mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-24 11:29:10 +00:00
512 lines
20 KiB
Plaintext
512 lines
20 KiB
Plaintext
<!-- $Id: dma.sgml,v 1.2 1995/11/20 01:10:12 jfieber Exp $ -->
|
|
<!-- The FreeBSD Documentation Project -->
|
|
|
|
<!--
|
|
<!DOCTYPE linuxdoc PUBLIC "-//FreeBSD//DTD linuxdoc//EN" [
|
|
|
|
<!ENTITY % authors SYSTEM "authors.sgml">
|
|
%authors;
|
|
|
|
]>
|
|
-->
|
|
<sect><heading>DMA: What it is and how it works<label id="dma"></heading>
|
|
|
|
<p><em>Copyright © 1995 &a.uhclem;, All Rights Reserved.<newline>
|
|
18 October 1995.</em>
|
|
|
|
<!-- Version 1(2) -->
|
|
|
|
Direct Memory Access (DMA) is a method of allowing data to
|
|
be moved from one location to another in a computer without
|
|
intervention from the central processor (CPU).
|
|
|
|
The way that the DMA function is implemented varies between
|
|
computer architectures, so this discussion will limit
|
|
itself to the implementation and workings of the DMA
|
|
subsystem on the IBM Personal Computer (PC), the IBM PC/AT
|
|
and all of its successors and clones.
|
|
|
|
The PC DMA subsystem is based on the Intel 8237 DMA
|
|
controller. The 8237 contains four DMA channels that can
|
|
be programmed independently and any of the channels may be
|
|
active at any moment. These channels are numbered 0, 1, 2
|
|
and 3. Starting with the PC/AT, IBM added a second 8237
|
|
chip, and numbered those channels 4, 5, 6 and 7.
|
|
|
|
The original DMA controller (0, 1, 2 and 3) moves one byte
|
|
in each transfer. The second DMA controller (4, 5, 6, and
|
|
7) moves 16-bits in each transfer. The two controllers are
|
|
identical and the difference in transfer size is caused by
|
|
the way the second controller is wired into the system.
|
|
|
|
The 8237 has two electrical signals for each channel, named
|
|
DRQ and -DACK. There are additional signals with the
|
|
names HRQ (Hold Request), HLDA (Hold Acknowledge), -EOP
|
|
(End of Process), and the bus control signals -MEMR (Memory
|
|
Read), -MEMW (Memory Write), -IOR (I/O Read), and -IOW (I/O
|
|
Write).
|
|
|
|
The 8237 DMA is known as a ``fly-by'' DMA controller. This
|
|
means that the data being moved from one location to
|
|
another does not pass through the DMA chip and is not
|
|
stored in the DMA chip. Subsequently, the DMA can only
|
|
transfer data between an I/O port and a memory address, but
|
|
not between two I/O ports or two memory locations.
|
|
|
|
<quote><em>Note:</em> The 8237 does allow two channels to
|
|
be connected together to allow memory-to-memory DMA
|
|
operations in a non-``fly-by'' mode, but nobody in the PC
|
|
industry uses this scarce resource this way since it is
|
|
faster to move data between memory locations using the
|
|
CPU.</quote>
|
|
|
|
In the PC architecture, each DMA channel is normally
|
|
activated only when the hardware that uses that DMA
|
|
requests a transfer by asserting the DRQ line for that
|
|
channel.
|
|
|
|
|
|
<sect1><heading>A Sample DMA transfer</heading>
|
|
|
|
<p>Here is an example of the steps that occur to cause a
|
|
DMA transfer. In this example, the floppy disk
|
|
controller (FDC) has just read a byte from a diskette and
|
|
wants the DMA to place it in memory at location
|
|
0x00123456. The process begins by the FDC asserting the
|
|
DRQ2 signal to alert the DMA controller.
|
|
|
|
The DMA controller will note that the DRQ2 signal is asserted.
|
|
The DMA controller will then make sure that DMA channel 2
|
|
has been programmed and is enabled. The DMA controller
|
|
also makes sure that none of the other DMA channels are active
|
|
or have a higher priority. Once these checks are
|
|
complete, the DMA asks the CPU to release the bus so that
|
|
the DMA may use the bus. The DMA requests the bus by
|
|
asserting the HRQ signal which goes to the CPU.
|
|
|
|
The CPU detects the HRQ signal, and will complete
|
|
executing the current instruction. Once the processor
|
|
has reached a state where it can release the bus, it
|
|
will. Now all of the signals normally generated by the
|
|
CPU (-MEMR, -MEMW, -IOR, -IOW and a few others) are
|
|
placed in a tri-stated condition (neither high or low)
|
|
and then the CPU asserts the HLDA signal which tells the
|
|
DMA controller that it is now in charge of the bus.
|
|
|
|
Depending on the processor, the CPU may be able to
|
|
execute a few additional instructions now that it no
|
|
longer has the bus, but the CPU will eventually have to
|
|
wait when it reaches an instruction that must read
|
|
something from memory that is not in the internal
|
|
processor cache or pipeline.
|
|
|
|
Now that the DMA ``is in charge'', the DMA activates its
|
|
-MEMR, -MEMW, -IOR, -IOW output signals, and the address
|
|
outputs from the DMA are set to 0x3456, which will be
|
|
used to direct the byte that is about to transferred to a
|
|
specific memory location.
|
|
|
|
The DMA will then let the device that requested the DMA
|
|
transfer know that the transfer is commencing. This is
|
|
done by asserting the -DACK signal, or in the case of the
|
|
floppy disk controller, -DACK2 is asserted.
|
|
|
|
The floppy disk controller is now responsible for placing
|
|
the byte to be transferred on the bus Data lines. Unless
|
|
the floppy controller needs more time to get the data
|
|
byte on the bus (and if the peripheral needs more time it
|
|
alerts the DMA via the READY signal), the DMA will wait
|
|
one DMA clock, and then de-assert the -MEMW and -IOR
|
|
signals so that the memory will latch and store the byte
|
|
that was on the bus, and the FDC will know that the byte
|
|
has been transferred.
|
|
|
|
Since the DMA cycle only transfers a single byte at a
|
|
time, the FDC now drops the DRQ2 signal, so that the DMA
|
|
knows it is no longer needed. The DMA will de-assert the
|
|
-DACK2 signal, so that the FDC knows it must stop placing
|
|
data on the bus.
|
|
|
|
The DMA will now check to see if any of the other DMA
|
|
channels have any work to do. If none of the channels
|
|
have their DRQ lines asserted, the DMA controller has
|
|
completed its work and will now tri-state the -MEMR,
|
|
-MEMW, -IOR, -IOW and address signals.
|
|
|
|
Finally, the DMA will de-assert the HRQ signal. The CPU
|
|
sees this, and de-asserts the HOLDA signal. Now the CPU
|
|
activates its -MEMR, -MEMW, -IOR, -IOW and address lines,
|
|
and it resumes executing instructions and accessing main
|
|
memory and the peripherals.
|
|
|
|
For a typical floppy disk sector, the above process is
|
|
repeated 512 times, once for each byte. Each time a byte
|
|
is transferred, the address register in the DMA is
|
|
incremented and the counter that shows how many bytes are
|
|
to be transferred is decremented.
|
|
|
|
When the counter reaches zero, the DMA asserts the EOP
|
|
signal, which indicates that the counter has reached zero
|
|
and no more data will be transferred until the DMA
|
|
controller is reprogrammed by the CPU. This event is
|
|
also called the Terminal Count (TC). There is only one
|
|
EOP signal, because only one DMA channel can be active at
|
|
any instant.
|
|
|
|
If a peripheral wants to generate an interrupt when the
|
|
transfer of a buffer is complete, it can test for its
|
|
-DACK signal and the EOP signal both being asserted at
|
|
the same time. When that happens, it means the DMA won't
|
|
transfer any more information for that peripheral without
|
|
intervention by the CPU. The peripheral can then assert
|
|
one of the interrupt signals to get the processors'
|
|
attention. The DMA chip itself is not capable of
|
|
generating an interrupt. The peripheral and its
|
|
associated hardware is responsible for generating any
|
|
interrupt that occurs.
|
|
|
|
It is important to understand that although the CPU
|
|
always releases the bus to the DMA when the DMA makes the
|
|
request, this action is invisible to both applications
|
|
and the operating systems, except for slight changes in
|
|
the amount of time the processor takes to execute
|
|
instructions when the DMA is active. Subsequently, the
|
|
processor must poll the peripheral, poll the registers in
|
|
the DMA chip, or receive an interrupt from the peripheral
|
|
to know for certain when a DMA transfer has completed.
|
|
|
|
|
|
<sect1><heading>DMA Page Registers and 16Meg address space limitations</heading>
|
|
|
|
<p>You may have noticed earlier that instead of the DMA
|
|
setting the address lines to 0x00123456 as we said
|
|
earlier, the DMA only set 0x3456. The reason for this
|
|
takes a bit of explaining.
|
|
|
|
When the original IBM PC was designed, IBM elected to use
|
|
both DMA and interrupt controller chips that were
|
|
designed for use with the 8085, an 8-bit processor with
|
|
an address space of 16 bits (64K). Since the IBM PC
|
|
supported more than 64K of memory, something had to be
|
|
done to allow the DMA to read or write memory locations
|
|
above the 64K mark. What IBM did to solve this problem
|
|
was to add a latch for each DMA channel, that holds the
|
|
upper bits of the address to be read to or written from.
|
|
Whenever a DMA channel is active, the contents of that
|
|
latch is written to the address bus and kept there until
|
|
the DMA operation for the channel ends. These latches
|
|
are called ``Page Registers''.
|
|
|
|
So for our example above, the DMA would put the 0x3456
|
|
part of the address on the bus, and the Page Register for
|
|
DMA channel 2 would put 0x0012xxxx on the bus. Together,
|
|
these two values form the complete address in memory that
|
|
is to be accessed.
|
|
|
|
Because the Page Register latch is independent of the DMA
|
|
chip, the area of memory to be read or written must not
|
|
span a 64K physical boundary. If the DMA accesses memory
|
|
location 0xffff, the DMA will then increment the address
|
|
register and it will access the next byte at 0x0000, not
|
|
0x10000. The results of letting this happen are probably not intended.
|
|
|
|
<quote><em>Note:</em> ``Physical'' 64K boundaries should
|
|
not be confused with 8086-mode 64K ``Segments'', which
|
|
are created by adding a segment register with an offset
|
|
register. Page Registers have no address overlap.</quote>
|
|
|
|
To further complicate matters, the external DMA address
|
|
latches on the PC/AT hold only eight bits, so that gives
|
|
us 8+16=24 bits, which means that the DMA can only point
|
|
at memory locations between 0 and 16Meg. For newer
|
|
computers that allow more than 16Meg of memory, the
|
|
PC-compatible DMA cannot access locations above 16Meg.
|
|
|
|
To get around this restriction, operating systems will
|
|
reserve a buffer in an area below 16Meg that also doesn't
|
|
span a physical 64K boundary. Then the DMA will be
|
|
programmed to read data to that buffer. Once the DMA has
|
|
moved the data into this buffer, the operating system
|
|
will then copy the data from the buffer to the address
|
|
where the data is really supposed to be stored.
|
|
|
|
When writing data from an address above 16Meg to a
|
|
DMA-based peripheral, the data must be first copied from
|
|
where it resides into a buffer located below 16Meg, and
|
|
then the DMA can copy the data from the buffer to the
|
|
hardware. In FreeBSD, these reserved buffers are called
|
|
``Bounce Buffers''. In the MS-DOS world, they are
|
|
sometimes called ``Smart Buffers''.
|
|
|
|
|
|
<sect1><heading>DMA Operational Modes and Settings</heading>
|
|
|
|
<p>The 8237 DMA can be operated in several modes. The main
|
|
ones are:
|
|
|
|
<descrip>
|
|
|
|
<tag/Single/ A single byte (or word) is transferred.
|
|
The DMA must release and re-acquire the bus for each
|
|
additional byte. This is commonly-used by devices
|
|
that cannot transfer the entire block of data
|
|
immediately. The peripheral will request the DMA
|
|
each time it is ready for another transfer.
|
|
|
|
The floppy disk controller only has a one-byte
|
|
buffer, so it uses this mode.
|
|
|
|
|
|
<tag>Block/Demand</tag> Once the DMA acquires the
|
|
system bus, an entire block of data is transferred,
|
|
up to a maximum of 64K. If the peripheral needs
|
|
additional time, it can assert the READY signal.
|
|
READY should not be used excessively, and for slow
|
|
peripheral transfers, the Single Transfer Mode should
|
|
be used instead.
|
|
|
|
The difference between Block and Demand is the once a
|
|
Block transfer is started, it runs until the transfer
|
|
count reaches zero. DRQ only needs to be asserted
|
|
until -DACK is asserted. Demand Mode will transfer
|
|
one more bytes until DRQ is de-asserted, then when
|
|
DRQ is asserted later, the transfer resumes where it
|
|
was suspended.
|
|
|
|
Older hard disk controllers used Demand Mode until
|
|
CPU speeds increased to the point that it was more
|
|
efficient to read the data using the CPU.
|
|
|
|
|
|
<tag>Cascade</tag> This mechanism allows a DMA channel
|
|
to request the bus, but then the attached peripheral
|
|
device is responsible for placing addressing
|
|
information on the bus. This is also known as ``Bus
|
|
Mastering''.
|
|
|
|
When a DMA channel in Cascade Mode receives control
|
|
of the bus, the DMA does not place addresses and I/O
|
|
control signals on the bus like it normally does.
|
|
Instead, the DMA only asserts the -DACK signal for
|
|
this channel.
|
|
|
|
Now it is up to the device connected to that DMA
|
|
channel to provide address and bus control signals.
|
|
The peripheral has complete control over the system
|
|
bus, and can do reads and/or writes to any address
|
|
below 16Meg. When the peripheral is finished with
|
|
bus, it de-asserts the DRQ line, and the DMA
|
|
controller can return control to the CPU or to some
|
|
other DMA channel.
|
|
|
|
Cascade Mode can be used to chain multiple DMA
|
|
controllers together, and this is exactly what DMA
|
|
Channel 4 is used for in the PC. When a peripheral
|
|
requests the bus on DMA channels 0, 1, 2 or 3, the
|
|
slave DMA controller asserts HLDREQ, but this wire is
|
|
actually connected to DRQ4 on the primary DMA
|
|
controller. The primary DMA controller then requests
|
|
the bus from the CPU using HLDREQ. Once the bus is
|
|
granted, -DACK4 is asserted, and that wire is
|
|
actually connected to the HLDA signal on the slave
|
|
DMA controller. The slave DMA controller then
|
|
transfers data for the DMA channel that requested it,
|
|
or the slave DMA may grant the bus to a peripheral
|
|
that wants to perform its own bus-mastering.
|
|
|
|
Because of this wiring arrangement, only DMA channels
|
|
0, 1, 2, 3, 5, 6 and 7 are usable on PC/AT systems.
|
|
|
|
<quote><em>Note:</em> DMA channel 0 was reserved for
|
|
refresh operations in early IBM PC computers, but
|
|
is generally available for use by peripherals in
|
|
modern systems.</quote>
|
|
|
|
When a peripheral is performing Bus Mastering, it is
|
|
important that the peripheral transmit data to or
|
|
from memory constantly while it holds the system bus.
|
|
If the peripheral cannot do this, it must release the
|
|
bus frequently so that the system can perform refresh
|
|
operations on memory.
|
|
|
|
Since memory read and write cycles ``count'' as refresh
|
|
cycles (a refresh cycle is actually an incomplete
|
|
memory read cycle), as long as the peripheral
|
|
controller continues reading or writing data to
|
|
sequential memory locations, that action will refresh
|
|
all of memory.
|
|
|
|
Bus-mastering is found in some SCSI adapters and
|
|
other high-performance peripheral cards.
|
|
|
|
|
|
<tag>Autoinitialize</tag> This mode causes the DMA to
|
|
perform Byte, Block or Demand transfers, but when the
|
|
DMA transfer counter reaches zero, the counter and
|
|
address is set back to where they were when the DMA
|
|
channel was originally programmed. This means that
|
|
as long as the device requests transfers, they will
|
|
be granted. It is up to the CPU to move new data
|
|
into the fixed buffer ahead of where the DMA is about
|
|
to transfer it for output operations, and read new
|
|
data out of the buffer behind where the DMA is
|
|
writing on input operations. This technique is
|
|
frequently used on audio devices that have small or
|
|
no hardware ``sample'' buffers. There is additional
|
|
CPU overhead to manage this ``circular'' buffer, but in
|
|
some cases this may be the only way to eliminate the
|
|
latency that occurs when the DMA counter reaches zero
|
|
and the DMA stops until it is reprogrammed.
|
|
</descrip>
|
|
|
|
<sect1><heading>Programming the DMA</heading>
|
|
|
|
<p>The DMA channel that is to be programmed should always
|
|
be ``masked'' before loading any settings. This is because
|
|
the hardware might assert DRQ, and the DMA might respond,
|
|
even though not all of the parameters have been loaded or
|
|
updated.
|
|
|
|
Once masked, the host must specify the direction of the
|
|
transfer (memory-to-I/O or I/O-to-memory), what mode of
|
|
DMA operation is to be used for the transfer (Single,
|
|
Block, Demand, Cascade, etc), and finally the address and
|
|
length of the transfer are loaded. The length that is
|
|
loaded is one less than the amount you expect the DMA to
|
|
transfer. The LSB and MSB of the address and length are
|
|
written to the same 8-bit I/O port, so another port must
|
|
be written to first to guarantee that the DMA accepts the
|
|
first byte as the LSB and the second byte as the MSB.
|
|
|
|
Then, be sure to update the Page Register, which is
|
|
external to the DMA and is accessed through a different
|
|
set of I/O ports.
|
|
|
|
Once all the settings are ready, the DMA channel can be
|
|
un-masked. That DMA channel is now considered to be
|
|
``armed'', and will respond when DRQ is asserted.
|
|
|
|
Refer to a hardware data book for precise programming
|
|
details for the 8237. You will also need to refer to the
|
|
I/O port map for the PC system. This map describes where
|
|
the DMA and Page Register ports are located. A complete
|
|
table is located below.
|
|
|
|
|
|
<sect1><heading>DMA Port Map</heading>
|
|
|
|
<p>All systems based on the IBM-PC and PC/AT have the DMA
|
|
hardware located at the same I/O ports. The complete
|
|
list is provided below. Ports assigned to DMA Controller
|
|
#2 are undefined on non-AT designs.
|
|
|
|
<sect2><heading>0x00 - 0x1f DMA Controller #1 (Channels 0, 1, 2 and 3)</heading>
|
|
|
|
<p>DMA Address and Count Registers
|
|
|
|
<verb>
|
|
0x00 write Channel 0 starting address
|
|
0x00 read Channel 0 current address
|
|
0x02 write Channel 0 starting word count
|
|
0x02 read Channel 0 remaining word count
|
|
|
|
0x04 write Channel 1 starting address
|
|
0x04 read Channel 1 current address
|
|
0x06 write Channel 1 starting word count
|
|
0x06 read Channel 1 remaining word count
|
|
|
|
0x08 write Channel 2 starting address
|
|
0x08 read Channel 2 current address
|
|
0x0a write Channel 2 starting word count
|
|
0x0a read Channel 2 remaining word count
|
|
|
|
0x0c write Channel 3 starting address
|
|
0x0c read Channel 3 current address
|
|
0x0e write Channel 3 starting word count
|
|
0x0e read Channel 3 remaining word count
|
|
</verb>
|
|
|
|
DMA Command Registers
|
|
|
|
<verb>
|
|
0x10 write Command Register
|
|
0x10 read Status Register
|
|
0x12 write Request Register
|
|
0x12 read -
|
|
0x14 write Single Mask Register Bit
|
|
0x14 read -
|
|
0x16 write Mode Register
|
|
0x16 read -
|
|
0x18 write Clear LSB/MSB Flip-Flop
|
|
0x18 read -
|
|
0x1a write Master Clear/Reset
|
|
0x1a read Temporary Register
|
|
0x1c write Clear Mask Register
|
|
0x1c read -
|
|
0x1e write Write All Mask Register Bits
|
|
0x1e read -
|
|
</verb>
|
|
|
|
<sect2><heading>0xc0 - 0xdf DMA Controller #2 (Channels 4, 5, 6 and 7)</heading>
|
|
|
|
<p>DMA Address and Count Registers
|
|
|
|
<verb>
|
|
0xc0 write Channel 4 starting address
|
|
0xc0 read Channel 4 current address
|
|
0xc2 write Channel 4 starting word count
|
|
0xc2 read Channel 4 remaining word count
|
|
|
|
0xc4 write Channel 5 starting address
|
|
0xc4 read Channel 5 current address
|
|
0xc6 write Channel 5 starting word count
|
|
0xc6 read Channel 5 remaining word count
|
|
|
|
0xc8 write Channel 6 starting address
|
|
0xc8 read Channel 6 current address
|
|
0xca write Channel 6 starting word count
|
|
0xca read Channel 6 remaining word count
|
|
|
|
0xcc write Channel 7 starting address
|
|
0xcc read Channel 7 current address
|
|
0xce write Channel 7 starting word count
|
|
0xce read Channel 7 remaining word count
|
|
</verb>
|
|
|
|
DMA Command Registers
|
|
|
|
<verb>
|
|
0xd0 write Command Register
|
|
0xd0 read Status Register
|
|
0xd2 write Request Register
|
|
0xd2 read -
|
|
0xd4 write Single Mask Register Bit
|
|
0xd4 read -
|
|
0xd6 write Mode Register
|
|
0xd6 read -
|
|
0xd8 write Clear LSB/MSB Flip-Flop
|
|
0xd8 read -
|
|
0xda write Master Clear/Reset
|
|
0xda read Temporary Register
|
|
0xdc write Clear Mask Register
|
|
0xdc read -
|
|
0xde write Write All Mask Register Bits
|
|
0xde read -
|
|
</verb>
|
|
|
|
<sect2><heading>0x80 - 0x9f DMA Page Registers</heading>
|
|
|
|
<p><verb>
|
|
0x87 r/w DMA Channel 0
|
|
0x83 r/w DMA Channel 1
|
|
0x81 r/w DMA Channel 2
|
|
0x82 r/w DMA Channel 3
|
|
|
|
0x8b r/w DMA Channel 5
|
|
0x89 r/w DMA Channel 6
|
|
0x8a r/w DMA Channel 7
|
|
|
|
0x8f Refresh
|
|
</verb>
|
|
|