1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-17 10:26:15 +00:00
freebsd/sys/dev/asr/asr.c
Mike Smith ef137fd32f Add the 'asr' driver, supplied by Mark Salyzyn of Adaptec (nee DPT).
This provides support for the Adaptec SCSI RAID controller family,
as well as the DPT SmartRAID V and VI families.

The driver will be maintained by Mark and Adaptec, and any changes
should be referred to the MAINTAINER.
2000-09-01 07:51:25 +00:00

4374 lines
172 KiB
C

/* $FreeBSD$ */
/*
* Copyright (c) 1996-2000 Distributed Processing Technology Corporation
* Copyright (c) 2000 Adaptec Corporation
* All rights reserved.
*
* TERMS AND CONDITIONS OF USE
*
* Redistribution and use in source form, with or without modification, are
* permitted provided that redistributions of source code must retain the
* above copyright notice, this list of conditions and the following disclaimer.
*
* This software is provided `as is' by Adaptec and any express or implied
* warranties, including, but not limited to, the implied warranties of
* merchantability and fitness for a particular purpose, are disclaimed. In no
* event shall Adaptec be liable for any direct, indirect, incidental, special,
* exemplary or consequential damages (including, but not limited to,
* procurement of substitute goods or services; loss of use, data, or profits;
* or business interruptions) however caused and on any theory of liability,
* whether in contract, strict liability, or tort (including negligence or
* otherwise) arising in any way out of the use of this driver software, even
* if advised of the possibility of such damage.
*
* SCSI I2O host adapter driver
*
* V1.03 2000/07/12 Mark_Salyzyn@adaptec.com
* - The controller is not actually an ASR (Adaptec SCSI RAID)
* series that is visible, it's more of an internal code name.
* remove any visible references within reason for now.
* - bus_ptr->LUN was not correctly zeroed when initially
* allocated causing a possible panic of the operating system
* during boot.
* V1.02 2000/06/26 Mark_Salyzyn@adaptec.com
* - Code always fails for ASR_getTid affecting performance.
* - initiated a set of changes that resulted from a formal
* code inspection by Mark_Salyzyn@adaptec.com,
* George_Dake@adaptec.com, Jeff_Zeak@adaptec.com,
* Martin_Wilson@adaptec.com and Vincent_Trandoan@adaptec.com.
* Their findings were focussed on the LCT & TID handler, and
* all resulting changes were to improve code readability,
* consistency or have a positive effect on performance.
* V1.01 2000/06/14 Mark_Salyzyn@adaptec.com
* - Passthrough returned an incorrect error.
* - Passthrough did not migrate the intrinsic scsi layer wakeup
* on command completion.
* - generate control device nodes using make_dev and delete_dev.
* - Performance affected by TID caching reallocing.
* - Made suggested changes by Justin_Gibbs@adaptec.com
* - use splcam instead of splbio.
* - use cam_imask instead of bio_imask.
* - use u_int8_t instead of u_char.
* - use u_int16_t instead of u_short.
* - use u_int32_t instead of u_long where appropriate.
* - use 64 bit context handler instead of 32 bit.
* - create_ccb should only allocate the worst case
* requirements for the driver since CAM may evolve
* making union ccb much larger than needed here.
* renamed create_ccb to asr_alloc_ccb.
* - go nutz justifying all debug prints as macros
* defined at the top and remove unsightly ifdefs.
* - INLINE STATIC viewed as confusing. Historically
* utilized to affect code performance and debug
* issues in OS, Compiler or OEM specific situations.
* V1.00 2000/05/31 Mark_Salyzyn@adaptec.com
* - Ported from FreeBSD 2.2.X DPT I2O driver.
* changed struct scsi_xfer to union ccb/struct ccb_hdr
* changed variable name xs to ccb
* changed struct scsi_link to struct cam_path
* changed struct scsibus_data to struct cam_sim
* stopped using fordriver for holding on to the TID
* use proprietary packet creation instead of scsi_inquire
* CAM layer sends synchronize commands.
*/
#define ASR_VERSION 1
#define ASR_REVISION '0'
#define ASR_SUBREVISION '3'
#define ASR_MONTH 7
#define ASR_DAY 12
#define ASR_YEAR 2000 - 1980
/*
* Debug macros to resude the unsightly ifdefs
*/
#if (defined(DEBUG_ASR) || defined(DEBUG_ASR_USR_CMD) || defined(DEBUG_ASR_CMD))
# define debug_asr_message(message) \
{ \
u_int32_t * pointer = (u_int32_t *)message; \
u_int32_t length = I2O_MESSAGE_FRAME_getMessageSize(message);\
u_int32_t counter = 0; \
\
while (length--) { \
printf ("%08lx%c", (u_long)*(pointer++), \
(((++counter & 7) == 0) || (length == 0)) \
? '\n' \
: ' '); \
} \
}
#endif /* DEBUG_ASR || DEBUG_ASR_USR_CMD || DEBUG_ASR_CMD */
#if (defined(DEBUG_ASR))
/* Breaks on none STDC based compilers :-( */
# define debug_asr_printf(fmt,args...) printf(fmt, ##args)
# define debug_asr_dump_message(message) debug_asr_message(message)
# define debug_asr_print_path(ccb) xpt_print_path(ccb->ccb_h.path);
/* None fatal version of the ASSERT macro */
# if (defined(__STDC__))
# define ASSERT(phrase) if(!(phrase))printf(#phrase " at line %d file %s\n",__LINE__,__FILE__)
# else
# define ASSERT(phrase) if(!(phrase))printf("phrase" " at line %d file %s\n",__LINE__,__FILE__)
# endif
#else /* DEBUG_ASR */
# define debug_asr_printf(fmt,args...)
# define debug_asr_dump_message(message)
# define debug_asr_print_path(ccb)
# define ASSERT(x)
#endif /* DEBUG_ASR */
/*
* If DEBUG_ASR_CMD is defined:
* 0 - Display incoming SCSI commands
* 1 - add in a quick character before queueing.
* 2 - add in outgoing message frames.
*/
#if (defined(DEBUG_ASR_CMD))
# define debug_asr_cmd_printf(fmt,args...) printf(fmt,##args)
# define debug_asr_dump_ccb(ccb) \
{ \
u_int8_t * cp = (unsigned char *)&(ccb->csio.cdb_io); \
int len = ccb->csio.cdb_len; \
\
while (len) { \
debug_asr_cmd_printf (" %02x", *(cp++)); \
--len; \
} \
}
# if (DEBUG_ASR_CMD > 0)
# define debug_asr_cmd1_printf debug_asr_cmd_printf
# else
# define debug_asr_cmd1_printf(fmt,args...)
# endif
# if (DEBUG_ASR_CMD > 1)
# define debug_asr_cmd2_printf debug_asr_cmd_printf
# define debug_asr_cmd2_dump_message(message) debug_asr_message(message)
# else
# define debug_asr_cmd2_printf(fmt,args...)
# define debug_asr_cmd2_dump_message(message)
# endif
#else /* DEBUG_ASR_CMD */
# define debug_asr_cmd_printf(fmt,args...)
# define debug_asr_cmd_dump_ccb(ccb)
# define debug_asr_cmd1_printf(fmt,args...)
# define debug_asr_cmd2_printf(fmt,args...)
# define debug_asr_cmd2_dump_message(message)
#endif /* DEBUG_ASR_CMD */
#if (defined(DEBUG_ASR_USR_CMD))
# define debug_usr_cmd_printf(fmt,args...) printf(fmt,##args)
# define debug_usr_cmd_dump_message(message) debug_usr_message(message)
#else /* DEBUG_ASR_USR_CMD */
# define debug_usr_cmd_printf(fmt,args...)
# define debug_usr_cmd_dump_message(message)
#endif /* DEBUG_ASR_USR_CMD */
#define dsDescription_size 46 /* Snug as a bug in a rug */
#include "dev/asr/dptsig.h"
static dpt_sig_S ASR_sig = {
{ 'd', 'P', 't', 'S', 'i', 'G'}, SIG_VERSION, PROC_INTEL,
PROC_386 | PROC_486 | PROC_PENTIUM | PROC_SEXIUM, FT_HBADRVR, 0,
OEM_DPT, OS_FREE_BSD, CAP_ABOVE16MB, DEV_ALL,
ADF_ALL_SC5,
0, 0, ASR_VERSION, ASR_REVISION, ASR_SUBREVISION,
ASR_MONTH, ASR_DAY, ASR_YEAR,
/* 01234567890123456789012345678901234567890123456789 < 50 chars */
"Adaptec FreeBSD 4.0.0 Unix SCSI I2O HBA Driver"
/* ^^^^^ asr_attach alters these to match OS */
};
#include <sys/param.h> /* TRUE=1 and FALSE=0 defined here */
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/disklabel.h>
#include <sys/bus.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <sys/stat.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_xpt_periph.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/cputypes.h>
#include <machine/clock.h>
#include <i386/include/vmparam.h>
#include <pci/pcivar.h>
#include <pci/pcireg.h>
#define STATIC static
#define INLINE
#if (defined(DEBUG_ASR) && (DEBUG_ASR > 0))
# undef STATIC
# define STATIC
# undef INLINE
# define INLINE
#endif
#define IN
#define OUT
#define INOUT
#define osdSwap4(x) ((u_long)ntohl((u_long)(x)))
#define KVTOPHYS(x) vtophys(x)
#include "dev/asr/dptalign.h"
#include "dev/asr/i2oexec.h"
#include "dev/asr/i2obscsi.h"
#include "dev/asr/i2odpt.h"
#include "dev/asr/i2oadptr.h"
#include "opt_asr.h"
#include "dev/asr/sys_info.h"
/* Configuration Definitions */
#define SG_SIZE 58 /* Scatter Gather list Size */
#define MAX_TARGET_ID 126 /* Maximum Target ID supported */
#define MAX_LUN 255 /* Maximum LUN Supported */
#define MAX_CHANNEL 7 /* Maximum Channel # Supported by driver */
#define MAX_INBOUND 2000 /* Max CCBs, Also Max Queue Size */
#define MAX_OUTBOUND 256 /* Maximum outbound frames/adapter */
#define MAX_INBOUND_SIZE 512 /* Maximum inbound frame size */
#define MAX_MAP 4194304L /* Maximum mapping size of IOP */
/**************************************************************************
** ASR Host Adapter structure - One Structure For Each Host Adapter That **
** Is Configured Into The System. The Structure Supplies Configuration **
** Information, Status Info, Queue Info And An Active CCB List Pointer. **
***************************************************************************/
/* I2O register set */
typedef struct {
U8 Address[0x30];
volatile U32 Status;
volatile U32 Mask;
# define Mask_InterruptsDisabled 0x08
U32 x[2];
volatile U32 ToFIFO; /* In Bound FIFO */
volatile U32 FromFIFO; /* Out Bound FIFO */
} i2oRegs_t;
/*
* A MIX of performance and space considerations for TID lookups
*/
typedef u_int16_t tid_t;
typedef struct {
u_int32_t size; /* up to MAX_LUN */
tid_t TID[1];
} lun2tid_t;
typedef struct {
u_int32_t size; /* up to MAX_TARGET */
lun2tid_t * LUN[1];
} target2lun_t;
/*
* To ensure that we only allocate and use the worst case ccb here, lets
* make our own local ccb union. If asr_alloc_ccb is utilized for another
* ccb type, ensure that you add the additional structures into our local
* ccb union. To ensure strict type checking, we will utilize the local
* ccb definition wherever possible.
*/
union asr_ccb {
struct ccb_hdr ccb_h; /* For convenience */
struct ccb_scsiio csio;
struct ccb_setasync csa;
};
typedef struct Asr_softc {
u_int16_t ha_irq;
void * ha_Base; /* base port for each board */
u_int8_t * volatile ha_blinkLED;
i2oRegs_t * ha_Virt; /* Base address of adapter */
I2O_IOP_ENTRY ha_SystemTable;
LIST_HEAD(,ccb_hdr) ha_ccb; /* ccbs in use */
struct cam_path * ha_path[MAX_CHANNEL+1];
struct cam_sim * ha_sim[MAX_CHANNEL+1];
#if __FreeBSD_version >= 400000
struct resource * ha_mem_res;
struct resource * ha_irq_res;
void * ha_intr;
#endif
u_int8_t ha_adapter_target[MAX_CHANNEL+1];
PI2O_LCT ha_LCT; /* Complete list of devices */
# define le_type IdentityTag[0]
# define I2O_BSA 0x20
# define I2O_FCA 0x40
# define I2O_SCSI 0x00
# define I2O_PORT 0x80
# define I2O_UNKNOWN 0x7F
# define le_bus IdentityTag[1]
# define le_target IdentityTag[2]
# define le_lun IdentityTag[3]
target2lun_t * ha_targets[MAX_CHANNEL+1];
PI2O_SCSI_ERROR_REPLY_MESSAGE_FRAME ha_Msgs;
u_long ha_Msgs_Phys;
u_int16_t ha_Msgs_Count;
/* Configuration information */
/* The target id maximums we take */
u_int8_t ha_MaxBus; /* Maximum bus */
u_int8_t ha_MaxId; /* Maximum target ID */
u_int8_t ha_MaxLun; /* Maximum target LUN */
u_int8_t ha_SgSize; /* Max SG elements */
u_int8_t ha_pciBusNum;
u_int8_t ha_pciDeviceNum;
u_int16_t ha_QueueSize; /* Max outstanding commands */
/* Links into other parents and HBAs */
struct Asr_softc * ha_next; /* HBA list */
#ifdef ASR_MEASURE_PERFORMANCE
#define MAX_TIMEQ_SIZE 256 // assumes MAX 256 scsi commands sent
asr_perf_t ha_performance;
u_int32_t ha_submitted_ccbs_count;
// Queueing macros for a circular queue
#define TIMEQ_FREE_LIST_EMPTY(head, tail) (-1 == (head) && -1 == (tail))
#define TIMEQ_FREE_LIST_FULL(head, tail) ((((tail) + 1) % MAX_TIMEQ_SIZE) == (head))
#define ENQ_TIMEQ_FREE_LIST(item, Q, head, tail) \
if (!TIMEQ_FREE_LIST_FULL((head), (tail))) { \
if TIMEQ_FREE_LIST_EMPTY((head),(tail)) { \
(head) = (tail) = 0; \
} \
else (tail) = ((tail) + 1) % MAX_TIMEQ_SIZE; \
Q[(tail)] = (item); \
} \
else { \
debug_asr_printf("asr: Enqueueing when TimeQ Free List is full... This should not happen!\n"); \
}
#define DEQ_TIMEQ_FREE_LIST(item, Q, head, tail) \
if (!TIMEQ_FREE_LIST_EMPTY((head), (tail))) { \
item = Q[(head)]; \
if ((head) == (tail)) { (head) = (tail) = -1; } \
else (head) = ((head) + 1) % MAX_TIMEQ_SIZE; \
} \
else { \
(item) = -1; \
debug_asr_printf("asr: Dequeueing when TimeQ Free List is empty... This should not happen!\n"); \
}
// Circular queue of time stamps
struct timeval ha_timeQ[MAX_TIMEQ_SIZE];
u_int32_t ha_timeQFreeList[MAX_TIMEQ_SIZE];
int ha_timeQFreeHead;
int ha_timeQFreeTail;
#endif
} Asr_softc_t;
STATIC Asr_softc_t * Asr_softc;
/*
* Prototypes of the routines we have in this object.
*/
/* Externally callable routines */
#if __FreeBSD_version >= 400000
#define PROBE_ARGS IN device_t tag
#define PROBE_RET int
#define PROBE_SET() u_long id = (pci_get_device(tag)<<16)|pci_get_vendor(tag)
#define PROBE_RETURN(retval) if(retval){device_set_desc(tag,retval);return(0);}else{return(ENXIO);}
#define ATTACH_ARGS IN device_t tag
#define ATTACH_RET int
#define ATTACH_SET() int unit = device_get_unit(tag)
#define ATTACH_RETURN(retval) return(retval)
#else
#define PROBE_ARGS IN pcici_t tag, IN pcidi_t id
#define PROBE_RET const char *
#define PROBE_SET()
#define PROBE_RETURN(retval) return(retval)
#define ATTACH_ARGS IN pcici_t tag, IN int unit
#define ATTACH_RET void
#define ATTACH_SET()
#define ATTACH_RETURN(retval) return
#endif
/* I2O HDM interface */
STATIC PROBE_RET asr_probe __P((PROBE_ARGS));
STATIC ATTACH_RET asr_attach __P((ATTACH_ARGS));
/* DOMINO placeholder */
STATIC PROBE_RET domino_probe __P((PROBE_ARGS));
STATIC ATTACH_RET domino_attach __P((ATTACH_ARGS));
/* MODE0 adapter placeholder */
STATIC PROBE_RET mode0_probe __P((PROBE_ARGS));
STATIC ATTACH_RET mode0_attach __P((ATTACH_ARGS));
STATIC Asr_softc_t * ASR_get_sc __P((
IN dev_t dev));
STATIC int asr_ioctl __P((
IN dev_t dev,
IN u_long cmd,
INOUT caddr_t data,
int flag,
struct proc * proc));
STATIC int asr_open __P((
IN dev_t dev,
int32_t flags,
int32_t ifmt,
IN struct proc * proc));
STATIC int asr_close __P((
dev_t dev,
int flags,
int ifmt,
struct proc * proc));
STATIC int asr_intr __P((
IN Asr_softc_t * sc));
STATIC void asr_timeout __P((
INOUT void * arg));
STATIC int ASR_init __P((
IN Asr_softc_t * sc));
STATIC INLINE int ASR_acquireLct __P((
INOUT Asr_softc_t * sc));
STATIC INLINE int ASR_acquireHrt __P((
INOUT Asr_softc_t * sc));
STATIC void asr_action __P((
IN struct cam_sim * sim,
IN union ccb * ccb));
STATIC void asr_async __P((
void * callback_arg,
u_int32_t code,
struct cam_path * path,
void * arg));
STATIC void asr_poll __P((
IN struct cam_sim * sim));
/*
* Here is the auto-probe structure used to nest our tests appropriately
* during the startup phase of the operating system.
*/
#if __FreeBSD_version >= 400000
STATIC device_method_t asr_methods[] = {
DEVMETHOD(device_probe, asr_probe),
DEVMETHOD(device_attach, asr_attach),
{ 0, 0 }
};
STATIC driver_t asr_driver = {
"asr",
asr_methods,
sizeof(Asr_softc_t)
};
STATIC devclass_t asr_devclass;
DRIVER_MODULE(asr, pci, asr_driver, asr_devclass, 0, 0);
STATIC device_method_t domino_methods[] = {
DEVMETHOD(device_probe, domino_probe),
DEVMETHOD(device_attach, domino_attach),
{ 0, 0 }
};
STATIC driver_t domino_driver = {
"domino",
domino_methods,
0
};
STATIC devclass_t domino_devclass;
DRIVER_MODULE(domino, pci, domino_driver, domino_devclass, 0, 0);
STATIC device_method_t mode0_methods[] = {
DEVMETHOD(device_probe, mode0_probe),
DEVMETHOD(device_attach, mode0_attach),
{ 0, 0 }
};
STATIC driver_t mode0_driver = {
"mode0",
mode0_methods,
0
};
STATIC devclass_t mode0_devclass;
DRIVER_MODULE(mode0, pci, mode0_driver, mode0_devclass, 0, 0);
#else
STATIC u_long asr_pcicount = 0;
STATIC struct pci_device asr_pcidev = {
"asr",
asr_probe,
asr_attach,
&asr_pcicount,
NULL
};
DATA_SET (asr_pciset, asr_pcidev);
STATIC u_long domino_pcicount = 0;
STATIC struct pci_device domino_pcidev = {
"domino",
domino_probe,
domino_attach,
&domino_pcicount,
NULL
};
DATA_SET (domino_pciset, domino_pcidev);
STATIC u_long mode0_pcicount = 0;
STATIC struct pci_device mode0_pcidev = {
"mode0",
mode0_probe,
mode0_attach,
&mode0_pcicount,
NULL
};
DATA_SET (mode0_pciset, mode0_pcidev);
#endif
/*
* devsw for asr hba driver
*
* only ioctl is used. the sd driver provides all other access.
*/
#define CDEV_MAJOR 97 /* prefered default character major */
STATIC struct cdevsw asr_cdevsw = {
asr_open, /* open */
asr_close, /* close */
noread, /* read */
nowrite, /* write */
asr_ioctl, /* ioctl */
nopoll, /* poll */
nommap, /* mmap */
nostrategy, /* strategy */
"asr", /* name */
CDEV_MAJOR, /* maj */
nodump, /* dump */
nopsize, /* psize */
0, /* flags */
-1 /* bmaj */
};
#ifdef ASR_MEASURE_PERFORMANCE
STATIC u_int32_t asr_time_delta __P((IN struct timeval start,
IN struct timeval end));
#endif
/*
* Initialize the dynamic cdevsw hooks.
*/
STATIC void
asr_drvinit (
void * unused)
{
static int asr_devsw_installed = 0;
if (asr_devsw_installed) {
return;
}
asr_devsw_installed++;
/*
* Find a free spot (the report during driver load used by
* osd layer in engine to generate the controlling nodes).
*/
while ((asr_cdevsw.d_maj < NUMCDEVSW)
&& (devsw(makedev(asr_cdevsw.d_maj,0)) != (struct cdevsw *)NULL)) {
++asr_cdevsw.d_maj;
}
if (asr_cdevsw.d_maj >= NUMCDEVSW) for (
asr_cdevsw.d_maj = 0;
(asr_cdevsw.d_maj < CDEV_MAJOR)
&& (devsw(makedev(asr_cdevsw.d_maj,0)) != (struct cdevsw *)NULL);
++asr_cdevsw.d_maj);
/*
* Come to papa
*/
cdevsw_add(&asr_cdevsw);
/*
* delete any nodes that would attach to the primary adapter,
* let the adapter scans add them.
*/
destroy_dev(makedev(asr_cdevsw.d_maj,0));
} /* asr_drvinit */
/* Must initialize before CAM layer picks up our HBA driver */
SYSINIT(asrdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,asr_drvinit,NULL)
/* I2O support routines */
#define defAlignLong(STRUCT,NAME) char NAME[sizeof(STRUCT)]
#define getAlignLong(STRUCT,NAME) ((STRUCT *)(NAME))
/*
* Fill message with default.
*/
STATIC PI2O_MESSAGE_FRAME
ASR_fillMessage (
IN char * Message,
IN u_int16_t size)
{
OUT PI2O_MESSAGE_FRAME Message_Ptr;
Message_Ptr = getAlignLong(I2O_MESSAGE_FRAME, Message);
bzero ((void *)Message_Ptr, size);
I2O_MESSAGE_FRAME_setVersionOffset(Message_Ptr, I2O_VERSION_11);
I2O_MESSAGE_FRAME_setMessageSize(Message_Ptr,
(size + sizeof(U32) - 1) >> 2);
I2O_MESSAGE_FRAME_setInitiatorAddress (Message_Ptr, 1);
return (Message_Ptr);
} /* ASR_fillMessage */
#define EMPTY_QUEUE ((U32)-1L)
STATIC INLINE U32
ASR_getMessage(
IN i2oRegs_t * virt)
{
OUT U32 MessageOffset;
if ((MessageOffset = virt->ToFIFO) == EMPTY_QUEUE) {
MessageOffset = virt->ToFIFO;
}
return (MessageOffset);
} /* ASR_getMessage */
/* Issue a polled command */
STATIC U32
ASR_initiateCp (
INOUT i2oRegs_t * virt,
IN PI2O_MESSAGE_FRAME Message)
{
OUT U32 Mask = -1L;
U32 MessageOffset;
u_int Delay = 1500;
/*
* ASR_initiateCp is only used for synchronous commands and will
* be made more resiliant to adapter delays since commands like
* resetIOP can cause the adapter to be deaf for a little time.
*/
while (((MessageOffset = ASR_getMessage(virt)) == EMPTY_QUEUE)
&& (--Delay != 0)) {
DELAY (10000);
}
if (MessageOffset != EMPTY_QUEUE) {
bcopy (Message, virt->Address + MessageOffset,
I2O_MESSAGE_FRAME_getMessageSize(Message) << 2);
/*
* Disable the Interrupts
*/
virt->Mask = (Mask = virt->Mask) | Mask_InterruptsDisabled;
virt->ToFIFO = MessageOffset;
}
return (Mask);
} /* ASR_initiateCp */
/*
* Reset the adapter.
*/
STATIC U32
ASR_resetIOP (
INOUT i2oRegs_t * virt)
{
struct resetMessage {
I2O_EXEC_IOP_RESET_MESSAGE M;
U32 R;
};
defAlignLong(struct resetMessage,Message);
PI2O_EXEC_IOP_RESET_MESSAGE Message_Ptr;
OUT U32 * volatile Reply_Ptr;
U32 Old;
/*
* Build up our copy of the Message.
*/
Message_Ptr = (PI2O_EXEC_IOP_RESET_MESSAGE)ASR_fillMessage(Message,
sizeof(I2O_EXEC_IOP_RESET_MESSAGE));
I2O_EXEC_IOP_RESET_MESSAGE_setFunction(Message_Ptr, I2O_EXEC_IOP_RESET);
/*
* Reset the Reply Status
*/
*(Reply_Ptr = (U32 *)((char *)Message_Ptr
+ sizeof(I2O_EXEC_IOP_RESET_MESSAGE))) = 0;
I2O_EXEC_IOP_RESET_MESSAGE_setStatusWordLowAddress(Message_Ptr,
KVTOPHYS((void *)Reply_Ptr));
/*
* Send the Message out
*/
if ((Old = ASR_initiateCp (virt, (PI2O_MESSAGE_FRAME)Message_Ptr)) != (U32)-1L) {
/*
* Wait for a response (Poll), timeouts are dangerous if
* the card is truly responsive. We assume response in 2s.
*/
u_int8_t Delay = 200;
while ((*Reply_Ptr == 0) && (--Delay != 0)) {
DELAY (10000);
}
/*
* Re-enable the interrupts.
*/
virt->Mask = Old;
ASSERT (*Reply_Ptr);
return (*Reply_Ptr);
}
ASSERT (Old != (U32)-1L);
return (0);
} /* ASR_resetIOP */
/*
* Get the curent state of the adapter
*/
STATIC INLINE PI2O_EXEC_STATUS_GET_REPLY
ASR_getStatus (
INOUT i2oRegs_t * virt,
OUT PI2O_EXEC_STATUS_GET_REPLY buffer)
{
defAlignLong(I2O_EXEC_STATUS_GET_MESSAGE,Message);
PI2O_EXEC_STATUS_GET_MESSAGE Message_Ptr;
U32 Old;
/*
* Build up our copy of the Message.
*/
Message_Ptr = (PI2O_EXEC_STATUS_GET_MESSAGE)ASR_fillMessage(Message,
sizeof(I2O_EXEC_STATUS_GET_MESSAGE));
I2O_EXEC_STATUS_GET_MESSAGE_setFunction(Message_Ptr,
I2O_EXEC_STATUS_GET);
I2O_EXEC_STATUS_GET_MESSAGE_setReplyBufferAddressLow(Message_Ptr,
KVTOPHYS((void *)buffer));
/* This one is a Byte Count */
I2O_EXEC_STATUS_GET_MESSAGE_setReplyBufferLength(Message_Ptr,
sizeof(I2O_EXEC_STATUS_GET_REPLY));
/*
* Reset the Reply Status
*/
bzero ((void *)buffer, sizeof(I2O_EXEC_STATUS_GET_REPLY));
/*
* Send the Message out
*/
if ((Old = ASR_initiateCp (virt, (PI2O_MESSAGE_FRAME)Message_Ptr)) != (U32)-1L) {
/*
* Wait for a response (Poll), timeouts are dangerous if
* the card is truly responsive. We assume response in 50ms.
*/
u_int8_t Delay = 50;
while (*((U8 * volatile)&buffer->SyncByte) == 0) {
if (--Delay == 0) {
buffer = (PI2O_EXEC_STATUS_GET_REPLY)NULL;
break;
}
DELAY (1000);
}
/*
* Re-enable the interrupts.
*/
virt->Mask = Old;
return (buffer);
}
return ((PI2O_EXEC_STATUS_GET_REPLY)NULL);
} /* ASR_getStatus */
/*
* Check if the device is a SCSI I2O HBA, and add it to the list.
*/
/*
* Probe for ASR controller. If we find it, we will use it.
* virtual adapters.
*/
STATIC PROBE_RET
asr_probe(PROBE_ARGS)
{
PROBE_SET();
if (id == 0xA5011044) {
PROBE_RETURN ("Adaptec Caching SCSI RAID");
}
PROBE_RETURN (NULL);
} /* asr_probe */
/*
* Probe/Attach for DOMINO chipset.
*/
STATIC PROBE_RET
domino_probe(PROBE_ARGS)
{
PROBE_SET();
if (id == 0x10121044) {
PROBE_RETURN ("Adaptec Caching Memory Controller");
}
PROBE_RETURN (NULL);
} /* domino_probe */
STATIC ATTACH_RET
domino_attach (ATTACH_ARGS)
{
ATTACH_RETURN (0);
} /* domino_attach */
/*
* Probe/Attach for MODE0 adapters.
*/
STATIC PROBE_RET
mode0_probe(PROBE_ARGS)
{
PROBE_SET();
if (id == 0x908010B5) {
PROBE_RETURN ("Adaptec Mode0 3xxx");
}
#if 0 /* this would match any generic i960 -- mjs */
if (id == 0x19608086) {
PROBE_RETURN ("Adaptec Mode0 1xxx");
}
#endif
PROBE_RETURN (NULL);
} /* mode0_probe */
STATIC ATTACH_RET
mode0_attach (ATTACH_ARGS)
{
ATTACH_RETURN (0);
} /* mode0_attach */
STATIC INLINE union asr_ccb *
asr_alloc_ccb (
IN Asr_softc_t * sc)
{
OUT union asr_ccb * new_ccb;
if ((new_ccb = (union asr_ccb *)malloc(sizeof(*new_ccb),
M_DEVBUF, M_WAITOK)) != (union asr_ccb *)NULL) {
bzero (new_ccb, sizeof(*new_ccb));
new_ccb->ccb_h.pinfo.priority = 1;
new_ccb->ccb_h.pinfo.index = CAM_UNQUEUED_INDEX;
new_ccb->ccb_h.spriv_ptr0 = sc;
}
return (new_ccb);
} /* asr_alloc_ccb */
STATIC INLINE void
asr_free_ccb (
IN union asr_ccb * free_ccb)
{
free(free_ccb, M_DEVBUF);
} /* asr_free_ccb */
/*
* Print inquiry data `carefully'
*/
STATIC void
ASR_prstring (
u_int8_t * s,
int len)
{
while ((--len >= 0) && (*s) && (*s != ' ') && (*s != '-')) {
printf ("%c", *(s++));
}
} /* ASR_prstring */
/*
* Prototypes
*/
STATIC INLINE int ASR_queue __P((
IN Asr_softc_t * sc,
IN PI2O_MESSAGE_FRAME Message));
/*
* Send a message synchronously and without Interrupt to a ccb.
*/
STATIC int
ASR_queue_s (
INOUT union asr_ccb * ccb,
IN PI2O_MESSAGE_FRAME Message)
{
int s;
U32 Mask;
Asr_softc_t * sc = (Asr_softc_t *)(ccb->ccb_h.spriv_ptr0);
/*
* We do not need any (optional byteswapping) method access to
* the Initiator context field.
*/
I2O_MESSAGE_FRAME_setInitiatorContext64(Message, (long)ccb);
/* Prevent interrupt service */
s = splcam ();
sc->ha_Virt->Mask = (Mask = sc->ha_Virt->Mask)
| Mask_InterruptsDisabled;
if (ASR_queue (sc, Message) == EMPTY_QUEUE) {
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
}
/*
* Wait for this board to report a finished instruction.
*/
while (ccb->ccb_h.status == CAM_REQ_INPROG) {
(void)asr_intr (sc);
}
/* Re-enable Interrupts */
sc->ha_Virt->Mask = Mask;
splx(s);
return (ccb->ccb_h.status);
} /* ASR_queue_s */
/*
* Send a message synchronously to a Asr_softc_t
*/
STATIC int
ASR_queue_c (
IN Asr_softc_t * sc,
IN PI2O_MESSAGE_FRAME Message)
{
union asr_ccb * ccb;
OUT int status;
if ((ccb = asr_alloc_ccb (sc)) == (union asr_ccb *)NULL) {
return (CAM_REQUEUE_REQ);
}
status = ASR_queue_s (ccb, Message);
asr_free_ccb(ccb);
return (status);
} /* ASR_queue_c */
/*
* Add the specified ccb to the active queue
*/
STATIC INLINE void
ASR_ccbAdd (
IN Asr_softc_t * sc,
INOUT union asr_ccb * ccb)
{
LIST_INSERT_HEAD(&(sc->ha_ccb), &(ccb->ccb_h), sim_links.le);
if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) {
if (ccb->ccb_h.timeout == CAM_TIME_DEFAULT) {
/*
* RAID systems can take considerable time to
* complete some commands given the large cache
* flashes switching from write back to write thru.
*/
ccb->ccb_h.timeout = 6 * 60 * 1000;
}
ccb->ccb_h.timeout_ch = timeout(asr_timeout, (caddr_t)ccb,
(ccb->ccb_h.timeout * hz) / 1000);
}
} /* ASR_ccbAdd */
/*
* Remove the specified ccb from the active queue.
*/
STATIC INLINE void
ASR_ccbRemove (
IN Asr_softc_t * sc,
INOUT union asr_ccb * ccb)
{
untimeout(asr_timeout, (caddr_t)ccb, ccb->ccb_h.timeout_ch);
LIST_REMOVE(&ccb->ccb_h, sim_links.le);
} /* ASR_ccbRemove */
/*
* Fail all the active commands, so they get re-issued by the operating
* system.
*/
STATIC INLINE void
ASR_failActiveCommands (
IN Asr_softc_t * sc)
{
struct ccb_hdr * ccb;
defAlignLong(I2O_EXEC_LCT_NOTIFY_MESSAGE,Message);
PI2O_EXEC_LCT_NOTIFY_MESSAGE Message_Ptr;
/* Send a blind LCT command to wait for the enableSys to complete */
Message_Ptr = (PI2O_EXEC_LCT_NOTIFY_MESSAGE)ASR_fillMessage(Message,
sizeof(I2O_EXEC_LCT_NOTIFY_MESSAGE) - sizeof(I2O_SG_ELEMENT));
I2O_MESSAGE_FRAME_setFunction(&(Message_Ptr->StdMessageFrame),
I2O_EXEC_LCT_NOTIFY);
I2O_EXEC_LCT_NOTIFY_MESSAGE_setClassIdentifier(Message_Ptr,
I2O_CLASS_MATCH_ANYCLASS);
(void)ASR_queue_c(sc, (PI2O_MESSAGE_FRAME)Message_Ptr);
LIST_FOREACH(ccb, &(sc->ha_ccb), sim_links.le) {
ASR_ccbRemove (sc, (union asr_ccb *)ccb);
ccb->status &= ~CAM_STATUS_MASK;
ccb->status |= CAM_REQUEUE_REQ;
((struct ccb_scsiio *)ccb)->resid
= ((struct ccb_scsiio *)ccb)->dxfer_len;
if (ccb->path) {
xpt_done ((union ccb *)ccb);
} else {
wakeup ((caddr_t)ccb);
}
}
} /* ASR_failActiveCommands */
/*
* The following command causes the HBA to reset the specific bus
*/
STATIC INLINE void
ASR_resetBus(
IN Asr_softc_t * sc,
IN int bus)
{
defAlignLong(I2O_HBA_BUS_RESET_MESSAGE,Message);
I2O_HBA_BUS_RESET_MESSAGE * Message_Ptr;
PI2O_LCT_ENTRY Device;
Message_Ptr = (I2O_HBA_BUS_RESET_MESSAGE *)ASR_fillMessage(Message,
sizeof(I2O_HBA_BUS_RESET_MESSAGE));
I2O_MESSAGE_FRAME_setFunction(&Message_Ptr->StdMessageFrame,
I2O_HBA_BUS_RESET);
for (Device = sc->ha_LCT->LCTEntry; Device < (PI2O_LCT_ENTRY)
(((U32 *)sc->ha_LCT)+I2O_LCT_getTableSize(sc->ha_LCT));
++Device) {
if (((Device->le_type & I2O_PORT) != 0)
&& (Device->le_bus == bus)) {
I2O_MESSAGE_FRAME_setTargetAddress(
&Message_Ptr->StdMessageFrame,
I2O_LCT_ENTRY_getLocalTID(Device));
/* Asynchronous command, with no expectations */
(void)ASR_queue(sc, (PI2O_MESSAGE_FRAME)Message_Ptr);
break;
}
}
} /* ASR_resetBus */
STATIC INLINE int
ASR_getBlinkLedCode (
IN Asr_softc_t * sc)
{
if ((sc != (Asr_softc_t *)NULL)
&& (sc->ha_blinkLED != (u_int8_t *)NULL)
&& (sc->ha_blinkLED[1] == 0xBC)) {
return (sc->ha_blinkLED[0]);
}
return (0);
} /* ASR_getBlinkCode */
/*
* Determine the address of an TID lookup. Must be done at high priority
* since the address can be changed by other threads of execution.
*
* Returns NULL pointer if not indexible (but will attempt to generate
* an index if `new_entry' flag is set to TRUE).
*
* All addressible entries are to be guaranteed zero if never initialized.
*/
STATIC INLINE tid_t *
ASR_getTidAddress(
INOUT Asr_softc_t * sc,
IN int bus,
IN int target,
IN int lun,
IN int new_entry)
{
target2lun_t * bus_ptr;
lun2tid_t * target_ptr;
unsigned new_size;
/*
* Validity checking of incoming parameters. More of a bound
* expansion limit than an issue with the code dealing with the
* values.
*
* sc must be valid before it gets here, so that check could be
* dropped if speed a critical issue.
*/
if ((sc == (Asr_softc_t *)NULL)
|| (bus > MAX_CHANNEL)
|| (target > sc->ha_MaxId)
|| (lun > sc->ha_MaxLun)) {
debug_asr_printf("(%lx,%d,%d,%d) target out of range\n",
(u_long)sc, bus, target, lun);
return ((tid_t *)NULL);
}
/*
* See if there is an associated bus list.
*
* for performance, allocate in size of BUS_CHUNK chunks.
* BUS_CHUNK must be a power of two. This is to reduce
* fragmentation effects on the allocations.
*/
# define BUS_CHUNK 8
new_size = ((target + BUS_CHUNK - 1) & ~(BUS_CHUNK - 1));
if ((bus_ptr = sc->ha_targets[bus]) == (target2lun_t *)NULL) {
/*
* Allocate a new structure?
* Since one element in structure, the +1
* needed for size has been abstracted.
*/
if ((new_entry == FALSE)
|| ((sc->ha_targets[bus] = bus_ptr = (target2lun_t *)malloc (
sizeof(*bus_ptr) + (sizeof(bus_ptr->LUN) * new_size),
M_TEMP, M_WAITOK))
== (target2lun_t *)NULL)) {
debug_asr_printf("failed to allocate bus list\n");
return ((tid_t *)NULL);
}
bzero (bus_ptr, sizeof(*bus_ptr)
+ (sizeof(bus_ptr->LUN) * new_size));
bus_ptr->size = new_size + 1;
} else if (bus_ptr->size <= new_size) {
target2lun_t * new_bus_ptr;
/*
* Reallocate a new structure?
* Since one element in structure, the +1
* needed for size has been abstracted.
*/
if ((new_entry == FALSE)
|| ((new_bus_ptr = (target2lun_t *)malloc (
sizeof(*bus_ptr) + (sizeof(bus_ptr->LUN) * new_size),
M_TEMP, M_WAITOK))
== (target2lun_t *)NULL)) {
debug_asr_printf("failed to reallocate bus list\n");
return ((tid_t *)NULL);
}
/*
* Zero and copy the whole thing, safer, simpler coding
* and not really performance critical at this point.
*/
bzero (new_bus_ptr, sizeof(*bus_ptr)
+ (sizeof(bus_ptr->LUN) * new_size));
bcopy (bus_ptr, new_bus_ptr, sizeof(*bus_ptr)
+ (sizeof(bus_ptr->LUN) * (bus_ptr->size - 1)));
sc->ha_targets[bus] = new_bus_ptr;
free (bus_ptr, M_TEMP);
bus_ptr = new_bus_ptr;
bus_ptr->size = new_size + 1;
}
/*
* We now have the bus list, lets get to the target list.
* Since most systems have only *one* lun, we do not allocate
* in chunks as above, here we allow one, then in chunk sizes.
* TARGET_CHUNK must be a power of two. This is to reduce
* fragmentation effects on the allocations.
*/
# define TARGET_CHUNK 8
if ((new_size = lun) != 0) {
new_size = ((lun + TARGET_CHUNK - 1) & ~(TARGET_CHUNK - 1));
}
if ((target_ptr = bus_ptr->LUN[target]) == (lun2tid_t *)NULL) {
/*
* Allocate a new structure?
* Since one element in structure, the +1
* needed for size has been abstracted.
*/
if ((new_entry == FALSE)
|| ((bus_ptr->LUN[target] = target_ptr = (lun2tid_t *)malloc (
sizeof(*target_ptr) + (sizeof(target_ptr->TID) * new_size),
M_TEMP, M_WAITOK))
== (lun2tid_t *)NULL)) {
debug_asr_printf("failed to allocate target list\n");
return ((tid_t *)NULL);
}
bzero (target_ptr, sizeof(*target_ptr)
+ (sizeof(target_ptr->TID) * new_size));
target_ptr->size = new_size + 1;
} else if (target_ptr->size <= new_size) {
lun2tid_t * new_target_ptr;
/*
* Reallocate a new structure?
* Since one element in structure, the +1
* needed for size has been abstracted.
*/
if ((new_entry == FALSE)
|| ((new_target_ptr = (lun2tid_t *)malloc (
sizeof(*target_ptr) + (sizeof(target_ptr->TID) * new_size),
M_TEMP, M_WAITOK))
== (lun2tid_t *)NULL)) {
debug_asr_printf("failed to reallocate target list\n");
return ((tid_t *)NULL);
}
/*
* Zero and copy the whole thing, safer, simpler coding
* and not really performance critical at this point.
*/
bzero (new_target_ptr, sizeof(*target_ptr)
+ (sizeof(target_ptr->TID) * new_size));
bcopy (target_ptr, new_target_ptr,
sizeof(*target_ptr)
+ (sizeof(target_ptr->TID) * (target_ptr->size - 1)));
bus_ptr->LUN[target] = new_target_ptr;
free (target_ptr, M_TEMP);
target_ptr = new_target_ptr;
target_ptr->size = new_size + 1;
}
/*
* Now, acquire the TID address from the LUN indexed list.
*/
return (&(target_ptr->TID[lun]));
} /* ASR_getTidAddress */
/*
* Get a pre-existing TID relationship.
*
* If the TID was never set, return (tid_t)-1.
*
* should use mutex rather than spl.
*/
STATIC INLINE tid_t
ASR_getTid (
IN Asr_softc_t * sc,
IN int bus,
IN int target,
IN int lun)
{
tid_t * tid_ptr;
int s;
OUT tid_t retval;
s = splcam();
if (((tid_ptr = ASR_getTidAddress (sc, bus, target, lun, FALSE))
== (tid_t *)NULL)
/* (tid_t)0 or (tid_t)-1 indicate no TID */
|| (*tid_ptr == (tid_t)0)) {
splx(s);
return ((tid_t)-1);
}
retval = *tid_ptr;
splx(s);
return (retval);
} /* ASR_getTid */
/*
* Set a TID relationship.
*
* If the TID was not set, return (tid_t)-1.
*
* should use mutex rather than spl.
*/
STATIC INLINE tid_t
ASR_setTid (
INOUT Asr_softc_t * sc,
IN int bus,
IN int target,
IN int lun,
INOUT tid_t TID)
{
tid_t * tid_ptr;
int s;
if (TID != (tid_t)-1) {
if (TID == 0) {
return ((tid_t)-1);
}
s = splcam();
if ((tid_ptr = ASR_getTidAddress (sc, bus, target, lun, TRUE))
== (tid_t *)NULL) {
splx(s);
return ((tid_t)-1);
}
*tid_ptr = TID;
splx(s);
}
return (TID);
} /* ASR_setTid */
/*-------------------------------------------------------------------------*/
/* Function ASR_rescan */
/*-------------------------------------------------------------------------*/
/* The Parameters Passed To This Function Are : */
/* Asr_softc_t * : HBA miniport driver's adapter data storage. */
/* */
/* This Function Will rescan the adapter and resynchronize any data */
/* */
/* Return : 0 For OK, Error Code Otherwise */
/*-------------------------------------------------------------------------*/
STATIC INLINE int
ASR_rescan(
IN Asr_softc_t * sc)
{
int bus;
OUT int error;
/*
* Re-acquire the LCT table and synchronize us to the adapter.
*/
if ((error = ASR_acquireLct(sc)) == 0) {
error = ASR_acquireHrt(sc);
}
if (error != 0) {
return error;
}
bus = sc->ha_MaxBus;
/* Reset all existing cached TID lookups */
do {
int target;
/*
* Scan for all targets on this bus to see if they
* got affected by the rescan.
*/
for (target = 0; target <= sc->ha_MaxId; ++target) {
int lun;
for (lun = 0; lun <= sc->ha_MaxLun; ++lun) {
PI2O_LCT_ENTRY Device;
tid_t TID = (tid_t)-1;
/*
* See if the cached TID changed. Search for
* the device in our new LCT.
*/
for (Device = sc->ha_LCT->LCTEntry;
Device < (PI2O_LCT_ENTRY)(((U32 *)sc->ha_LCT)
+ I2O_LCT_getTableSize(sc->ha_LCT));
++Device) {
if ((Device->le_type != I2O_UNKNOWN)
&& (Device->le_bus == bus)
&& (Device->le_target == target)
&& (Device->le_lun == lun)
&& (I2O_LCT_ENTRY_getUserTID(Device)
== 0xFFF)) {
TID = I2O_LCT_ENTRY_getLocalTID(
Device);
break;
}
}
/*
* Indicate to the OS that the label needs
* to be recalculated, or that the specific
* open device is no longer valid (Merde)
* because the cached TID changed.
* ASR_getTid (sc, bus, target, lun) != TI
*/
/*
* We have the option of clearing the
* cached TID for it to be rescanned, or to
* set it now even if the device never got
* accessed. We chose the later since we
* currently do not use the condition that
* the TID ever got cached.
*/
ASR_setTid (sc, bus, target, lun, TID);
}
}
} while (--bus >= 0);
return (error);
} /* ASR_rescan */
/*-------------------------------------------------------------------------*/
/* Function ASR_reset */
/*-------------------------------------------------------------------------*/
/* The Parameters Passed To This Function Are : */
/* Asr_softc_t * : HBA miniport driver's adapter data storage. */
/* */
/* This Function Will reset the adapter and resynchronize any data */
/* */
/* Return : None */
/*-------------------------------------------------------------------------*/
STATIC INLINE void
ASR_reset(
IN Asr_softc_t * sc)
{
(void)ASR_resetIOP (sc->ha_Virt);
(void)ASR_init (sc);
(void)ASR_rescan (sc);
(void)ASR_failActiveCommands (sc);
} /* ASR_reset */
/*
* Device timeout handler.
*/
STATIC void
asr_timeout(
INOUT void * arg)
{
union asr_ccb * ccb = (union asr_ccb *)arg;
Asr_softc_t * sc = (Asr_softc_t *)(ccb->ccb_h.spriv_ptr0);
int s;
debug_asr_print_path(ccb);
debug_asr_printf("timed out");
/*
* Check if the adapter has locked up?
*/
if ((s = ASR_getBlinkLedCode(sc)) != 0) {
debug_asr_printf (
" due to adapter blinkled code %x\nresetting adapter\n", s);
ASR_reset (sc);
return;
}
/*
* Abort does not function on the ASR card!!! Walking away from
* the SCSI command is also *very* dangerous. A SCSI BUS reset is
* our best bet, followed by a complete adapter reset if that fails.
*/
s = splcam();
if (ccb->ccb_h.status == CAM_CMD_TIMEOUT) {
debug_asr_printf (" AGAIN\nreinitializing adapter\n");
ASR_reset (sc);
splx(s);
return;
}
debug_asr_printf ("\nresetting bus\n");
/* If the BUS reset does not take, then an adapter reset is next! */
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_CMD_TIMEOUT;
ccb->ccb_h.timeout_ch = timeout(asr_timeout, (caddr_t)ccb,
(ccb->ccb_h.timeout * hz) / 1000);
ASR_resetBus (sc, cam_sim_bus(xpt_path_sim(ccb->ccb_h.path)));
splx(s);
} /* asr_timeout */
/*
* send a message asynchronously
*/
STATIC INLINE int
ASR_queue(
IN Asr_softc_t * sc,
IN PI2O_MESSAGE_FRAME Message)
{
OUT U32 MessageOffset;
union asr_ccb * ccb;
debug_asr_printf ("Host Command Dump:\n");
debug_asr_dump_message (Message);
/*
* Limit the number of Messages sent to this HBA. Better to sleep,
* than to hardware loop like a nut! By limiting the number of
* messages to an individual HBA here, we manage to perform all
* the processing of the message ready to drop the next one into
* the controller. We could limit the messages we are allowed to
* take, but that may have a performance hit.
*/
ccb = (union asr_ccb *)(long)
I2O_MESSAGE_FRAME_getInitiatorContext64(Message);
if (((MessageOffset = ASR_getMessage(sc->ha_Virt)) != EMPTY_QUEUE)
|| ((MessageOffset = ASR_getMessage(sc->ha_Virt)) != EMPTY_QUEUE)) {
#ifdef ASR_MEASURE_PERFORMANCE
int startTimeIndex;
if (ccb) {
++sc->ha_performance.command_count[
(int) ccb->csio.cdb_io.cdb_bytes[0]];
DEQ_TIMEQ_FREE_LIST(startTimeIndex,
sc->ha_timeQFreeList,
sc->ha_timeQFreeHead,
sc->ha_timeQFreeTail);
if (-1 != startTimeIndex) {
microtime(&sc->ha_timeQ[startTimeIndex]);
}
/* Time stamp the command before we send it out */
((PRIVATE_SCSI_SCB_EXECUTE_MESSAGE *) Message)->
PrivateMessageFrame.TransactionContext
= (I2O_TRANSACTION_CONTEXT) startTimeIndex;
++sc->ha_submitted_ccbs_count;
if (sc->ha_performance.max_submit_count
< sc->ha_submitted_ccbs_count) {
sc->ha_performance.max_submit_count
= sc->ha_submitted_ccbs_count;
}
}
#endif
bcopy (Message, sc->ha_Virt->Address + MessageOffset,
I2O_MESSAGE_FRAME_getMessageSize(Message) << 2);
if (ccb) {
ASR_ccbAdd (sc, ccb);
}
/* Post the command */
sc->ha_Virt->ToFIFO = MessageOffset;
} else {
if (ASR_getBlinkLedCode(sc)) {
ASR_reset (sc);
}
}
return (MessageOffset);
} /* ASR_queue */
/* Simple Scatter Gather elements */
#define SG(SGL,Index,Flags,Buffer,Size) \
I2O_FLAGS_COUNT_setCount( \
&(((PI2O_SG_ELEMENT)(SGL))->u.Simple[Index].FlagsCount), \
Size); \
I2O_FLAGS_COUNT_setFlags( \
&(((PI2O_SG_ELEMENT)(SGL))->u.Simple[Index].FlagsCount), \
I2O_SGL_FLAGS_SIMPLE_ADDRESS_ELEMENT | (Flags)); \
I2O_SGE_SIMPLE_ELEMENT_setPhysicalAddress( \
&(((PI2O_SG_ELEMENT)(SGL))->u.Simple[Index]), \
(Buffer == NULL) ? NULL : KVTOPHYS(Buffer))
/*
* Retrieve Parameter Group.
* Buffer must be allocated using defAlignLong macro.
*/
STATIC void *
ASR_getParams(
IN Asr_softc_t * sc,
IN tid_t TID,
IN int Group,
OUT void * Buffer,
IN unsigned BufferSize)
{
struct paramGetMessage {
I2O_UTIL_PARAMS_GET_MESSAGE M;
char F[
sizeof(I2O_SGE_SIMPLE_ELEMENT)*2 - sizeof(I2O_SG_ELEMENT)];
struct Operations {
I2O_PARAM_OPERATIONS_LIST_HEADER Header;
I2O_PARAM_OPERATION_ALL_TEMPLATE Template[1];
} O;
};
defAlignLong(struct paramGetMessage, Message);
struct Operations * Operations_Ptr;
I2O_UTIL_PARAMS_GET_MESSAGE * Message_Ptr;
struct ParamBuffer {
I2O_PARAM_RESULTS_LIST_HEADER Header;
I2O_PARAM_READ_OPERATION_RESULT Read;
char Info[1];
} * Buffer_Ptr;
Message_Ptr = (I2O_UTIL_PARAMS_GET_MESSAGE *)ASR_fillMessage(Message,
sizeof(I2O_UTIL_PARAMS_GET_MESSAGE)
+ sizeof(I2O_SGE_SIMPLE_ELEMENT)*2 - sizeof(I2O_SG_ELEMENT));
Operations_Ptr = (struct Operations *)((char *)Message_Ptr
+ sizeof(I2O_UTIL_PARAMS_GET_MESSAGE)
+ sizeof(I2O_SGE_SIMPLE_ELEMENT)*2 - sizeof(I2O_SG_ELEMENT));
bzero ((void *)Operations_Ptr, sizeof(struct Operations));
I2O_PARAM_OPERATIONS_LIST_HEADER_setOperationCount(
&(Operations_Ptr->Header), 1);
I2O_PARAM_OPERATION_ALL_TEMPLATE_setOperation(
&(Operations_Ptr->Template[0]), I2O_PARAMS_OPERATION_FIELD_GET);
I2O_PARAM_OPERATION_ALL_TEMPLATE_setFieldCount(
&(Operations_Ptr->Template[0]), 0xFFFF);
I2O_PARAM_OPERATION_ALL_TEMPLATE_setGroupNumber(
&(Operations_Ptr->Template[0]), Group);
bzero ((void *)(Buffer_Ptr = getAlignLong(struct ParamBuffer, Buffer)),
BufferSize);
I2O_MESSAGE_FRAME_setVersionOffset(&(Message_Ptr->StdMessageFrame),
I2O_VERSION_11
+ (((sizeof(I2O_UTIL_PARAMS_GET_MESSAGE) - sizeof(I2O_SG_ELEMENT))
/ sizeof(U32)) << 4));
I2O_MESSAGE_FRAME_setTargetAddress (&(Message_Ptr->StdMessageFrame),
TID);
I2O_MESSAGE_FRAME_setFunction (&(Message_Ptr->StdMessageFrame),
I2O_UTIL_PARAMS_GET);
/*
* Set up the buffers as scatter gather elements.
*/
SG(&(Message_Ptr->SGL), 0,
I2O_SGL_FLAGS_DIR | I2O_SGL_FLAGS_END_OF_BUFFER,
Operations_Ptr, sizeof(struct Operations));
SG(&(Message_Ptr->SGL), 1,
I2O_SGL_FLAGS_LAST_ELEMENT | I2O_SGL_FLAGS_END_OF_BUFFER,
Buffer_Ptr, BufferSize);
if ((ASR_queue_c(sc, (PI2O_MESSAGE_FRAME)Message_Ptr) == CAM_REQ_CMP)
&& (Buffer_Ptr->Header.ResultCount)) {
return ((void *)(Buffer_Ptr->Info));
}
return ((void *)NULL);
} /* ASR_getParams */
/*
* Acquire the LCT information.
*/
STATIC INLINE int
ASR_acquireLct (
INOUT Asr_softc_t * sc)
{
PI2O_EXEC_LCT_NOTIFY_MESSAGE Message_Ptr;
PI2O_SGE_SIMPLE_ELEMENT sg;
int MessageSizeInBytes;
caddr_t v;
int len;
I2O_LCT Table;
PI2O_LCT_ENTRY Entry;
/*
* sc value assumed valid
*/
MessageSizeInBytes = sizeof(I2O_EXEC_LCT_NOTIFY_MESSAGE)
- sizeof(I2O_SG_ELEMENT) + sizeof(I2O_SGE_SIMPLE_ELEMENT);
if ((Message_Ptr = (PI2O_EXEC_LCT_NOTIFY_MESSAGE)malloc (
MessageSizeInBytes, M_TEMP, M_WAITOK))
== (PI2O_EXEC_LCT_NOTIFY_MESSAGE)NULL) {
return (ENOMEM);
}
(void)ASR_fillMessage((char *)Message_Ptr, MessageSizeInBytes);
I2O_MESSAGE_FRAME_setVersionOffset(&(Message_Ptr->StdMessageFrame),
(I2O_VERSION_11 +
(((sizeof(I2O_EXEC_LCT_NOTIFY_MESSAGE) - sizeof(I2O_SG_ELEMENT))
/ sizeof(U32)) << 4)));
I2O_MESSAGE_FRAME_setFunction(&(Message_Ptr->StdMessageFrame),
I2O_EXEC_LCT_NOTIFY);
I2O_EXEC_LCT_NOTIFY_MESSAGE_setClassIdentifier(Message_Ptr,
I2O_CLASS_MATCH_ANYCLASS);
/*
* Call the LCT table to determine the number of device entries
* to reserve space for.
*/
SG(&(Message_Ptr->SGL), 0,
I2O_SGL_FLAGS_LAST_ELEMENT | I2O_SGL_FLAGS_END_OF_BUFFER, &Table,
sizeof(I2O_LCT));
/*
* since this code is reused in several systems, code efficiency
* is greater by using a shift operation rather than a divide by
* sizeof(u_int32_t).
*/
I2O_LCT_setTableSize(&Table,
(sizeof(I2O_LCT) - sizeof(I2O_LCT_ENTRY)) >> 2);
(void)ASR_queue_c(sc, (PI2O_MESSAGE_FRAME)Message_Ptr);
/*
* Determine the size of the LCT table.
*/
if (sc->ha_LCT) {
free (sc->ha_LCT, M_TEMP);
}
/*
* malloc only generates contiguous memory when less than a
* page is expected. We must break the request up into an SG list ...
*/
if (((len = (I2O_LCT_getTableSize(&Table) << 2)) <=
(sizeof(I2O_LCT) - sizeof(I2O_LCT_ENTRY)))
|| (len > (128 * 1024))) { /* Arbitrary */
free (Message_Ptr, M_TEMP);
return (EINVAL);
}
if ((sc->ha_LCT = (PI2O_LCT)malloc (len, M_TEMP, M_WAITOK))
== (PI2O_LCT)NULL) {
free (Message_Ptr, M_TEMP);
return (ENOMEM);
}
/*
* since this code is reused in several systems, code efficiency
* is greater by using a shift operation rather than a divide by
* sizeof(u_int32_t).
*/
I2O_LCT_setTableSize(sc->ha_LCT,
(sizeof(I2O_LCT) - sizeof(I2O_LCT_ENTRY)) >> 2);
/*
* Convert the access to the LCT table into a SG list.
*/
sg = Message_Ptr->SGL.u.Simple;
v = (caddr_t)(sc->ha_LCT);
for (;;) {
int next, base, span;
span = 0;
next = base = KVTOPHYS(v);
I2O_SGE_SIMPLE_ELEMENT_setPhysicalAddress(sg, base);
/* How far can we go contiguously */
while ((len > 0) && (base == next)) {
int size;
next = trunc_page(base) + PAGE_SIZE;
size = next - base;
if (size > len) {
size = len;
}
span += size;
v += size;
len -= size;
base = KVTOPHYS(v);
}
/* Construct the Flags */
I2O_FLAGS_COUNT_setCount(&(sg->FlagsCount), span);
{
int rw = I2O_SGL_FLAGS_SIMPLE_ADDRESS_ELEMENT;
if (len <= 0) {
rw = (I2O_SGL_FLAGS_SIMPLE_ADDRESS_ELEMENT
| I2O_SGL_FLAGS_LAST_ELEMENT
| I2O_SGL_FLAGS_END_OF_BUFFER);
}
I2O_FLAGS_COUNT_setFlags(&(sg->FlagsCount), rw);
}
if (len <= 0) {
break;
}
/*
* Incrementing requires resizing of the packet.
*/
++sg;
MessageSizeInBytes += sizeof(*sg);
I2O_MESSAGE_FRAME_setMessageSize(
&(Message_Ptr->StdMessageFrame),
I2O_MESSAGE_FRAME_getMessageSize(
&(Message_Ptr->StdMessageFrame))
+ (sizeof(*sg) / sizeof(U32)));
{
PI2O_EXEC_LCT_NOTIFY_MESSAGE NewMessage_Ptr;
if ((NewMessage_Ptr = (PI2O_EXEC_LCT_NOTIFY_MESSAGE)
malloc (MessageSizeInBytes, M_TEMP, M_WAITOK))
== (PI2O_EXEC_LCT_NOTIFY_MESSAGE)NULL) {
free (sc->ha_LCT, M_TEMP);
sc->ha_LCT = (PI2O_LCT)NULL;
free (Message_Ptr, M_TEMP);
return (ENOMEM);
}
span = ((caddr_t)sg) - (caddr_t)Message_Ptr;
bcopy ((caddr_t)Message_Ptr,
(caddr_t)NewMessage_Ptr, span);
free (Message_Ptr, M_TEMP);
sg = (PI2O_SGE_SIMPLE_ELEMENT)
(((caddr_t)NewMessage_Ptr) + span);
Message_Ptr = NewMessage_Ptr;
}
}
{ int retval;
retval = ASR_queue_c(sc, (PI2O_MESSAGE_FRAME)Message_Ptr);
free (Message_Ptr, M_TEMP);
if (retval != CAM_REQ_CMP) {
return (ENODEV);
}
}
/* If the LCT table grew, lets truncate accesses */
if (I2O_LCT_getTableSize(&Table) < I2O_LCT_getTableSize(sc->ha_LCT)) {
I2O_LCT_setTableSize(sc->ha_LCT, I2O_LCT_getTableSize(&Table));
}
for (Entry = sc->ha_LCT->LCTEntry; Entry < (PI2O_LCT_ENTRY)
(((U32 *)sc->ha_LCT)+I2O_LCT_getTableSize(sc->ha_LCT));
++Entry) {
Entry->le_type = I2O_UNKNOWN;
switch (I2O_CLASS_ID_getClass(&(Entry->ClassID))) {
case I2O_CLASS_RANDOM_BLOCK_STORAGE:
Entry->le_type = I2O_BSA;
break;
case I2O_CLASS_SCSI_PERIPHERAL:
Entry->le_type = I2O_SCSI;
break;
case I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL:
Entry->le_type = I2O_FCA;
break;
case I2O_CLASS_BUS_ADAPTER_PORT:
Entry->le_type = I2O_PORT | I2O_SCSI;
/* FALLTHRU */
case I2O_CLASS_FIBRE_CHANNEL_PORT:
if (I2O_CLASS_ID_getClass(&(Entry->ClassID)) ==
I2O_CLASS_FIBRE_CHANNEL_PORT) {
Entry->le_type = I2O_PORT | I2O_FCA;
}
{ struct ControllerInfo {
I2O_PARAM_RESULTS_LIST_HEADER Header;
I2O_PARAM_READ_OPERATION_RESULT Read;
I2O_HBA_SCSI_CONTROLLER_INFO_SCALAR Info;
};
defAlignLong(struct ControllerInfo, Buffer);
PI2O_HBA_SCSI_CONTROLLER_INFO_SCALAR Info;
Entry->le_bus = 0xff;
Entry->le_target = 0xff;
Entry->le_lun = 0xff;
if ((Info = (PI2O_HBA_SCSI_CONTROLLER_INFO_SCALAR)
ASR_getParams(sc,
I2O_LCT_ENTRY_getLocalTID(Entry),
I2O_HBA_SCSI_CONTROLLER_INFO_GROUP_NO,
Buffer, sizeof(struct ControllerInfo)))
== (PI2O_HBA_SCSI_CONTROLLER_INFO_SCALAR)NULL) {
continue;
}
Entry->le_target
= I2O_HBA_SCSI_CONTROLLER_INFO_SCALAR_getInitiatorID(
Info);
Entry->le_lun = 0;
} /* FALLTHRU */
default:
continue;
}
{ struct DeviceInfo {
I2O_PARAM_RESULTS_LIST_HEADER Header;
I2O_PARAM_READ_OPERATION_RESULT Read;
I2O_DPT_DEVICE_INFO_SCALAR Info;
};
defAlignLong (struct DeviceInfo, Buffer);
PI2O_DPT_DEVICE_INFO_SCALAR Info;
Entry->le_bus = 0xff;
Entry->le_target = 0xff;
Entry->le_lun = 0xff;
if ((Info = (PI2O_DPT_DEVICE_INFO_SCALAR)
ASR_getParams(sc,
I2O_LCT_ENTRY_getLocalTID(Entry),
I2O_DPT_DEVICE_INFO_GROUP_NO,
Buffer, sizeof(struct DeviceInfo)))
== (PI2O_DPT_DEVICE_INFO_SCALAR)NULL) {
continue;
}
Entry->le_type
|= I2O_DPT_DEVICE_INFO_SCALAR_getDeviceType(Info);
Entry->le_bus
= I2O_DPT_DEVICE_INFO_SCALAR_getBus(Info);
if ((Entry->le_bus > sc->ha_MaxBus)
&& (Entry->le_bus <= MAX_CHANNEL)) {
sc->ha_MaxBus = Entry->le_bus;
}
Entry->le_target
= I2O_DPT_DEVICE_INFO_SCALAR_getIdentifier(Info);
Entry->le_lun
= I2O_DPT_DEVICE_INFO_SCALAR_getLunInfo(Info);
}
}
/*
* A zero return value indicates success.
*/
return (0);
} /* ASR_acquireLct */
/*
* Initialize a message frame.
* We assume that the CDB has already been set up, so all we do here is
* generate the Scatter Gather list.
*/
STATIC INLINE PI2O_MESSAGE_FRAME
ASR_init_message(
IN union asr_ccb * ccb,
OUT PI2O_MESSAGE_FRAME Message)
{
int next, span, base, rw;
OUT PI2O_MESSAGE_FRAME Message_Ptr;
Asr_softc_t * sc = (Asr_softc_t *)(ccb->ccb_h.spriv_ptr0);
PI2O_SGE_SIMPLE_ELEMENT sg;
caddr_t v;
vm_size_t size, len;
U32 MessageSize;
/* We only need to zero out the PRIVATE_SCSI_SCB_EXECUTE_MESSAGE */
bzero (Message_Ptr = getAlignLong(I2O_MESSAGE_FRAME, Message),
(sizeof(PRIVATE_SCSI_SCB_EXECUTE_MESSAGE) - sizeof(I2O_SG_ELEMENT)));
{
int target = ccb->ccb_h.target_id;
int lun = ccb->ccb_h.target_lun;
int bus = cam_sim_bus(xpt_path_sim(ccb->ccb_h.path));
tid_t TID;
if ((TID = ASR_getTid (sc, bus, target, lun)) == (tid_t)-1) {
PI2O_LCT_ENTRY Device;
TID = (tid_t)0;
for (Device = sc->ha_LCT->LCTEntry; Device < (PI2O_LCT_ENTRY)
(((U32 *)sc->ha_LCT)+I2O_LCT_getTableSize(sc->ha_LCT));
++Device) {
if ((Device->le_type != I2O_UNKNOWN)
&& (Device->le_bus == bus)
&& (Device->le_target == target)
&& (Device->le_lun == lun)
&& (I2O_LCT_ENTRY_getUserTID(Device) == 0xFFF)) {
TID = I2O_LCT_ENTRY_getLocalTID(Device);
ASR_setTid (sc, Device->le_bus,
Device->le_target, Device->le_lun,
TID);
break;
}
}
}
if (TID == (tid_t)0) {
return ((PI2O_MESSAGE_FRAME)NULL);
}
I2O_MESSAGE_FRAME_setTargetAddress(Message_Ptr, TID);
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_setTID(
(PPRIVATE_SCSI_SCB_EXECUTE_MESSAGE)Message_Ptr, TID);
}
I2O_MESSAGE_FRAME_setVersionOffset(Message_Ptr, I2O_VERSION_11 |
(((sizeof(PRIVATE_SCSI_SCB_EXECUTE_MESSAGE) - sizeof(I2O_SG_ELEMENT))
/ sizeof(U32)) << 4));
I2O_MESSAGE_FRAME_setMessageSize(Message_Ptr,
(sizeof(PRIVATE_SCSI_SCB_EXECUTE_MESSAGE)
- sizeof(I2O_SG_ELEMENT)) / sizeof(U32));
I2O_MESSAGE_FRAME_setInitiatorAddress (Message_Ptr, 1);
I2O_MESSAGE_FRAME_setFunction(Message_Ptr, I2O_PRIVATE_MESSAGE);
I2O_PRIVATE_MESSAGE_FRAME_setXFunctionCode (
(PI2O_PRIVATE_MESSAGE_FRAME)Message_Ptr, I2O_SCSI_SCB_EXEC);
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_setSCBFlags (
(PPRIVATE_SCSI_SCB_EXECUTE_MESSAGE)Message_Ptr,
I2O_SCB_FLAG_ENABLE_DISCONNECT
| I2O_SCB_FLAG_SIMPLE_QUEUE_TAG
| I2O_SCB_FLAG_SENSE_DATA_IN_BUFFER);
/*
* We do not need any (optional byteswapping) method access to
* the Initiator & Transaction context field.
*/
I2O_MESSAGE_FRAME_setInitiatorContext64(Message, (long)ccb);
I2O_PRIVATE_MESSAGE_FRAME_setOrganizationID(
(PI2O_PRIVATE_MESSAGE_FRAME)Message_Ptr, DPT_ORGANIZATION_ID);
/*
* copy the cdb over
*/
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_setCDBLength(
(PPRIVATE_SCSI_SCB_EXECUTE_MESSAGE)Message_Ptr, ccb->csio.cdb_len);
bcopy (&(ccb->csio.cdb_io),
((PPRIVATE_SCSI_SCB_EXECUTE_MESSAGE)Message_Ptr)->CDB, ccb->csio.cdb_len);
/*
* Given a buffer describing a transfer, set up a scatter/gather map
* in a ccb to map that SCSI transfer.
*/
rw = (ccb->ccb_h.flags & CAM_DIR_IN) ? 0 : I2O_SGL_FLAGS_DIR;
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_setSCBFlags (
(PPRIVATE_SCSI_SCB_EXECUTE_MESSAGE)Message_Ptr,
(ccb->csio.dxfer_len)
? ((rw) ? (I2O_SCB_FLAG_XFER_TO_DEVICE
| I2O_SCB_FLAG_ENABLE_DISCONNECT
| I2O_SCB_FLAG_SIMPLE_QUEUE_TAG
| I2O_SCB_FLAG_SENSE_DATA_IN_BUFFER)
: (I2O_SCB_FLAG_XFER_FROM_DEVICE
| I2O_SCB_FLAG_ENABLE_DISCONNECT
| I2O_SCB_FLAG_SIMPLE_QUEUE_TAG
| I2O_SCB_FLAG_SENSE_DATA_IN_BUFFER))
: (I2O_SCB_FLAG_ENABLE_DISCONNECT
| I2O_SCB_FLAG_SIMPLE_QUEUE_TAG
| I2O_SCB_FLAG_SENSE_DATA_IN_BUFFER));
/*
* Given a transfer described by a `data', fill in the SG list.
*/
sg = &((PPRIVATE_SCSI_SCB_EXECUTE_MESSAGE)Message_Ptr)->SGL.u.Simple[0];
len = ccb->csio.dxfer_len;
v = ccb->csio.data_ptr;
ASSERT (ccb->csio.dxfer_len >= 0);
MessageSize = I2O_MESSAGE_FRAME_getMessageSize(Message_Ptr);
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_setByteCount(
(PPRIVATE_SCSI_SCB_EXECUTE_MESSAGE)Message_Ptr, len);
while ((len > 0) && (sg < &((PPRIVATE_SCSI_SCB_EXECUTE_MESSAGE)
Message_Ptr)->SGL.u.Simple[SG_SIZE])) {
span = 0;
next = base = KVTOPHYS(v);
I2O_SGE_SIMPLE_ELEMENT_setPhysicalAddress(sg, base);
/* How far can we go contiguously */
while ((len > 0) && (base == next)) {
next = trunc_page(base) + PAGE_SIZE;
size = next - base;
if (size > len) {
size = len;
}
span += size;
v += size;
len -= size;
base = KVTOPHYS(v);
}
I2O_FLAGS_COUNT_setCount(&(sg->FlagsCount), span);
if (len == 0) {
rw |= I2O_SGL_FLAGS_LAST_ELEMENT;
}
I2O_FLAGS_COUNT_setFlags(&(sg->FlagsCount),
I2O_SGL_FLAGS_SIMPLE_ADDRESS_ELEMENT | rw);
++sg;
MessageSize += sizeof(*sg) / sizeof(U32);
}
/* We always do the request sense ... */
if ((span = ccb->csio.sense_len) == 0) {
span = sizeof(ccb->csio.sense_data);
}
SG(sg, 0, I2O_SGL_FLAGS_LAST_ELEMENT | I2O_SGL_FLAGS_END_OF_BUFFER,
&(ccb->csio.sense_data), span);
I2O_MESSAGE_FRAME_setMessageSize(Message_Ptr,
MessageSize + (sizeof(*sg) / sizeof(U32)));
return (Message_Ptr);
} /* ASR_init_message */
/*
* Reset the adapter.
*/
STATIC INLINE U32
ASR_initOutBound (
INOUT Asr_softc_t * sc)
{
struct initOutBoundMessage {
I2O_EXEC_OUTBOUND_INIT_MESSAGE M;
U32 R;
};
defAlignLong(struct initOutBoundMessage,Message);
PI2O_EXEC_OUTBOUND_INIT_MESSAGE Message_Ptr;
OUT U32 * volatile Reply_Ptr;
U32 Old;
/*
* Build up our copy of the Message.
*/
Message_Ptr = (PI2O_EXEC_OUTBOUND_INIT_MESSAGE)ASR_fillMessage(Message,
sizeof(I2O_EXEC_OUTBOUND_INIT_MESSAGE));
I2O_MESSAGE_FRAME_setFunction(&(Message_Ptr->StdMessageFrame),
I2O_EXEC_OUTBOUND_INIT);
I2O_EXEC_OUTBOUND_INIT_MESSAGE_setHostPageFrameSize(Message_Ptr, PAGE_SIZE);
I2O_EXEC_OUTBOUND_INIT_MESSAGE_setOutboundMFrameSize(Message_Ptr,
sizeof(I2O_SCSI_ERROR_REPLY_MESSAGE_FRAME));
/*
* Reset the Reply Status
*/
*(Reply_Ptr = (U32 *)((char *)Message_Ptr
+ sizeof(I2O_EXEC_OUTBOUND_INIT_MESSAGE))) = 0;
SG (&(Message_Ptr->SGL), 0, I2O_SGL_FLAGS_LAST_ELEMENT, Reply_Ptr,
sizeof(U32));
/*
* Send the Message out
*/
if ((Old = ASR_initiateCp (sc->ha_Virt, (PI2O_MESSAGE_FRAME)Message_Ptr)) != (U32)-1L) {
u_long size, addr;
/*
* Wait for a response (Poll).
*/
while (*Reply_Ptr < I2O_EXEC_OUTBOUND_INIT_REJECTED);
/*
* Re-enable the interrupts.
*/
sc->ha_Virt->Mask = Old;
/*
* Populate the outbound table.
*/
if (sc->ha_Msgs == (PI2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)NULL) {
/* Allocate the reply frames */
size = sizeof(I2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)
* sc->ha_Msgs_Count;
/*
* contigmalloc only works reliably at
* initialization time.
*/
if ((sc->ha_Msgs = (PI2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)
contigmalloc (size, M_DEVBUF, M_WAITOK, 0ul,
0xFFFFFFFFul, (u_long)sizeof(U32), 0ul))
!= (PI2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)NULL) {
(void)bzero ((char *)sc->ha_Msgs, size);
sc->ha_Msgs_Phys = KVTOPHYS(sc->ha_Msgs);
}
}
/* Initialize the outbound FIFO */
if (sc->ha_Msgs != (PI2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)NULL)
for (size = sc->ha_Msgs_Count, addr = sc->ha_Msgs_Phys;
size; --size) {
sc->ha_Virt->FromFIFO = addr;
addr += sizeof(I2O_SCSI_ERROR_REPLY_MESSAGE_FRAME);
}
return (*Reply_Ptr);
}
return (0);
} /* ASR_initOutBound */
/*
* Set the system table
*/
STATIC INLINE int
ASR_setSysTab(
IN Asr_softc_t * sc)
{
PI2O_EXEC_SYS_TAB_SET_MESSAGE Message_Ptr;
PI2O_SET_SYSTAB_HEADER SystemTable;
Asr_softc_t * ha;
PI2O_SGE_SIMPLE_ELEMENT sg;
int retVal;
if ((SystemTable = (PI2O_SET_SYSTAB_HEADER)malloc (
sizeof(I2O_SET_SYSTAB_HEADER), M_TEMP, M_WAITOK))
== (PI2O_SET_SYSTAB_HEADER)NULL) {
return (ENOMEM);
}
bzero (SystemTable, sizeof(I2O_SET_SYSTAB_HEADER));
for (ha = Asr_softc; ha; ha = ha->ha_next) {
++SystemTable->NumberEntries;
}
if ((Message_Ptr = (PI2O_EXEC_SYS_TAB_SET_MESSAGE)malloc (
sizeof(I2O_EXEC_SYS_TAB_SET_MESSAGE) - sizeof(I2O_SG_ELEMENT)
+ ((3+SystemTable->NumberEntries) * sizeof(I2O_SGE_SIMPLE_ELEMENT)),
M_TEMP, M_WAITOK)) == (PI2O_EXEC_SYS_TAB_SET_MESSAGE)NULL) {
free (SystemTable, M_TEMP);
return (ENOMEM);
}
(void)ASR_fillMessage((char *)Message_Ptr,
sizeof(I2O_EXEC_SYS_TAB_SET_MESSAGE) - sizeof(I2O_SG_ELEMENT)
+ ((3+SystemTable->NumberEntries) * sizeof(I2O_SGE_SIMPLE_ELEMENT)));
I2O_MESSAGE_FRAME_setVersionOffset(&(Message_Ptr->StdMessageFrame),
(I2O_VERSION_11 +
(((sizeof(I2O_EXEC_SYS_TAB_SET_MESSAGE) - sizeof(I2O_SG_ELEMENT))
/ sizeof(U32)) << 4)));
I2O_MESSAGE_FRAME_setFunction(&(Message_Ptr->StdMessageFrame),
I2O_EXEC_SYS_TAB_SET);
/*
* Call the LCT table to determine the number of device entries
* to reserve space for.
* since this code is reused in several systems, code efficiency
* is greater by using a shift operation rather than a divide by
* sizeof(u_int32_t).
*/
sg = (PI2O_SGE_SIMPLE_ELEMENT)((char *)Message_Ptr
+ ((I2O_MESSAGE_FRAME_getVersionOffset(
&(Message_Ptr->StdMessageFrame)) & 0xF0) >> 2));
SG(sg, 0, I2O_SGL_FLAGS_DIR, SystemTable, sizeof(I2O_SET_SYSTAB_HEADER));
++sg;
for (ha = Asr_softc; ha; ha = ha->ha_next) {
SG(sg, 0,
((ha->ha_next)
? (I2O_SGL_FLAGS_DIR)
: (I2O_SGL_FLAGS_DIR | I2O_SGL_FLAGS_END_OF_BUFFER)),
&(ha->ha_SystemTable), sizeof(ha->ha_SystemTable));
++sg;
}
SG(sg, 0, I2O_SGL_FLAGS_DIR | I2O_SGL_FLAGS_END_OF_BUFFER, NULL, 0);
SG(sg, 1, I2O_SGL_FLAGS_DIR | I2O_SGL_FLAGS_LAST_ELEMENT
| I2O_SGL_FLAGS_END_OF_BUFFER, NULL, 0);
retVal = ASR_queue_c(sc, (PI2O_MESSAGE_FRAME)Message_Ptr);
free (Message_Ptr, M_TEMP);
free (SystemTable, M_TEMP);
return (retVal);
} /* ASR_setSysTab */
STATIC INLINE int
ASR_acquireHrt (
INOUT Asr_softc_t * sc)
{
defAlignLong(I2O_EXEC_HRT_GET_MESSAGE,Message);
I2O_EXEC_HRT_GET_MESSAGE * Message_Ptr;
struct {
I2O_HRT Header;
I2O_HRT_ENTRY Entry[MAX_CHANNEL];
} Hrt;
u_int8_t NumberOfEntries;
PI2O_HRT_ENTRY Entry;
bzero ((void *)&Hrt, sizeof (Hrt));
Message_Ptr = (I2O_EXEC_HRT_GET_MESSAGE *)ASR_fillMessage(Message,
sizeof(I2O_EXEC_HRT_GET_MESSAGE) - sizeof(I2O_SG_ELEMENT)
+ sizeof(I2O_SGE_SIMPLE_ELEMENT));
I2O_MESSAGE_FRAME_setVersionOffset(&(Message_Ptr->StdMessageFrame),
(I2O_VERSION_11
+ (((sizeof(I2O_EXEC_HRT_GET_MESSAGE) - sizeof(I2O_SG_ELEMENT))
/ sizeof(U32)) << 4)));
I2O_MESSAGE_FRAME_setFunction (&(Message_Ptr->StdMessageFrame),
I2O_EXEC_HRT_GET);
/*
* Set up the buffers as scatter gather elements.
*/
SG(&(Message_Ptr->SGL), 0,
I2O_SGL_FLAGS_LAST_ELEMENT | I2O_SGL_FLAGS_END_OF_BUFFER,
&Hrt, sizeof(Hrt));
if (ASR_queue_c(sc, (PI2O_MESSAGE_FRAME)Message_Ptr) != CAM_REQ_CMP) {
return (ENODEV);
}
if ((NumberOfEntries = I2O_HRT_getNumberEntries(&Hrt.Header))
> (MAX_CHANNEL + 1)) {
NumberOfEntries = MAX_CHANNEL + 1;
}
for (Entry = Hrt.Header.HRTEntry;
NumberOfEntries != 0;
++Entry, --NumberOfEntries) {
PI2O_LCT_ENTRY Device;
for (Device = sc->ha_LCT->LCTEntry; Device < (PI2O_LCT_ENTRY)
(((U32 *)sc->ha_LCT)+I2O_LCT_getTableSize(sc->ha_LCT));
++Device) {
if (I2O_LCT_ENTRY_getLocalTID(Device)
== (I2O_HRT_ENTRY_getAdapterID(Entry) & 0xFFF)) {
Device->le_bus = I2O_HRT_ENTRY_getAdapterID(
Entry) >> 16;
if ((Device->le_bus > sc->ha_MaxBus)
&& (Device->le_bus <= MAX_CHANNEL)) {
sc->ha_MaxBus = Device->le_bus;
}
}
}
}
return (0);
} /* ASR_acquireHrt */
/*
* Enable the adapter.
*/
STATIC INLINE int
ASR_enableSys (
IN Asr_softc_t * sc)
{
defAlignLong(I2O_EXEC_SYS_ENABLE_MESSAGE,Message);
PI2O_EXEC_SYS_ENABLE_MESSAGE Message_Ptr;
Message_Ptr = (PI2O_EXEC_SYS_ENABLE_MESSAGE)ASR_fillMessage(Message,
sizeof(I2O_EXEC_SYS_ENABLE_MESSAGE));
I2O_MESSAGE_FRAME_setFunction(&(Message_Ptr->StdMessageFrame),
I2O_EXEC_SYS_ENABLE);
return (ASR_queue_c(sc, (PI2O_MESSAGE_FRAME)Message_Ptr) != 0);
} /* ASR_enableSys */
/*
* Perform the stages necessary to initialize the adapter
*/
STATIC int
ASR_init(
IN Asr_softc_t * sc)
{
return ((ASR_initOutBound(sc) == 0)
|| (ASR_setSysTab(sc) != CAM_REQ_CMP)
|| (ASR_enableSys(sc) != CAM_REQ_CMP));
} /* ASR_init */
/*
* Send a Synchronize Cache command to the target device.
*/
STATIC INLINE void
ASR_sync (
IN Asr_softc_t * sc,
IN int bus,
IN int target,
IN int lun)
{
tid_t TID;
/*
* We will not synchronize the device when there are outstanding
* commands issued by the OS (this is due to a locked up device,
* as the OS normally would flush all outstanding commands before
* issuing a shutdown or an adapter reset).
*/
if ((sc != (Asr_softc_t *)NULL)
&& (sc->ha_ccb.lh_first != (struct ccb_hdr *)NULL)
&& ((TID = ASR_getTid (sc, bus, target, lun)) != (tid_t)-1)
&& (TID != (tid_t)0)) {
defAlignLong(PRIVATE_SCSI_SCB_EXECUTE_MESSAGE,Message);
PPRIVATE_SCSI_SCB_EXECUTE_MESSAGE Message_Ptr;
bzero (Message_Ptr
= getAlignLong(PRIVATE_SCSI_SCB_EXECUTE_MESSAGE, Message),
sizeof(PRIVATE_SCSI_SCB_EXECUTE_MESSAGE)
- sizeof(I2O_SG_ELEMENT) + sizeof(I2O_SGE_SIMPLE_ELEMENT));
I2O_MESSAGE_FRAME_setVersionOffset(
(PI2O_MESSAGE_FRAME)Message_Ptr,
I2O_VERSION_11
| (((sizeof(PRIVATE_SCSI_SCB_EXECUTE_MESSAGE)
- sizeof(I2O_SG_ELEMENT))
/ sizeof(U32)) << 4));
I2O_MESSAGE_FRAME_setMessageSize(
(PI2O_MESSAGE_FRAME)Message_Ptr,
(sizeof(PRIVATE_SCSI_SCB_EXECUTE_MESSAGE)
- sizeof(I2O_SG_ELEMENT))
/ sizeof(U32));
I2O_MESSAGE_FRAME_setInitiatorAddress (
(PI2O_MESSAGE_FRAME)Message_Ptr, 1);
I2O_MESSAGE_FRAME_setFunction(
(PI2O_MESSAGE_FRAME)Message_Ptr, I2O_PRIVATE_MESSAGE);
I2O_MESSAGE_FRAME_setTargetAddress(
(PI2O_MESSAGE_FRAME)Message_Ptr, TID);
I2O_PRIVATE_MESSAGE_FRAME_setXFunctionCode (
(PI2O_PRIVATE_MESSAGE_FRAME)Message_Ptr,
I2O_SCSI_SCB_EXEC);
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_setTID(Message_Ptr, TID);
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_setSCBFlags (Message_Ptr,
I2O_SCB_FLAG_ENABLE_DISCONNECT
| I2O_SCB_FLAG_SIMPLE_QUEUE_TAG
| I2O_SCB_FLAG_SENSE_DATA_IN_BUFFER);
I2O_PRIVATE_MESSAGE_FRAME_setOrganizationID(
(PI2O_PRIVATE_MESSAGE_FRAME)Message_Ptr,
DPT_ORGANIZATION_ID);
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_setCDBLength(Message_Ptr, 6);
Message_Ptr->CDB[0] = SYNCHRONIZE_CACHE;
Message_Ptr->CDB[1] = (lun << 5);
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_setSCBFlags (Message_Ptr,
(I2O_SCB_FLAG_XFER_FROM_DEVICE
| I2O_SCB_FLAG_ENABLE_DISCONNECT
| I2O_SCB_FLAG_SIMPLE_QUEUE_TAG
| I2O_SCB_FLAG_SENSE_DATA_IN_BUFFER));
(void)ASR_queue_c(sc, (PI2O_MESSAGE_FRAME)Message_Ptr);
}
}
STATIC INLINE void
ASR_synchronize (
IN Asr_softc_t * sc)
{
int bus, target, lun;
for (bus = 0; bus <= sc->ha_MaxBus; ++bus) {
for (target = 0; target <= sc->ha_MaxId; ++target) {
for (lun = 0; lun <= sc->ha_MaxLun; ++lun) {
ASR_sync(sc,bus,target,lun);
}
}
}
}
/*
* Reset the HBA, targets and BUS.
* Currently this resets *all* the SCSI busses.
*/
STATIC INLINE void
asr_hbareset(
IN Asr_softc_t * sc)
{
ASR_synchronize (sc);
ASR_reset (sc);
} /* asr_hbareset */
/*
* A reduced copy of the real pci_map_mem, incorporating the MAX_MAP
* limit and a reduction in error checking (in the pre 4.0 case).
*/
STATIC int
asr_pci_map_mem (
#if __FreeBSD_version >= 400000
IN device_t tag,
#else
IN pcici_t tag,
#endif
IN Asr_softc_t * sc)
{
int rid;
u_int32_t p, l;
#if __FreeBSD_version >= 400000
/*
* I2O specification says we must find first *memory* mapped BAR
*/
for (rid = PCIR_MAPS;
rid < (PCIR_MAPS + 4 * sizeof(u_int32_t));
++rid) {
p = pci_read_config(tag, rid, sizeof(p));
if ((p & 1) == 0) {
break;
}
}
/*
* Give up?
*/
if (rid >= (PCIR_MAPS + 4 * sizeof(u_int32_t))) {
rid = PCIR_MAPS;
}
p = pci_read_config(tag, rid, sizeof(p));
pci_write_config(tag, rid, -1, sizeof(p));
l = 0 - (pci_read_config(tag, rid, sizeof(l)) & ~15);
pci_write_config(tag, rid, p, sizeof(p));
if (l > MAX_MAP) {
l = MAX_MAP;
}
p &= ~15;
sc->ha_mem_res = bus_alloc_resource(tag, SYS_RES_MEMORY, &rid,
p, p + l, l, RF_ACTIVE);
if (sc->ha_mem_res == (struct resource *)NULL) {
return (0);
}
sc->ha_Base = (void *)rman_get_start(sc->ha_mem_res);
if (sc->ha_Base == (void *)NULL) {
return (0);
}
sc->ha_Virt = (i2oRegs_t *) rman_get_virtual(sc->ha_mem_res);
#else
vm_size_t psize, poffs;
/*
* I2O specification says we must find first *memory* mapped BAR
*/
for (rid = PCI_MAP_REG_START;
rid < (PCI_MAP_REG_START + 4 * sizeof(u_int32_t));
++rid) {
p = pci_conf_read (tag, rid);
if ((p & 1) == 0) {
break;
}
}
if (rid >= (PCI_MAP_REG_START + 4 * sizeof(u_int32_t))) {
rid = PCI_MAP_REG_START;
}
/*
** save old mapping, get size and type of memory
**
** type is in the lowest four bits.
** If device requires 2^n bytes, the next
** n-4 bits are read as 0.
*/
sc->ha_Base = (void *)((p = pci_conf_read (tag, rid))
& PCI_MAP_MEMORY_ADDRESS_MASK);
pci_conf_write (tag, rid, 0xfffffffful);
l = pci_conf_read (tag, rid);
pci_conf_write (tag, rid, p);
/*
** check the type
*/
if (!((l & PCI_MAP_MEMORY_TYPE_MASK) == PCI_MAP_MEMORY_TYPE_32BIT_1M
&& ((u_long)sc->ha_Base & ~0xfffff) == 0)
&& ((l & PCI_MAP_MEMORY_TYPE_MASK) != PCI_MAP_MEMORY_TYPE_32BIT)) {
debug_asr_printf (
"asr_pci_map_mem failed: bad memory type=0x%x\n",
(unsigned) l);
return (0);
};
/*
** get the size.
*/
psize = -(l & PCI_MAP_MEMORY_ADDRESS_MASK);
if (psize > MAX_MAP) {
psize = MAX_MAP;
}
if ((sc->ha_Base == (void *)NULL)
|| (sc->ha_Base == (void *)PCI_MAP_MEMORY_ADDRESS_MASK)) {
debug_asr_printf ("asr_pci_map_mem: not configured by bios.\n");
return (0);
};
/*
** Truncate sc->ha_Base to page boundary.
** (Or does pmap_mapdev the job?)
*/
poffs = (u_long)sc->ha_Base - trunc_page ((u_long)sc->ha_Base);
sc->ha_Virt = (i2oRegs_t *)pmap_mapdev ((u_long)sc->ha_Base - poffs,
psize + poffs);
if (sc->ha_Virt == (i2oRegs_t *)NULL) {
return (0);
}
sc->ha_Virt = (i2oRegs_t *)((u_long)sc->ha_Virt + poffs);
#endif
return (1);
} /* asr_pci_map_mem */
/*
* A simplified copy of the real pci_map_int with additional
* registration requirements.
*/
STATIC int
asr_pci_map_int (
#if __FreeBSD_version >= 400000
IN device_t tag,
#else
IN pcici_t tag,
#endif
IN Asr_softc_t * sc)
{
#if __FreeBSD_version >= 400000
int rid = 0;
sc->ha_irq_res = bus_alloc_resource(tag, SYS_RES_IRQ, &rid,
0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
if (sc->ha_irq_res == (struct resource *)NULL) {
return (0);
}
if (bus_setup_intr(tag, sc->ha_irq_res, INTR_TYPE_CAM,
(driver_intr_t *)asr_intr, (void *)sc, &(sc->ha_intr))) {
return (0);
}
sc->ha_irq = pci_read_config(tag, PCIR_INTLINE, sizeof(char));
#else
if (!pci_map_int(tag, (pci_inthand_t *)asr_intr,
(void *)sc, &cam_imask)) {
return (0);
}
sc->ha_irq = pci_conf_read(tag, PCIR_INTLINE);
#endif
return (1);
} /* asr_pci_map_int */
/*
* Attach the devices, and virtual devices to the driver list.
*/
STATIC ATTACH_RET
asr_attach (ATTACH_ARGS)
{
Asr_softc_t * sc;
struct scsi_inquiry_data * iq;
ATTACH_SET();
if ((sc = malloc(sizeof(*sc), M_DEVBUF, M_NOWAIT)) == (Asr_softc_t *)NULL) {
ATTACH_RETURN(ENOMEM);
}
if (Asr_softc == (Asr_softc_t *)NULL) {
/*
* Fixup the OS revision as saved in the dptsig for the
* engine (dptioctl.h) to pick up.
*/
bcopy (osrelease, &ASR_sig.dsDescription[16], 5);
printf ("asr%d: major=%d\n", unit, asr_cdevsw.d_maj);
}
/*
* Initialize the software structure
*/
bzero (sc, sizeof(*sc));
LIST_INIT(&sc->ha_ccb);
# ifdef ASR_MEASURE_PERFORMANCE
{
u_int32_t i;
// initialize free list for timeQ
sc->ha_timeQFreeHead = 0;
sc->ha_timeQFreeTail = MAX_TIMEQ_SIZE - 1;
for (i = 0; i < MAX_TIMEQ_SIZE; i++) {
sc->ha_timeQFreeList[i] = i;
}
}
# endif
/* Link us into the HA list */
{
Asr_softc_t **ha;
for (ha = &Asr_softc; *ha; ha = &((*ha)->ha_next));
*(ha) = sc;
}
{
PI2O_EXEC_STATUS_GET_REPLY status;
int size;
/*
* This is the real McCoy!
*/
if (!asr_pci_map_mem(tag, sc)) {
printf ("asr%d: could not map memory\n", unit);
ATTACH_RETURN(ENXIO);
}
/* Enable if not formerly enabled */
#if __FreeBSD_version >= 400000
pci_write_config (tag, PCIR_COMMAND,
pci_read_config (tag, PCIR_COMMAND, sizeof(char))
| PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN, sizeof(char));
/* Knowledge is power, responsibility is direct */
{
struct pci_devinfo {
STAILQ_ENTRY(pci_devinfo) pci_links;
struct resource_list resources;
pcicfgregs cfg;
} * dinfo = device_get_ivars(tag);
sc->ha_pciBusNum = dinfo->cfg.bus;
sc->ha_pciDeviceNum = (dinfo->cfg.slot << 3)
| dinfo->cfg.func;
}
#else
pci_conf_write (tag, PCIR_COMMAND,
pci_conf_read (tag, PCIR_COMMAND)
| PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
/* Knowledge is power, responsibility is direct */
switch (pci_mechanism) {
case 1:
sc->ha_pciBusNum = tag.cfg1 >> 16;
sc->ha_pciDeviceNum = tag.cfg1 >> 8;
case 2:
sc->ha_pciBusNum = tag.cfg2.forward;
sc->ha_pciDeviceNum = ((tag.cfg2.enable >> 1) & 7)
| (tag.cfg2.port >> 5);
}
#endif
/* Check if the device is there? */
if ((ASR_resetIOP(sc->ha_Virt) == 0)
|| ((status = (PI2O_EXEC_STATUS_GET_REPLY)malloc (
sizeof(I2O_EXEC_STATUS_GET_REPLY), M_TEMP, M_WAITOK))
== (PI2O_EXEC_STATUS_GET_REPLY)NULL)
|| (ASR_getStatus(sc->ha_Virt, status) == NULL)) {
printf ("asr%d: could not initialize hardware\n", unit);
ATTACH_RETURN(ENODEV); /* Get next, maybe better luck */
}
sc->ha_SystemTable.OrganizationID = status->OrganizationID;
sc->ha_SystemTable.IOP_ID = status->IOP_ID;
sc->ha_SystemTable.I2oVersion = status->I2oVersion;
sc->ha_SystemTable.IopState = status->IopState;
sc->ha_SystemTable.MessengerType = status->MessengerType;
sc->ha_SystemTable.InboundMessageFrameSize
= status->InboundMFrameSize;
sc->ha_SystemTable.MessengerInfo.InboundMessagePortAddressLow
= (U32)(sc->ha_Base) + (U32)(&(((i2oRegs_t *)NULL)->ToFIFO));
if (!asr_pci_map_int(tag, (void *)sc)) {
printf ("asr%d: could not map interrupt\n", unit);
ATTACH_RETURN(ENXIO);
}
/* Adjust the maximim inbound count */
if (((sc->ha_QueueSize
= I2O_EXEC_STATUS_GET_REPLY_getMaxInboundMFrames(status))
> MAX_INBOUND)
|| (sc->ha_QueueSize == 0)) {
sc->ha_QueueSize = MAX_INBOUND;
}
/* Adjust the maximum outbound count */
if (((sc->ha_Msgs_Count
= I2O_EXEC_STATUS_GET_REPLY_getMaxOutboundMFrames(status))
> MAX_OUTBOUND)
|| (sc->ha_Msgs_Count == 0)) {
sc->ha_Msgs_Count = MAX_OUTBOUND;
}
if (sc->ha_Msgs_Count > sc->ha_QueueSize) {
sc->ha_Msgs_Count = sc->ha_QueueSize;
}
/* Adjust the maximum SG size to adapter */
if ((size = (I2O_EXEC_STATUS_GET_REPLY_getInboundMFrameSize(
status) << 2)) > MAX_INBOUND_SIZE) {
size = MAX_INBOUND_SIZE;
}
free (status, M_TEMP);
sc->ha_SgSize = (size - sizeof(PRIVATE_SCSI_SCB_EXECUTE_MESSAGE)
+ sizeof(I2O_SG_ELEMENT)) / sizeof(I2O_SGE_SIMPLE_ELEMENT);
}
/*
* Only do a bus/HBA reset on the first time through. On this
* first time through, we do not send a flush to the devices.
*/
if (ASR_init(sc) == 0) {
struct BufferInfo {
I2O_PARAM_RESULTS_LIST_HEADER Header;
I2O_PARAM_READ_OPERATION_RESULT Read;
I2O_DPT_EXEC_IOP_BUFFERS_SCALAR Info;
};
defAlignLong (struct BufferInfo, Buffer);
PI2O_DPT_EXEC_IOP_BUFFERS_SCALAR Info;
# define FW_DEBUG_BLED_OFFSET 8
if ((Info = (PI2O_DPT_EXEC_IOP_BUFFERS_SCALAR)
ASR_getParams(sc, 0,
I2O_DPT_EXEC_IOP_BUFFERS_GROUP_NO,
Buffer, sizeof(struct BufferInfo)))
!= (PI2O_DPT_EXEC_IOP_BUFFERS_SCALAR)NULL) {
sc->ha_blinkLED = sc->ha_Virt->Address
+ I2O_DPT_EXEC_IOP_BUFFERS_SCALAR_getSerialOutputOffset(Info)
+ FW_DEBUG_BLED_OFFSET;
}
if (ASR_acquireLct(sc) == 0) {
(void)ASR_acquireHrt(sc);
}
} else {
printf ("asr%d: failed to initialize\n", unit);
ATTACH_RETURN(ENXIO);
}
/*
* Add in additional probe responses for more channels. We
* are reusing the variable `target' for a channel loop counter.
* Done here because of we need both the acquireLct and
* acquireHrt data.
*/
{ PI2O_LCT_ENTRY Device;
for (Device = sc->ha_LCT->LCTEntry; Device < (PI2O_LCT_ENTRY)
(((U32 *)sc->ha_LCT)+I2O_LCT_getTableSize(sc->ha_LCT));
++Device) {
if (Device->le_type == I2O_UNKNOWN) {
continue;
}
if (I2O_LCT_ENTRY_getUserTID(Device) == 0xFFF) {
if (Device->le_target > sc->ha_MaxId) {
sc->ha_MaxId = Device->le_target;
}
if (Device->le_lun > sc->ha_MaxLun) {
sc->ha_MaxLun = Device->le_lun;
}
}
if (((Device->le_type & I2O_PORT) != 0)
&& (Device->le_bus <= MAX_CHANNEL)) {
/* Do not increase MaxId for efficiency */
sc->ha_adapter_target[Device->le_bus]
= Device->le_target;
}
}
}
/*
* Print the HBA model number as inquired from the card.
*/
printf ("asr%d:", unit);
if ((iq = (struct scsi_inquiry_data *)malloc (
sizeof(struct scsi_inquiry_data), M_TEMP, M_WAITOK))
!= (struct scsi_inquiry_data *)NULL) {
defAlignLong(PRIVATE_SCSI_SCB_EXECUTE_MESSAGE,Message);
PPRIVATE_SCSI_SCB_EXECUTE_MESSAGE Message_Ptr;
int posted = 0;
bzero (iq, sizeof(struct scsi_inquiry_data));
bzero (Message_Ptr
= getAlignLong(PRIVATE_SCSI_SCB_EXECUTE_MESSAGE, Message),
sizeof(PRIVATE_SCSI_SCB_EXECUTE_MESSAGE)
- sizeof(I2O_SG_ELEMENT) + sizeof(I2O_SGE_SIMPLE_ELEMENT));
I2O_MESSAGE_FRAME_setVersionOffset(
(PI2O_MESSAGE_FRAME)Message_Ptr,
I2O_VERSION_11
| (((sizeof(PRIVATE_SCSI_SCB_EXECUTE_MESSAGE)
- sizeof(I2O_SG_ELEMENT))
/ sizeof(U32)) << 4));
I2O_MESSAGE_FRAME_setMessageSize(
(PI2O_MESSAGE_FRAME)Message_Ptr,
(sizeof(PRIVATE_SCSI_SCB_EXECUTE_MESSAGE)
- sizeof(I2O_SG_ELEMENT) + sizeof(I2O_SGE_SIMPLE_ELEMENT))
/ sizeof(U32));
I2O_MESSAGE_FRAME_setInitiatorAddress (
(PI2O_MESSAGE_FRAME)Message_Ptr, 1);
I2O_MESSAGE_FRAME_setFunction(
(PI2O_MESSAGE_FRAME)Message_Ptr, I2O_PRIVATE_MESSAGE);
I2O_PRIVATE_MESSAGE_FRAME_setXFunctionCode (
(PI2O_PRIVATE_MESSAGE_FRAME)Message_Ptr,
I2O_SCSI_SCB_EXEC);
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_setSCBFlags (Message_Ptr,
I2O_SCB_FLAG_ENABLE_DISCONNECT
| I2O_SCB_FLAG_SIMPLE_QUEUE_TAG
| I2O_SCB_FLAG_SENSE_DATA_IN_BUFFER);
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_setInterpret(Message_Ptr, 1);
I2O_PRIVATE_MESSAGE_FRAME_setOrganizationID(
(PI2O_PRIVATE_MESSAGE_FRAME)Message_Ptr,
DPT_ORGANIZATION_ID);
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_setCDBLength(Message_Ptr, 6);
Message_Ptr->CDB[0] = INQUIRY;
Message_Ptr->CDB[4] = (unsigned char)sizeof(struct scsi_inquiry_data);
if (Message_Ptr->CDB[4] == 0) {
Message_Ptr->CDB[4] = 255;
}
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_setSCBFlags (Message_Ptr,
(I2O_SCB_FLAG_XFER_FROM_DEVICE
| I2O_SCB_FLAG_ENABLE_DISCONNECT
| I2O_SCB_FLAG_SIMPLE_QUEUE_TAG
| I2O_SCB_FLAG_SENSE_DATA_IN_BUFFER));
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_setByteCount(
(PPRIVATE_SCSI_SCB_EXECUTE_MESSAGE)Message_Ptr,
sizeof(struct scsi_inquiry_data));
SG(&(Message_Ptr->SGL), 0,
I2O_SGL_FLAGS_LAST_ELEMENT | I2O_SGL_FLAGS_END_OF_BUFFER,
iq, sizeof(struct scsi_inquiry_data));
(void)ASR_queue_c(sc, (PI2O_MESSAGE_FRAME)Message_Ptr);
if (iq->vendor[0] && (iq->vendor[0] != ' ')) {
printf (" ");
ASR_prstring (iq->vendor, 8);
++posted;
}
if (iq->product[0] && (iq->product[0] != ' ')) {
printf (" ");
ASR_prstring (iq->product, 16);
++posted;
}
if (iq->revision[0] && (iq->revision[0] != ' ')) {
printf (" FW Rev. ");
ASR_prstring (iq->revision, 4);
++posted;
}
free ((caddr_t)iq, M_TEMP);
if (posted) {
printf (",");
}
}
printf (" %d channel, %d CCBs, Protocol I2O\n", sc->ha_MaxBus + 1,
(sc->ha_QueueSize > MAX_INBOUND) ? MAX_INBOUND : sc->ha_QueueSize);
/*
* fill in the prototype cam_path.
*/
{
int bus;
union asr_ccb * ccb;
if ((ccb = asr_alloc_ccb (sc)) == (union asr_ccb *)NULL) {
printf ("asr%d: CAM could not be notified of asynchronous callback parameters\n", unit);
ATTACH_RETURN(ENOMEM);
}
for (bus = 0; bus <= sc->ha_MaxBus; ++bus) {
struct cam_devq * devq;
int QueueSize = sc->ha_QueueSize;
if (QueueSize > MAX_INBOUND) {
QueueSize = MAX_INBOUND;
}
/*
* Create the device queue for our SIM(s).
*/
if ((devq = cam_simq_alloc(QueueSize)) == NULL) {
continue;
}
/*
* Construct our first channel SIM entry
*/
sc->ha_sim[bus] = cam_sim_alloc(
asr_action, asr_poll, "asr", sc,
unit, 1, QueueSize, devq);
if (sc->ha_sim[bus] == NULL) {
continue;
}
if (xpt_bus_register(sc->ha_sim[bus], bus)
!= CAM_SUCCESS) {
cam_sim_free(sc->ha_sim[bus],
/*free_devq*/TRUE);
sc->ha_sim[bus] = NULL;
continue;
}
if (xpt_create_path(&(sc->ha_path[bus]), /*periph*/NULL,
cam_sim_path(sc->ha_sim[bus]), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(
cam_sim_path(sc->ha_sim[bus]));
cam_sim_free(sc->ha_sim[bus],
/*free_devq*/TRUE);
sc->ha_sim[bus] = NULL;
continue;
}
xpt_setup_ccb(&(ccb->ccb_h),
sc->ha_path[bus], /*priority*/5);
ccb->ccb_h.func_code = XPT_SASYNC_CB;
ccb->csa.event_enable = AC_LOST_DEVICE;
ccb->csa.callback = asr_async;
ccb->csa.callback_arg = sc->ha_sim[bus];
xpt_action((union ccb *)ccb);
}
asr_free_ccb (ccb);
}
/*
* Generate the device node information
*/
(void)make_dev(&asr_cdevsw, unit, 0, 0, S_IRWXU, "rasr%d", unit);
destroy_dev(makedev(asr_cdevsw.d_maj,unit+1));
ATTACH_RETURN(0);
} /* asr_attach */
#if (!defined(UNREFERENCED_PARAMETER))
# define UNREFERENCED_PARAMETER(x) (void)(x)
#endif
STATIC void
asr_async(
void * callback_arg,
u_int32_t code,
struct cam_path * path,
void * arg)
{
UNREFERENCED_PARAMETER(callback_arg);
UNREFERENCED_PARAMETER(code);
UNREFERENCED_PARAMETER(path);
UNREFERENCED_PARAMETER(arg);
} /* asr_async */
STATIC void
asr_poll(
IN struct cam_sim *sim)
{
asr_intr(cam_sim_softc(sim));
} /* asr_poll */
STATIC void
asr_action(
IN struct cam_sim * sim,
IN union ccb * ccb)
{
struct Asr_softc * sc;
debug_asr_printf ("asr_action(%lx,%lx{%x})\n",
(u_long)sim, (u_long)ccb, ccb->ccb_h.func_code);
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("asr_action\n"));
ccb->ccb_h.spriv_ptr0 = sc = (struct Asr_softc *)cam_sim_softc(sim);
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_SCSI_IO: /* Execute the requested I/O operation */
{
struct Message {
char M[MAX_INBOUND_SIZE];
};
defAlignLong(struct Message,Message);
PI2O_MESSAGE_FRAME Message_Ptr;
if (ccb->ccb_h.status != CAM_REQ_INPROG) {
printf(
"asr%d WARNING: scsi_cmd(%x) already done on b%dt%du%d\n",
cam_sim_unit(xpt_path_sim(ccb->ccb_h.path)),
ccb->csio.cdb_io.cdb_bytes[0],
cam_sim_bus(sim),
ccb->ccb_h.target_id,
ccb->ccb_h.target_lun);
}
debug_asr_cmd_printf ("(%d,%d,%d,%d)",
cam_sim_unit(sim),
cam_sim_bus(sim),
ccb->ccb_h.target_id,
ccb->ccb_h.target_lun);
debug_asr_cmd_dump_ccb(ccb);
if ((Message_Ptr = ASR_init_message ((union asr_ccb *)ccb,
(PI2O_MESSAGE_FRAME)Message)) != (PI2O_MESSAGE_FRAME)NULL) {
debug_asr_cmd2_printf ("TID=%x:\n",
PRIVATE_SCSI_SCB_EXECUTE_MESSAGE_getTID(
(PPRIVATE_SCSI_SCB_EXECUTE_MESSAGE)Message_Ptr));
debug_asr_cmd2_dump_message(Message_Ptr);
debug_asr_cmd1_printf (" q");
if (ASR_queue (sc, Message_Ptr) == EMPTY_QUEUE) {
#ifdef ASR_MEASURE_PERFORMANCE
++sc->ha_performance.command_too_busy;
#endif
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
debug_asr_cmd_printf (" E\n");
xpt_done(ccb);
}
debug_asr_cmd_printf (" Q\n");
break;
}
/*
* We will get here if there is no valid TID for the device
* referenced in the scsi command packet.
*/
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_SEL_TIMEOUT;
debug_asr_cmd_printf (" B\n");
xpt_done(ccb);
break;
}
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
/* Rese HBA device ... */
asr_hbareset (sc);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
# if (defined(REPORT_LUNS))
case REPORT_LUNS:
# endif
case XPT_ABORT: /* Abort the specified CCB */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_SET_TRAN_SETTINGS:
/* XXX Implement */
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
xpt_done(ccb);
break;
case XPT_GET_TRAN_SETTINGS:
/* Get default/user set transfer settings for the target */
{
struct ccb_trans_settings *cts;
u_int target_mask;
cts = &ccb->cts;
target_mask = 0x01 << ccb->ccb_h.target_id;
if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) {
cts->flags = CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB;
cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
cts->sync_period = 6; /* 40MHz */
cts->sync_offset = 15;
cts->valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID
| CCB_TRANS_BUS_WIDTH_VALID
| CCB_TRANS_DISC_VALID
| CCB_TRANS_TQ_VALID;
ccb->ccb_h.status = CAM_REQ_CMP;
} else {
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
}
xpt_done(ccb);
break;
}
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
u_int32_t size_mb;
u_int32_t secs_per_cylinder;
ccg = &ccb->ccg;
size_mb = ccg->volume_size
/ ((1024L * 1024L) / ccg->block_size);
if (size_mb > 4096) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else if (size_mb > 2048) {
ccg->heads = 128;
ccg->secs_per_track = 63;
} else if (size_mb > 1024) {
ccg->heads = 65;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
ASR_resetBus (sc, cam_sim_bus(sim));
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
cpi->target_sprt = 0;
/* Not necessary to reset bus, done by HDM initialization */
cpi->hba_misc = PIM_NOBUSRESET;
cpi->hba_eng_cnt = 0;
cpi->max_target = sc->ha_MaxId;
cpi->max_lun = sc->ha_MaxLun;
cpi->initiator_id = sc->ha_adapter_target[cam_sim_bus(sim)];
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Adaptec", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
} /* asr_action */
#ifdef ASR_MEASURE_PERFORMANCE
#define WRITE_OP 1
#define READ_OP 2
#define min_submitR sc->ha_performance.read_by_size_min_time[index]
#define max_submitR sc->ha_performance.read_by_size_max_time[index]
#define min_submitW sc->ha_performance.write_by_size_min_time[index]
#define max_submitW sc->ha_performance.write_by_size_max_time[index]
STATIC INLINE void
asr_IObySize(
IN Asr_softc_t * sc,
IN u_int32_t submitted_time,
IN int op,
IN int index)
{
struct timeval submitted_timeval;
submitted_timeval.tv_sec = 0;
submitted_timeval.tv_usec = submitted_time;
if ( op == READ_OP ) {
++sc->ha_performance.read_by_size_count[index];
if ( submitted_time != 0xffffffff ) {
timevaladd(
&sc->ha_performance.read_by_size_total_time[index],
&submitted_timeval);
if ( (min_submitR == 0)
|| (submitted_time < min_submitR) ) {
min_submitR = submitted_time;
}
if ( submitted_time > max_submitR ) {
max_submitR = submitted_time;
}
}
} else {
++sc->ha_performance.write_by_size_count[index];
if ( submitted_time != 0xffffffff ) {
timevaladd(
&sc->ha_performance.write_by_size_total_time[index],
&submitted_timeval);
if ( (submitted_time < min_submitW)
|| (min_submitW == 0) ) {
min_submitW = submitted_time;
}
if ( submitted_time > max_submitW ) {
max_submitW = submitted_time;
}
}
}
} /* asr_IObySize */
#endif
/*
* Handle processing of current CCB as pointed to by the Status.
*/
STATIC int
asr_intr (
IN Asr_softc_t * sc)
{
OUT int processed;
#ifdef ASR_MEASURE_PERFORMANCE
struct timeval junk;
microtime(&junk);
sc->ha_performance.intr_started = junk;
#endif
for (processed = 0;
sc->ha_Virt->Status & Mask_InterruptsDisabled;
processed = 1) {
union asr_ccb * ccb;
U32 ReplyOffset;
PI2O_SCSI_ERROR_REPLY_MESSAGE_FRAME Reply;
if (((ReplyOffset = sc->ha_Virt->FromFIFO) == EMPTY_QUEUE)
&& ((ReplyOffset = sc->ha_Virt->FromFIFO) == EMPTY_QUEUE)) {
break;
}
Reply = (PI2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)(ReplyOffset
- sc->ha_Msgs_Phys + (char *)(sc->ha_Msgs));
/*
* We do not need any (optional byteswapping) method access to
* the Initiator context field.
*/
ccb = (union asr_ccb *)(long)
I2O_MESSAGE_FRAME_getInitiatorContext64(
&(Reply->StdReplyFrame.StdMessageFrame));
if (I2O_MESSAGE_FRAME_getMsgFlags(
&(Reply->StdReplyFrame.StdMessageFrame))
& I2O_MESSAGE_FLAGS_FAIL) {
defAlignLong(I2O_UTIL_NOP_MESSAGE,Message);
PI2O_UTIL_NOP_MESSAGE Message_Ptr;
U32 MessageOffset;
MessageOffset = (u_long)
I2O_FAILURE_REPLY_MESSAGE_FRAME_getPreservedMFA(
(PI2O_FAILURE_REPLY_MESSAGE_FRAME)Reply);
/*
* Get the Original Message Frame's address, and get
* it's Transaction Context into our space. (Currently
* unused at original authorship, but better to be
* safe than sorry). Straight copy means that we
* need not concern ourselves with the (optional
* byteswapping) method access.
*/
Reply->StdReplyFrame.TransactionContext
= ((PI2O_SINGLE_REPLY_MESSAGE_FRAME)
(sc->ha_Virt->Address + MessageOffset))
->TransactionContext;
/*
* For 64 bit machines, we need to reconstruct the
* 64 bit context.
*/
ccb = (union asr_ccb *)(long)
I2O_MESSAGE_FRAME_getInitiatorContext64(
&(Reply->StdReplyFrame.StdMessageFrame));
/*
* Unique error code for command failure.
*/
I2O_SINGLE_REPLY_MESSAGE_FRAME_setDetailedStatusCode(
&(Reply->StdReplyFrame), (u_int16_t)-2);
/*
* Modify the message frame to contain a NOP and
* re-issue it to the controller.
*/
Message_Ptr = (PI2O_UTIL_NOP_MESSAGE)ASR_fillMessage(
Message, sizeof(I2O_UTIL_NOP_MESSAGE));
# if (I2O_UTIL_NOP != 0)
I2O_MESSAGE_FRAME_setFunction (
&(Message_Ptr->StdMessageFrame),
I2O_UTIL_NOP);
# endif
/*
* Copy the packet out to the Original Message
*/
bcopy ((caddr_t)Message_Ptr,
sc->ha_Virt->Address + MessageOffset,
sizeof(I2O_UTIL_NOP_MESSAGE));
/*
* Issue the NOP
*/
sc->ha_Virt->ToFIFO = MessageOffset;
}
/*
* Asynchronous command with no return requirements,
* and a generic handler for immunity against odd error
* returns from the adapter.
*/
if (ccb == (union asr_ccb *)NULL) {
/*
* Return Reply so that it can be used for the
* next command
*/
sc->ha_Virt->FromFIFO = ReplyOffset;
continue;
}
/* Welease Wadjah! (and stop timeouts) */
ASR_ccbRemove (sc, ccb);
switch (
I2O_SINGLE_REPLY_MESSAGE_FRAME_getDetailedStatusCode(
&(Reply->StdReplyFrame))) {
case I2O_SCSI_DSC_SUCCESS:
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_REQ_CMP;
break;
case I2O_SCSI_DSC_CHECK_CONDITION:
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_REQ_CMP|CAM_AUTOSNS_VALID;
break;
case I2O_SCSI_DSC_BUSY:
/* FALLTHRU */
case I2O_SCSI_HBA_DSC_ADAPTER_BUSY:
/* FALLTHRU */
case I2O_SCSI_HBA_DSC_SCSI_BUS_RESET:
/* FALLTHRU */
case I2O_SCSI_HBA_DSC_BUS_BUSY:
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_SCSI_BUSY;
break;
case I2O_SCSI_HBA_DSC_SELECTION_TIMEOUT:
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_SEL_TIMEOUT;
break;
case I2O_SCSI_HBA_DSC_COMMAND_TIMEOUT:
/* FALLTHRU */
case I2O_SCSI_HBA_DSC_DEVICE_NOT_PRESENT:
/* FALLTHRU */
case I2O_SCSI_HBA_DSC_LUN_INVALID:
/* FALLTHRU */
case I2O_SCSI_HBA_DSC_SCSI_TID_INVALID:
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_CMD_TIMEOUT;
break;
case I2O_SCSI_HBA_DSC_DATA_OVERRUN:
/* FALLTHRU */
case I2O_SCSI_HBA_DSC_REQUEST_LENGTH_ERROR:
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_DATA_RUN_ERR;
break;
default:
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
break;
}
if ((ccb->csio.resid = ccb->csio.dxfer_len) != 0) {
ccb->csio.resid -=
I2O_SCSI_ERROR_REPLY_MESSAGE_FRAME_getTransferCount(
Reply);
}
#ifdef ASR_MEASURE_PERFORMANCE
{
struct timeval endTime;
u_int32_t submitted_time;
u_int32_t size;
int op_type;
int startTimeIndex;
--sc->ha_submitted_ccbs_count;
startTimeIndex
= (int)Reply->StdReplyFrame.TransactionContext;
if (-1 != startTimeIndex) {
/* Compute the time spent in device/adapter */
microtime(&endTime);
submitted_time = asr_time_delta(sc->ha_timeQ[
startTimeIndex], endTime);
/* put the startTimeIndex back on free list */
ENQ_TIMEQ_FREE_LIST(startTimeIndex,
sc->ha_timeQFreeList,
sc->ha_timeQFreeHead,
sc->ha_timeQFreeTail);
} else {
submitted_time = 0xffffffff;
}
#define maxctime sc->ha_performance.max_command_time[ccb->csio.cdb_io.cdb_bytes[0]]
#define minctime sc->ha_performance.min_command_time[ccb->csio.cdb_io.cdb_bytes[0]]
if (submitted_time != 0xffffffff) {
if ( maxctime < submitted_time ) {
maxctime = submitted_time;
}
if ( (minctime == 0)
|| (minctime > submitted_time) ) {
minctime = submitted_time;
}
if ( sc->ha_performance.max_submit_time
< submitted_time ) {
sc->ha_performance.max_submit_time
= submitted_time;
}
if ( sc->ha_performance.min_submit_time == 0
|| sc->ha_performance.min_submit_time
> submitted_time) {
sc->ha_performance.min_submit_time
= submitted_time;
}
switch ( ccb->csio.cdb_io.cdb_bytes[0] ) {
case 0xa8: /* 12-byte READ */
/* FALLTHRU */
case 0x08: /* 6-byte READ */
/* FALLTHRU */
case 0x28: /* 10-byte READ */
op_type = READ_OP;
break;
case 0x0a: /* 6-byte WRITE */
/* FALLTHRU */
case 0xaa: /* 12-byte WRITE */
/* FALLTHRU */
case 0x2a: /* 10-byte WRITE */
op_type = WRITE_OP;
break;
default:
op_type = 0;
break;
}
if ( op_type != 0 ) {
struct scsi_rw_big * cmd;
cmd = (struct scsi_rw_big *)
&(ccb->csio.cdb_io);
size = (((u_int32_t) cmd->length2 << 8)
| ((u_int32_t) cmd->length1)) << 9;
switch ( size ) {
case 512:
asr_IObySize(sc,
submitted_time, op_type,
SIZE_512);
break;
case 1024:
asr_IObySize(sc,
submitted_time, op_type,
SIZE_1K);
break;
case 2048:
asr_IObySize(sc,
submitted_time, op_type,
SIZE_2K);
break;
case 4096:
asr_IObySize(sc,
submitted_time, op_type,
SIZE_4K);
break;
case 8192:
asr_IObySize(sc,
submitted_time, op_type,
SIZE_8K);
break;
case 16384:
asr_IObySize(sc,
submitted_time, op_type,
SIZE_16K);
break;
case 32768:
asr_IObySize(sc,
submitted_time, op_type,
SIZE_32K);
break;
case 65536:
asr_IObySize(sc,
submitted_time, op_type,
SIZE_64K);
break;
default:
if ( size > (1 << 16) ) {
asr_IObySize(sc,
submitted_time,
op_type,
SIZE_BIGGER);
} else {
asr_IObySize(sc,
submitted_time,
op_type,
SIZE_OTHER);
}
break;
}
}
}
}
#endif
/* Sense data in reply packet */
if (ccb->ccb_h.status & CAM_AUTOSNS_VALID) {
u_int16_t size = I2O_SCSI_ERROR_REPLY_MESSAGE_FRAME_getAutoSenseTransferCount(Reply);
if (size) {
if (size > sizeof(ccb->csio.sense_data)) {
size = sizeof(ccb->csio.sense_data);
}
if (size > I2O_SCSI_SENSE_DATA_SZ) {
size = I2O_SCSI_SENSE_DATA_SZ;
}
if ((ccb->csio.sense_len)
&& (size > ccb->csio.sense_len)) {
size = ccb->csio.sense_len;
}
bcopy ((caddr_t)Reply->SenseData,
(caddr_t)&(ccb->csio.sense_data), size);
}
}
/*
* Return Reply so that it can be used for the next command
* since we have no more need for it now
*/
sc->ha_Virt->FromFIFO = ReplyOffset;
if (ccb->ccb_h.path) {
xpt_done ((union ccb *)ccb);
} else {
wakeup ((caddr_t)ccb);
}
}
#ifdef ASR_MEASURE_PERFORMANCE
{
u_int32_t result;
microtime(&junk);
result = asr_time_delta(sc->ha_performance.intr_started, junk);
if (result != 0xffffffff) {
if ( sc->ha_performance.max_intr_time < result ) {
sc->ha_performance.max_intr_time = result;
}
if ( (sc->ha_performance.min_intr_time == 0)
|| (sc->ha_performance.min_intr_time > result) ) {
sc->ha_performance.min_intr_time = result;
}
}
}
#endif
return (processed);
} /* asr_intr */
#undef QueueSize /* Grrrr */
#undef SG_Size /* Grrrr */
/*
* Meant to be included at the bottom of asr.c !!!
*/
/*
* Included here as hard coded. Done because other necessary include
* files utilize C++ comment structures which make them a nuisance to
* included here just to pick up these three typedefs.
*/
typedef U32 DPT_TAG_T;
typedef U32 DPT_MSG_T;
typedef U32 DPT_RTN_T;
#undef SCSI_RESET /* Conflicts with "scsi/scsiconf.h" defintion */
#include "dev/asr/osd_unix.h"
#define asr_unit(dev) minor(dev)
STATIC INLINE Asr_softc_t *
ASR_get_sc (
IN dev_t dev)
{
int unit = asr_unit(dev);
OUT Asr_softc_t * sc = Asr_softc;
while (sc && sc->ha_sim[0] && (cam_sim_unit(sc->ha_sim[0]) != unit)) {
sc = sc->ha_next;
}
return (sc);
} /* ASR_get_sc */
STATIC u_int8_t ASR_ctlr_held;
STATIC int
asr_open(
IN dev_t dev,
int32_t flags,
int32_t ifmt,
IN struct proc * proc)
{
int s;
OUT int error;
UNREFERENCED_PARAMETER(flags);
UNREFERENCED_PARAMETER(ifmt);
if (ASR_get_sc (dev) == (Asr_softc_t *)NULL) {
return (ENODEV);
}
s = splcam ();
if (ASR_ctlr_held) {
error = EBUSY;
} else if ((error = suser(proc)) == 0) {
++ASR_ctlr_held;
}
splx(s);
return (error);
} /* asr_open */
STATIC int
asr_close(
dev_t dev,
int flags,
int ifmt,
struct proc * proc)
{
UNREFERENCED_PARAMETER(dev);
UNREFERENCED_PARAMETER(flags);
UNREFERENCED_PARAMETER(ifmt);
UNREFERENCED_PARAMETER(proc);
ASR_ctlr_held = 0;
return (0);
} /* asr_close */
/*-------------------------------------------------------------------------*/
/* Function ASR_queue_i */
/*-------------------------------------------------------------------------*/
/* The Parameters Passed To This Function Are : */
/* Asr_softc_t * : HBA miniport driver's adapter data storage. */
/* PI2O_MESSAGE_FRAME : Msg Structure Pointer For This Command */
/* I2O_SCSI_ERROR_REPLY_MESSAGE_FRAME following the Msg Structure */
/* */
/* This Function Will Take The User Request Packet And Convert It To An */
/* I2O MSG And Send It Off To The Adapter. */
/* */
/* Return : 0 For OK, Error Code Otherwise */
/*-------------------------------------------------------------------------*/
STATIC INLINE int
ASR_queue_i(
IN Asr_softc_t * sc,
INOUT PI2O_MESSAGE_FRAME Packet)
{
union asr_ccb * ccb;
PI2O_SCSI_ERROR_REPLY_MESSAGE_FRAME Reply;
PI2O_MESSAGE_FRAME Message_Ptr;
PI2O_SCSI_ERROR_REPLY_MESSAGE_FRAME Reply_Ptr;
int MessageSizeInBytes;
int ReplySizeInBytes;
int error;
int s;
/* Scatter Gather buffer list */
struct ioctlSgList_S {
SLIST_ENTRY(ioctlSgList_S) link;
caddr_t UserSpace;
I2O_FLAGS_COUNT FlagsCount;
char KernelSpace[sizeof(long)];
} * elm;
/* Generates a `first' entry */
SLIST_HEAD(ioctlSgListHead_S, ioctlSgList_S) sgList;
if (ASR_getBlinkLedCode(sc)) {
debug_usr_cmd_printf ("Adapter currently in BlinkLed %x\n",
ASR_getBlinkLedCode(sc));
return (EIO);
}
/* Copy in the message into a local allocation */
if ((Message_Ptr = (PI2O_MESSAGE_FRAME)malloc (
sizeof(I2O_MESSAGE_FRAME), M_TEMP, M_WAITOK))
== (PI2O_MESSAGE_FRAME)NULL) {
debug_usr_cmd_printf (
"Failed to acquire I2O_MESSAGE_FRAME memory\n");
return (ENOMEM);
}
if ((error = copyin ((caddr_t)Packet, (caddr_t)Message_Ptr,
sizeof(I2O_MESSAGE_FRAME))) != 0) {
free (Message_Ptr, M_TEMP);
debug_usr_cmd_printf ("Can't copy in packet errno=%d\n", error);
return (error);
}
/* Acquire information to determine type of packet */
MessageSizeInBytes = (I2O_MESSAGE_FRAME_getMessageSize(Message_Ptr)<<2);
/* The offset of the reply information within the user packet */
Reply = (PI2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)((char *)Packet
+ MessageSizeInBytes);
/* Check if the message is a synchronous initialization command */
s = I2O_MESSAGE_FRAME_getFunction(Message_Ptr);
free (Message_Ptr, M_TEMP);
switch (s) {
case I2O_EXEC_IOP_RESET:
{ U32 status;
status = ASR_resetIOP(sc->ha_Virt);
ReplySizeInBytes = sizeof(status);
debug_usr_cmd_printf ("resetIOP done\n");
return (copyout ((caddr_t)&status, (caddr_t)Reply,
ReplySizeInBytes));
}
case I2O_EXEC_STATUS_GET:
{ I2O_EXEC_STATUS_GET_REPLY status;
if (ASR_getStatus (sc->ha_Virt, &status)
== (PI2O_EXEC_STATUS_GET_REPLY)NULL) {
debug_usr_cmd_printf ("getStatus failed\n");
return (ENXIO);
}
ReplySizeInBytes = sizeof(status);
debug_usr_cmd_printf ("getStatus done\n");
return (copyout ((caddr_t)&status, (caddr_t)Reply,
ReplySizeInBytes));
}
case I2O_EXEC_OUTBOUND_INIT:
{ U32 status;
status = ASR_initOutBound(sc);
ReplySizeInBytes = sizeof(status);
debug_usr_cmd_printf ("intOutBound done\n");
return (copyout ((caddr_t)&status, (caddr_t)Reply,
ReplySizeInBytes));
}
}
/* Determine if the message size is valid */
if ((MessageSizeInBytes < sizeof(I2O_MESSAGE_FRAME))
|| (MAX_INBOUND_SIZE < MessageSizeInBytes)) {
debug_usr_cmd_printf ("Packet size %d incorrect\n",
MessageSizeInBytes);
return (EINVAL);
}
if ((Message_Ptr = (PI2O_MESSAGE_FRAME)malloc (MessageSizeInBytes,
M_TEMP, M_WAITOK)) == (PI2O_MESSAGE_FRAME)NULL) {
debug_usr_cmd_printf ("Failed to acquire frame[%d] memory\n",
MessageSizeInBytes);
return (ENOMEM);
}
if ((error = copyin ((caddr_t)Packet, (caddr_t)Message_Ptr,
MessageSizeInBytes)) != 0) {
free (Message_Ptr, M_TEMP);
debug_usr_cmd_printf ("Can't copy in packet[%d] errno=%d\n",
MessageSizeInBytes, error);
return (error);
}
/* Check the size of the reply frame, and start constructing */
if ((Reply_Ptr = (PI2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)malloc (
sizeof(I2O_MESSAGE_FRAME), M_TEMP, M_WAITOK))
== (PI2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)NULL) {
free (Message_Ptr, M_TEMP);
debug_usr_cmd_printf (
"Failed to acquire I2O_MESSAGE_FRAME memory\n");
return (ENOMEM);
}
if ((error = copyin ((caddr_t)Reply, (caddr_t)Reply_Ptr,
sizeof(I2O_MESSAGE_FRAME))) != 0) {
free (Reply_Ptr, M_TEMP);
free (Message_Ptr, M_TEMP);
debug_usr_cmd_printf (
"Failed to copy in reply frame, errno=%d\n",
error);
return (error);
}
ReplySizeInBytes = (I2O_MESSAGE_FRAME_getMessageSize(
&(Reply_Ptr->StdReplyFrame.StdMessageFrame)) << 2);
free (Reply_Ptr, M_TEMP);
if (ReplySizeInBytes < sizeof(I2O_SINGLE_REPLY_MESSAGE_FRAME)) {
free (Message_Ptr, M_TEMP);
debug_usr_cmd_printf (
"Failed to copy in reply frame[%d], errno=%d\n",
ReplySizeInBytes, error);
return (EINVAL);
}
if ((Reply_Ptr = (PI2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)malloc (
((ReplySizeInBytes > sizeof(I2O_SCSI_ERROR_REPLY_MESSAGE_FRAME))
? ReplySizeInBytes
: sizeof(I2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)),
M_TEMP, M_WAITOK)) == (PI2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)NULL) {
free (Message_Ptr, M_TEMP);
debug_usr_cmd_printf ("Failed to acquire frame[%d] memory\n",
ReplySizeInBytes);
return (ENOMEM);
}
(void)ASR_fillMessage ((char *)Reply_Ptr, ReplySizeInBytes);
Reply_Ptr->StdReplyFrame.StdMessageFrame.InitiatorContext
= Message_Ptr->InitiatorContext;
Reply_Ptr->StdReplyFrame.TransactionContext
= ((PI2O_PRIVATE_MESSAGE_FRAME)Message_Ptr)->TransactionContext;
I2O_MESSAGE_FRAME_setMsgFlags(
&(Reply_Ptr->StdReplyFrame.StdMessageFrame),
I2O_MESSAGE_FRAME_getMsgFlags(
&(Reply_Ptr->StdReplyFrame.StdMessageFrame))
| I2O_MESSAGE_FLAGS_REPLY);
/* Check if the message is a special case command */
switch (I2O_MESSAGE_FRAME_getFunction(Message_Ptr)) {
case I2O_EXEC_SYS_TAB_SET: /* Special Case of empty Scatter Gather */
if (MessageSizeInBytes == ((I2O_MESSAGE_FRAME_getVersionOffset(
Message_Ptr) & 0xF0) >> 2)) {
free (Message_Ptr, M_TEMP);
I2O_SINGLE_REPLY_MESSAGE_FRAME_setDetailedStatusCode(
&(Reply_Ptr->StdReplyFrame), (ASR_setSysTab(sc) != CAM_REQ_CMP));
I2O_MESSAGE_FRAME_setMessageSize(
&(Reply_Ptr->StdReplyFrame.StdMessageFrame),
sizeof(I2O_SINGLE_REPLY_MESSAGE_FRAME));
error = copyout ((caddr_t)Reply_Ptr, (caddr_t)Reply,
ReplySizeInBytes);
free (Reply_Ptr, M_TEMP);
return (error);
}
}
/* Deal in the general case */
/* First allocate and optionally copy in each scatter gather element */
SLIST_INIT(&sgList);
if ((I2O_MESSAGE_FRAME_getVersionOffset(Message_Ptr) & 0xF0) != 0) {
PI2O_SGE_SIMPLE_ELEMENT sg;
/*
* since this code is reused in several systems, code
* efficiency is greater by using a shift operation rather
* than a divide by sizeof(u_int32_t).
*/
sg = (PI2O_SGE_SIMPLE_ELEMENT)((char *)Message_Ptr
+ ((I2O_MESSAGE_FRAME_getVersionOffset(Message_Ptr) & 0xF0)
>> 2));
while (sg < (PI2O_SGE_SIMPLE_ELEMENT)(((caddr_t)Message_Ptr)
+ MessageSizeInBytes)) {
caddr_t v;
int len;
if ((I2O_FLAGS_COUNT_getFlags(&(sg->FlagsCount))
& I2O_SGL_FLAGS_SIMPLE_ADDRESS_ELEMENT) == 0) {
error = EINVAL;
break;
}
len = I2O_FLAGS_COUNT_getCount(&(sg->FlagsCount));
debug_usr_cmd_printf ("SG[%d] = %x[%d]\n",
sg - (PI2O_SGE_SIMPLE_ELEMENT)((char *)Message_Ptr
+ ((I2O_MESSAGE_FRAME_getVersionOffset(
Message_Ptr) & 0xF0) >> 2)),
I2O_SGE_SIMPLE_ELEMENT_getPhysicalAddress(sg), len);
if ((elm = (struct ioctlSgList_S *)malloc (
sizeof(*elm) - sizeof(elm->KernelSpace) + len,
M_TEMP, M_WAITOK))
== (struct ioctlSgList_S *)NULL) {
debug_usr_cmd_printf (
"Failed to allocate SG[%d]\n", len);
error = ENOMEM;
break;
}
SLIST_INSERT_HEAD(&sgList, elm, link);
elm->FlagsCount = sg->FlagsCount;
elm->UserSpace = (caddr_t)
(I2O_SGE_SIMPLE_ELEMENT_getPhysicalAddress(sg));
v = elm->KernelSpace;
/* Copy in outgoing data (DIR bit could be invalid) */
if ((error = copyin (elm->UserSpace, (caddr_t)v, len))
!= 0) {
break;
}
/*
* If the buffer is not contiguous, lets
* break up the scatter/gather entries.
*/
while ((len > 0)
&& (sg < (PI2O_SGE_SIMPLE_ELEMENT)
(((caddr_t)Message_Ptr) + MAX_INBOUND_SIZE))) {
int next, base, span;
span = 0;
next = base = KVTOPHYS(v);
I2O_SGE_SIMPLE_ELEMENT_setPhysicalAddress(sg,
base);
/* How far can we go physically contiguously */
while ((len > 0) && (base == next)) {
int size;
next = trunc_page(base) + PAGE_SIZE;
size = next - base;
if (size > len) {
size = len;
}
span += size;
v += size;
len -= size;
base = KVTOPHYS(v);
}
/* Construct the Flags */
I2O_FLAGS_COUNT_setCount(&(sg->FlagsCount),
span);
{
int flags = I2O_FLAGS_COUNT_getFlags(
&(elm->FlagsCount));
/* Any remaining length? */
if (len > 0) {
flags &=
~(I2O_SGL_FLAGS_END_OF_BUFFER
| I2O_SGL_FLAGS_LAST_ELEMENT);
}
I2O_FLAGS_COUNT_setFlags(
&(sg->FlagsCount), flags);
}
debug_usr_cmd_printf ("sg[%d] = %x[%d]\n",
sg - (PI2O_SGE_SIMPLE_ELEMENT)
((char *)Message_Ptr
+ ((I2O_MESSAGE_FRAME_getVersionOffset(
Message_Ptr) & 0xF0) >> 2)),
I2O_SGE_SIMPLE_ELEMENT_getPhysicalAddress(sg),
span);
if (len <= 0) {
break;
}
/*
* Incrementing requires resizing of the
* packet, and moving up the existing SG
* elements.
*/
++sg;
MessageSizeInBytes += sizeof(*sg);
I2O_MESSAGE_FRAME_setMessageSize(Message_Ptr,
I2O_MESSAGE_FRAME_getMessageSize(Message_Ptr)
+ (sizeof(*sg) / sizeof(U32)));
{
PI2O_MESSAGE_FRAME NewMessage_Ptr;
if ((NewMessage_Ptr
= (PI2O_MESSAGE_FRAME)
malloc (MessageSizeInBytes,
M_TEMP, M_WAITOK))
== (PI2O_MESSAGE_FRAME)NULL) {
debug_usr_cmd_printf (
"Failed to acquire frame[%d] memory\n",
MessageSizeInBytes);
error = ENOMEM;
break;
}
span = ((caddr_t)sg)
- (caddr_t)Message_Ptr;
bcopy ((caddr_t)Message_Ptr,
(caddr_t)NewMessage_Ptr, span);
bcopy ((caddr_t)(sg-1),
((caddr_t)NewMessage_Ptr) + span,
MessageSizeInBytes - span);
free (Message_Ptr, M_TEMP);
sg = (PI2O_SGE_SIMPLE_ELEMENT)
(((caddr_t)NewMessage_Ptr) + span);
Message_Ptr = NewMessage_Ptr;
}
}
if ((error)
|| ((I2O_FLAGS_COUNT_getFlags(&(sg->FlagsCount))
& I2O_SGL_FLAGS_LAST_ELEMENT) != 0)) {
break;
}
++sg;
}
if (error) {
while ((elm = SLIST_FIRST(&sgList))
!= (struct ioctlSgList_S *)NULL) {
SLIST_REMOVE_HEAD(&sgList,link);
free (elm, M_TEMP);
}
free (Reply_Ptr, M_TEMP);
free (Message_Ptr, M_TEMP);
return (error);
}
}
debug_usr_cmd_printf ("Inbound: ");
debug_usr_cmd_dump_message(Message_Ptr);
/* Send the command */
if ((ccb = asr_alloc_ccb (sc)) == (union asr_ccb *)NULL) {
/* Free up in-kernel buffers */
while ((elm = SLIST_FIRST(&sgList))
!= (struct ioctlSgList_S *)NULL) {
SLIST_REMOVE_HEAD(&sgList,link);
free (elm, M_TEMP);
}
free (Reply_Ptr, M_TEMP);
free (Message_Ptr, M_TEMP);
return (ENOMEM);
}
/*
* We do not need any (optional byteswapping) method access to
* the Initiator context field.
*/
I2O_MESSAGE_FRAME_setInitiatorContext64(
(PI2O_MESSAGE_FRAME)Message_Ptr, (long)ccb);
(void)ASR_queue (sc, (PI2O_MESSAGE_FRAME)Message_Ptr);
free (Message_Ptr, M_TEMP);
/*
* Wait for the board to report a finished instruction.
*/
s = splcam();
while (ccb->ccb_h.status == CAM_REQ_INPROG) {
if (ASR_getBlinkLedCode(sc)) {
/* Reset Adapter */
printf ("asr%d: Blink LED 0x%x resetting adapter\n",
cam_sim_unit(xpt_path_sim(ccb->ccb_h.path)),
ASR_getBlinkLedCode(sc));
ASR_reset (sc);
splx(s);
/* Command Cleanup */
ASR_ccbRemove(sc, ccb);
/* Free up in-kernel buffers */
while ((elm = SLIST_FIRST(&sgList))
!= (struct ioctlSgList_S *)NULL) {
SLIST_REMOVE_HEAD(&sgList,link);
free (elm, M_TEMP);
}
free (Reply_Ptr, M_TEMP);
asr_free_ccb(ccb);
return (EIO);
}
/* Check every second for BlinkLed */
/* There is no PRICAM, but outwardly PRIBIO is functional */
tsleep((caddr_t)ccb, PRIBIO, "asr", hz);
}
splx(s);
debug_usr_cmd_printf ("Outbound: ");
debug_usr_cmd_dump_message(Reply_Ptr);
I2O_SINGLE_REPLY_MESSAGE_FRAME_setDetailedStatusCode(
&(Reply_Ptr->StdReplyFrame), (ccb->ccb_h.status != CAM_REQ_CMP));
if (ReplySizeInBytes >= (sizeof(I2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)
- I2O_SCSI_SENSE_DATA_SZ - sizeof(U32))) {
I2O_SCSI_ERROR_REPLY_MESSAGE_FRAME_setTransferCount(Reply_Ptr,
ccb->csio.dxfer_len - ccb->csio.resid);
}
if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) && (ReplySizeInBytes
> (sizeof(I2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)
- I2O_SCSI_SENSE_DATA_SZ))) {
int size = ReplySizeInBytes
- sizeof(I2O_SCSI_ERROR_REPLY_MESSAGE_FRAME)
- I2O_SCSI_SENSE_DATA_SZ;
if (size > sizeof(ccb->csio.sense_data)) {
size = sizeof(ccb->csio.sense_data);
}
bcopy ((caddr_t)&(ccb->csio.sense_data), (caddr_t)Reply_Ptr->SenseData,
size);
I2O_SCSI_ERROR_REPLY_MESSAGE_FRAME_setAutoSenseTransferCount(
Reply_Ptr, size);
}
/* Free up in-kernel buffers */
while ((elm = SLIST_FIRST(&sgList)) != (struct ioctlSgList_S *)NULL) {
/* Copy out as necessary */
if ((error == 0)
/* DIR bit considered `valid', error due to ignorance works */
&& ((I2O_FLAGS_COUNT_getFlags(&(elm->FlagsCount))
& I2O_SGL_FLAGS_DIR) == 0)) {
error = copyout ((caddr_t)(elm->KernelSpace),
elm->UserSpace,
I2O_FLAGS_COUNT_getCount(&(elm->FlagsCount)));
}
SLIST_REMOVE_HEAD(&sgList,link);
free (elm, M_TEMP);
}
if (error == 0) {
/* Copy reply frame to user space */
error = copyout ((caddr_t)Reply_Ptr, (caddr_t)Reply,
ReplySizeInBytes);
}
free (Reply_Ptr, M_TEMP);
asr_free_ccb(ccb);
return (error);
} /* ASR_queue_i */
/*----------------------------------------------------------------------*/
/* Function asr_ioctl */
/*----------------------------------------------------------------------*/
/* The parameters passed to this function are : */
/* dev : Device number. */
/* cmd : Ioctl Command */
/* data : User Argument Passed In. */
/* flag : Mode Parameter */
/* proc : Process Parameter */
/* */
/* This function is the user interface into this adapter driver */
/* */
/* Return : zero if OK, error code if not */
/*----------------------------------------------------------------------*/
STATIC int
asr_ioctl(
IN dev_t dev,
IN u_long cmd,
INOUT caddr_t data,
int flag,
struct proc * proc)
{
int i, j;
OUT int error = 0;
Asr_softc_t * sc = ASR_get_sc (dev);
UNREFERENCED_PARAMETER(flag);
UNREFERENCED_PARAMETER(proc);
if (sc != (Asr_softc_t *)NULL)
switch(cmd) {
case DPT_SIGNATURE:
# if (dsDescription_size != 50)
case DPT_SIGNATURE + ((50 - dsDescription_size) << 16):
# endif
if (cmd & 0xFFFF0000) {
(void)bcopy ((caddr_t)(&ASR_sig), data,
sizeof(dpt_sig_S));
return (0);
}
/* Traditional version of the ioctl interface */
case DPT_SIGNATURE & 0x0000FFFF:
return (copyout ((caddr_t)(&ASR_sig), *((caddr_t *)data),
sizeof(dpt_sig_S)));
/* Traditional version of the ioctl interface */
case DPT_CTRLINFO & 0x0000FFFF:
case DPT_CTRLINFO: {
struct {
u_int16_t length;
u_int16_t drvrHBAnum;
u_int32_t baseAddr;
u_int16_t blinkState;
u_int8_t pciBusNum;
u_int8_t pciDeviceNum;
u_int16_t hbaFlags;
u_int16_t Interrupt;
u_int32_t reserved1;
u_int32_t reserved2;
u_int32_t reserved3;
} CtlrInfo;
bzero (&CtlrInfo, sizeof(CtlrInfo));
CtlrInfo.length = sizeof(CtlrInfo) - sizeof(u_int16_t);
CtlrInfo.drvrHBAnum = asr_unit(dev);
CtlrInfo.baseAddr = (u_long)sc->ha_Base;
i = ASR_getBlinkLedCode (sc);
if (i == -1) {
i = 0;
}
CtlrInfo.blinkState = i;
CtlrInfo.pciBusNum = sc->ha_pciBusNum;
CtlrInfo.pciDeviceNum = sc->ha_pciDeviceNum;
#define FLG_OSD_PCI_VALID 0x0001
#define FLG_OSD_DMA 0x0002
#define FLG_OSD_I2O 0x0004
CtlrInfo.hbaFlags = FLG_OSD_PCI_VALID | FLG_OSD_DMA | FLG_OSD_I2O;
CtlrInfo.Interrupt = sc->ha_irq;
if (cmd & 0xFFFF0000) {
bcopy (&CtlrInfo, data, sizeof(CtlrInfo));
} else {
error = copyout (&CtlrInfo, *(caddr_t *)data, sizeof(CtlrInfo));
}
} return (error);
/* Traditional version of the ioctl interface */
case DPT_SYSINFO & 0x0000FFFF:
case DPT_SYSINFO: {
sysInfo_S Info;
caddr_t c_addr;
/* Kernel Specific ptok `hack' */
# define ptok(a) ((char *)(a) + KERNBASE)
bzero (&Info, sizeof(Info));
outb (0x70, 0x12);
i = inb(0x71);
j = i >> 4;
if (i == 0x0f) {
outb (0x70, 0x19);
j = inb (0x71);
}
Info.drive0CMOS = j;
j = i & 0x0f;
if (i == 0x0f) {
outb (0x70, 0x1a);
j = inb (0x71);
}
Info.drive1CMOS = j;
Info.numDrives = *((char *)ptok(0x475));
Info.processorFamily = ASR_sig.dsProcessorFamily;
switch (cpu) {
case CPU_386SX: case CPU_386:
Info.processorType = PROC_386; break;
case CPU_486SX: case CPU_486:
Info.processorType = PROC_486; break;
case CPU_586:
Info.processorType = PROC_PENTIUM; break;
case CPU_686:
Info.processorType = PROC_SEXIUM; break;
}
Info.osType = OS_BSDI_UNIX;
Info.osMajorVersion = osrelease[0] - '0';
Info.osMinorVersion = osrelease[2] - '0';
/* Info.osRevision = 0; */
/* Info.osSubRevision = 0; */
Info.busType = SI_PCI_BUS;
Info.flags = SI_CMOS_Valid | SI_NumDrivesValid
| SI_OSversionValid |SI_BusTypeValid;
/* Go Out And Look For SmartROM */
for(i = 0; i < 3; ++i) {
int k;
if (i == 0) {
j = 0xC8000;
} else if (i == 1) {
j = 0xD8000;
} else {
j = 0xDC000;
}
c_addr = ptok(j);
if (*((unsigned short *)c_addr) != 0xAA55) {
continue;
}
if (*((u_long *)(c_addr + 6)) != 0x202053) {
continue;
}
if (*((u_long *)(c_addr + 10)) != 0x545044) {
continue;
}
c_addr += 0x24;
for (k = 0; k < 64; ++k) {
if ((*((unsigned char *)(c_addr++)) == ' ')
&& (*((unsigned char *)(c_addr)) == 'v')) {
break;
}
}
if (k < 64) {
Info.smartROMMajorVersion
= *((unsigned char *)(c_addr += 3)) - '0';
Info.smartROMMinorVersion
= *((unsigned char *)(c_addr += 2));
Info.smartROMRevision
= *((unsigned char *)(++c_addr));
Info.flags |= SI_SmartROMverValid;
break;
}
}
if (i >= 3) {
Info.flags |= SI_NO_SmartROM;
}
/* Get The Conventional Memory Size From CMOS */
outb (0x70, 0x16);
j = inb (0x71);
j <<= 8;
outb (0x70, 0x15);
j |= inb(0x71);
Info.conventionalMemSize = j;
/* Get The Extended Memory Found At Power On From CMOS */
outb (0x70, 0x31);
j = inb (0x71);
j <<= 8;
outb (0x70, 0x30);
j |= inb(0x71);
Info.extendedMemSize = j;
Info.flags |= SI_MemorySizeValid;
# if (defined(THIS_IS_BROKEN))
/* If There Is 1 or 2 Drives Found, Set Up Drive Parameters */
if (Info.numDrives > 0) {
/*
* Get The Pointer From Int 41 For The First
* Drive Parameters
*/
j = ((unsigned)(*((unsigned short *)ptok(0x104+2))) << 4)
+ (unsigned)(*((unsigned short *)ptok(0x104+0)));
/*
* It appears that SmartROM's Int41/Int46 pointers
* use memory that gets stepped on by the kernel
* loading. We no longer have access to this
* geometry information but try anyways (!?)
*/
Info.drives[0].cylinders = *((unsigned char *)ptok(j));
++j;
Info.drives[0].cylinders += ((int)*((unsigned char *)
ptok(j))) << 8;
++j;
Info.drives[0].heads = *((unsigned char *)ptok(j));
j += 12;
Info.drives[0].sectors = *((unsigned char *)ptok(j));
Info.flags |= SI_DriveParamsValid;
if ((Info.drives[0].cylinders == 0)
|| (Info.drives[0].heads == 0)
|| (Info.drives[0].sectors == 0)) {
Info.flags &= ~SI_DriveParamsValid;
}
if (Info.numDrives > 1) {
/*
* Get The Pointer From Int 46 For The
* Second Drive Parameters
*/
j = ((unsigned)(*((unsigned short *)ptok(0x118+2))) << 4)
+ (unsigned)(*((unsigned short *)ptok(0x118+0)));
Info.drives[1].cylinders = *((unsigned char *)
ptok(j));
++j;
Info.drives[1].cylinders += ((int)
*((unsigned char *)ptok(j))) << 8;
++j;
Info.drives[1].heads = *((unsigned char *)
ptok(j));
j += 12;
Info.drives[1].sectors = *((unsigned char *)
ptok(j));
if ((Info.drives[1].cylinders == 0)
|| (Info.drives[1].heads == 0)
|| (Info.drives[1].sectors == 0)) {
Info.flags &= ~SI_DriveParamsValid;
}
}
}
# endif
/* Copy Out The Info Structure To The User */
if (cmd & 0xFFFF0000) {
bcopy (&Info, data, sizeof(Info));
} else {
error = copyout (&Info, *(caddr_t *)data, sizeof(Info));
}
return (error); }
/* Get The BlinkLED State */
case DPT_BLINKLED:
i = ASR_getBlinkLedCode (sc);
if (i == -1) {
i = 0;
}
if (cmd & 0xFFFF0000) {
bcopy ((caddr_t)(&i), data, sizeof(i));
} else {
error = copyout (&i, *(caddr_t *)data, sizeof(i));
}
break;
/* Get performance metrics */
#ifdef ASR_MEASURE_PERFORMANCE
case DPT_PERF_INFO:
bcopy((caddr_t) &sc->ha_performance, data,
sizeof(sc->ha_performance));
return (0);
#endif
/* Send an I2O command */
case I2OUSRCMD:
return (ASR_queue_i (sc, *((PI2O_MESSAGE_FRAME *)data)));
/* Reset and re-initialize the adapter */
case I2ORESETCMD:
ASR_reset (sc);
return (0);
/* Rescan the LCT table and resynchronize the information */
case I2ORESCANCMD:
return (ASR_rescan (sc));
}
return (EINVAL);
} /* asr_ioctl */
#ifdef ASR_MEASURE_PERFORMANCE
/*
* This function subtracts one timeval structure from another,
* Returning the result in usec.
* It assumes that less than 4 billion usecs passed form start to end.
* If times are sensless, 0xffffffff is returned.
*/
STATIC u_int32_t
asr_time_delta(
IN struct timeval start,
IN struct timeval end)
{
OUT u_int32_t result;
if (start.tv_sec > end.tv_sec) {
result = 0xffffffff;
}
else {
if (start.tv_sec == end.tv_sec) {
if (start.tv_usec > end.tv_usec) {
result = 0xffffffff;
} else {
return (end.tv_usec - start.tv_usec);
}
} else {
return (end.tv_sec - start.tv_sec) * 1000000 +
end.tv_usec + (1000000 - start.tv_usec);
}
}
return(result);
} /* asr_time_delta */
#endif