_xs(struct scsi_xfer *xs);
|
|
void show_scsi_cmd(struct scsi_xfer *xs);
|
|
void show_mem(unsigned char * , u_int32);
|
|
|
|
void lto3b __P((int val, u_char *bytes));
|
|
int _3btol __P((u_char *bytes));
|
|
|
|
extern void sc_print_addr(struct scsi_link *);
|
|
|
|
extern int scsi_externalize(struct scsi_link *, void *, size_t *);
|
|
extern int scsi_internalize(struct scsi_link *, void **, size_t *);
|
|
extern struct kern_devconf kdc_scbus0; /* XXX should go away */
|
|
|
|
#endif
|
|
|
|
#define SCSI_EXTERNALLEN (sizeof(struct scsi_link))
|
|
|
|
#ifdef NEW_SCSICONF
|
|
/**********************************************************************
|
|
from the scsi2 spec
|
|
Value Tracks Density(bpi) Code Type Reference Note
|
|
0x1 9 800 NRZI R X3.22-1983 2
|
|
0x2 9 1600 PE R X3.39-1986 2
|
|
0x3 9 6250 GCR R X3.54-1986 2
|
|
0x5 4/9 8000 GCR C X3.136-1986 1
|
|
0x6 9 3200 PE R X3.157-1987 2
|
|
0x7 4 6400 IMFM C X3.116-1986 1
|
|
0x8 4 8000 GCR CS X3.158-1986 1
|
|
0x9 18 37871 GCR C X3B5/87-099 2
|
|
0xA 22 6667 MFM C X3B5/86-199 1
|
|
0xB 4 1600 PE C X3.56-1986 1
|
|
0xC 24 12690 GCR C HI-TC1 1,5
|
|
0xD 24 25380 GCR C HI-TC2 1,5
|
|
0xF 15 10000 GCR C QIC-120 1,5
|
|
0x10 18 10000 GCR C QIC-150 1,5
|
|
0x11 26 16000 GCR C QIC-320(525?) 1,5
|
|
0x12 30 51667 RLL C QIC-1350 1,5
|
|
0x13 1 61000 DDS CS X3B5/88-185A 4
|
|
0x14 1 43245 RLL CS X3.202-1991 4
|
|
0x15 1 45434 RLL CS ECMA TC17 4
|
|
0x16 48 10000 MFM C X3.193-1990 1
|
|
0x17 48 42500 MFM C X3B5/91-174 1
|
|
|
|
where Code means:
|
|
NRZI Non Return to Zero, change on ones
|
|
GCR Group Code Recording
|
|
PE Phase Encoded
|
|
IMFM Inverted Modified Frequency Modulation
|
|
MFM Modified Frequency Modulation
|
|
DDS Dat Data Storage
|
|
RLL Run Length Encoding
|
|
|
|
where Type means:
|
|
R Real-to-Real
|
|
C Cartridge
|
|
CS cassette
|
|
|
|
where Notes means:
|
|
1 Serial Recorded
|
|
2 Parallel Recorded
|
|
3 Old format know as QIC-11
|
|
4 Helical Scan
|
|
5 Not ANSI standard, rather industry standard.
|
|
|
|
********************************************************************/
|
|
|
|
#define HALFINCH_800 0x01
|
|
#define HALFINCH_1600 0x02
|
|
#define HALFINCH_6250 0x03
|
|
#define QIC_11 0x04 /* from Archive 150S Theory of Op. XXX */
|
|
#define QIC_24 0x05 /* may be bad, works for CIPHER ST150S XXX */
|
|
#define QIC_120 0x0f
|
|
#define QIC_150 0x10
|
|
#define QIC_320 0x11
|
|
#define QIC_525 0x11
|
|
#define QIC_1320 0x12
|
|
#define DDS 0x13
|
|
#define DAT_1 0x13
|
|
#endif /* NEW_SCSICONF */
|
|
|
|
#endif /*SCSI_SCSICONF_H*/
|
|
/* END OF FILE */
|