1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-11-28 08:02:54 +00:00
freebsd/lib/libnvmf/nvmf_tcp.c
John Baldwin 846d702f23 libnvmf: Reject invalid values of MAXH2CDATA for new associations
Sponsored by:	Chelsio Communications
2024-07-25 15:32:42 -04:00

1483 lines
37 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2022-2024 Chelsio Communications, Inc.
* Written by: John Baldwin <jhb@FreeBSD.org>
*/
#include <sys/endian.h>
#include <sys/gsb_crc32.h>
#include <sys/queue.h>
#include <sys/uio.h>
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "libnvmf.h"
#include "internal.h"
#include "nvmf_tcp.h"
struct nvmf_tcp_qpair;
struct nvmf_tcp_command_buffer {
struct nvmf_tcp_qpair *qp;
void *data;
size_t data_len;
size_t data_xfered;
uint32_t data_offset;
uint16_t cid;
uint16_t ttag;
LIST_ENTRY(nvmf_tcp_command_buffer) link;
};
LIST_HEAD(nvmf_tcp_command_buffer_list, nvmf_tcp_command_buffer);
struct nvmf_tcp_association {
struct nvmf_association na;
uint32_t ioccsz;
};
struct nvmf_tcp_rxpdu {
struct nvme_tcp_common_pdu_hdr *hdr;
uint32_t data_len;
};
struct nvmf_tcp_capsule {
struct nvmf_capsule nc;
struct nvmf_tcp_rxpdu rx_pdu;
struct nvmf_tcp_command_buffer *cb;
TAILQ_ENTRY(nvmf_tcp_capsule) link;
};
struct nvmf_tcp_qpair {
struct nvmf_qpair qp;
int s;
uint8_t txpda;
uint8_t rxpda;
bool header_digests;
bool data_digests;
uint32_t maxr2t;
uint32_t maxh2cdata;
uint32_t max_icd; /* Host only */
uint16_t next_ttag; /* Controller only */
struct nvmf_tcp_command_buffer_list tx_buffers;
struct nvmf_tcp_command_buffer_list rx_buffers;
TAILQ_HEAD(, nvmf_tcp_capsule) rx_capsules;
};
#define TASSOC(nc) ((struct nvmf_tcp_association *)(na))
#define TCAP(nc) ((struct nvmf_tcp_capsule *)(nc))
#define CTCAP(nc) ((const struct nvmf_tcp_capsule *)(nc))
#define TQP(qp) ((struct nvmf_tcp_qpair *)(qp))
static const char zero_padding[NVME_TCP_PDU_PDO_MAX_OFFSET];
static uint32_t
compute_digest(const void *buf, size_t len)
{
return (calculate_crc32c(0xffffffff, buf, len) ^ 0xffffffff);
}
static struct nvmf_tcp_command_buffer *
tcp_alloc_command_buffer(struct nvmf_tcp_qpair *qp, void *data,
uint32_t data_offset, size_t data_len, uint16_t cid, uint16_t ttag,
bool receive)
{
struct nvmf_tcp_command_buffer *cb;
cb = malloc(sizeof(*cb));
cb->qp = qp;
cb->data = data;
cb->data_offset = data_offset;
cb->data_len = data_len;
cb->data_xfered = 0;
cb->cid = cid;
cb->ttag = ttag;
if (receive)
LIST_INSERT_HEAD(&qp->rx_buffers, cb, link);
else
LIST_INSERT_HEAD(&qp->tx_buffers, cb, link);
return (cb);
}
static struct nvmf_tcp_command_buffer *
tcp_find_command_buffer(struct nvmf_tcp_qpair *qp, uint16_t cid, uint16_t ttag,
bool receive)
{
struct nvmf_tcp_command_buffer_list *list;
struct nvmf_tcp_command_buffer *cb;
list = receive ? &qp->rx_buffers : &qp->tx_buffers;
LIST_FOREACH(cb, list, link) {
if (cb->cid == cid && cb->ttag == ttag)
return (cb);
}
return (NULL);
}
static void
tcp_purge_command_buffer(struct nvmf_tcp_qpair *qp, uint16_t cid, uint16_t ttag,
bool receive)
{
struct nvmf_tcp_command_buffer *cb;
cb = tcp_find_command_buffer(qp, cid, ttag, receive);
if (cb != NULL)
LIST_REMOVE(cb, link);
}
static void
tcp_free_command_buffer(struct nvmf_tcp_command_buffer *cb)
{
LIST_REMOVE(cb, link);
free(cb);
}
static int
nvmf_tcp_write_pdu(struct nvmf_tcp_qpair *qp, const void *pdu, size_t len)
{
ssize_t nwritten;
const char *cp;
cp = pdu;
while (len != 0) {
nwritten = write(qp->s, cp, len);
if (nwritten < 0)
return (errno);
len -= nwritten;
cp += nwritten;
}
return (0);
}
static int
nvmf_tcp_write_pdu_iov(struct nvmf_tcp_qpair *qp, struct iovec *iov,
u_int iovcnt, size_t len)
{
ssize_t nwritten;
for (;;) {
nwritten = writev(qp->s, iov, iovcnt);
if (nwritten < 0)
return (errno);
len -= nwritten;
if (len == 0)
return (0);
while (iov->iov_len <= (size_t)nwritten) {
nwritten -= iov->iov_len;
iovcnt--;
iov++;
}
iov->iov_base = (char *)iov->iov_base + nwritten;
iov->iov_len -= nwritten;
}
}
static void
nvmf_tcp_report_error(struct nvmf_association *na, struct nvmf_tcp_qpair *qp,
uint16_t fes, uint32_t fei, const void *rx_pdu, size_t pdu_len, u_int hlen)
{
struct nvme_tcp_term_req_hdr hdr;
struct iovec iov[2];
if (hlen != 0) {
if (hlen > NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE)
hlen = NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE;
if (hlen > pdu_len)
hlen = pdu_len;
}
memset(&hdr, 0, sizeof(hdr));
hdr.common.pdu_type = na->na_controller ?
NVME_TCP_PDU_TYPE_C2H_TERM_REQ : NVME_TCP_PDU_TYPE_H2C_TERM_REQ;
hdr.common.hlen = sizeof(hdr);
hdr.common.plen = sizeof(hdr) + hlen;
hdr.fes = htole16(fes);
le32enc(hdr.fei, fei);
iov[0].iov_base = &hdr;
iov[0].iov_len = sizeof(hdr);
iov[1].iov_base = __DECONST(void *, rx_pdu);
iov[1].iov_len = hlen;
(void)nvmf_tcp_write_pdu_iov(qp, iov, nitems(iov), sizeof(hdr) + hlen);
close(qp->s);
qp->s = -1;
}
static int
nvmf_tcp_validate_pdu(struct nvmf_tcp_qpair *qp, struct nvmf_tcp_rxpdu *pdu,
size_t pdu_len)
{
const struct nvme_tcp_common_pdu_hdr *ch;
uint32_t data_len, fei, plen;
uint32_t digest, rx_digest;
u_int hlen;
int error;
uint16_t fes;
/* Determine how large of a PDU header to return for errors. */
ch = pdu->hdr;
hlen = ch->hlen;
plen = le32toh(ch->plen);
if (hlen < sizeof(*ch) || hlen > plen)
hlen = sizeof(*ch);
error = nvmf_tcp_validate_pdu_header(ch,
qp->qp.nq_association->na_controller, qp->header_digests,
qp->data_digests, qp->rxpda, &data_len, &fes, &fei);
if (error != 0) {
if (error == ECONNRESET) {
close(qp->s);
qp->s = -1;
} else {
nvmf_tcp_report_error(qp->qp.nq_association, qp,
fes, fei, ch, pdu_len, hlen);
}
return (error);
}
/* Check header digest if present. */
if ((ch->flags & NVME_TCP_CH_FLAGS_HDGSTF) != 0) {
digest = compute_digest(ch, ch->hlen);
memcpy(&rx_digest, (const char *)ch + ch->hlen,
sizeof(rx_digest));
if (digest != rx_digest) {
printf("NVMe/TCP: Header digest mismatch\n");
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_HDGST_ERROR, rx_digest, ch,
pdu_len, hlen);
return (EBADMSG);
}
}
/* Check data digest if present. */
if ((ch->flags & NVME_TCP_CH_FLAGS_DDGSTF) != 0) {
digest = compute_digest((const char *)ch + ch->pdo, data_len);
memcpy(&rx_digest, (const char *)ch + plen - sizeof(rx_digest),
sizeof(rx_digest));
if (digest != rx_digest) {
printf("NVMe/TCP: Data digest mismatch\n");
return (EBADMSG);
}
}
pdu->data_len = data_len;
return (0);
}
/*
* Read data from a socket, retrying until the data has been fully
* read or an error occurs.
*/
static int
nvmf_tcp_read_buffer(int s, void *buf, size_t len)
{
ssize_t nread;
char *cp;
cp = buf;
while (len != 0) {
nread = read(s, cp, len);
if (nread < 0)
return (errno);
if (nread == 0)
return (ECONNRESET);
len -= nread;
cp += nread;
}
return (0);
}
static int
nvmf_tcp_read_pdu(struct nvmf_tcp_qpair *qp, struct nvmf_tcp_rxpdu *pdu)
{
struct nvme_tcp_common_pdu_hdr ch;
uint32_t plen;
int error;
memset(pdu, 0, sizeof(*pdu));
error = nvmf_tcp_read_buffer(qp->s, &ch, sizeof(ch));
if (error != 0)
return (error);
plen = le32toh(ch.plen);
/*
* Validate a header with garbage lengths to trigger
* an error message without reading more.
*/
if (plen < sizeof(ch) || ch.hlen > plen) {
pdu->hdr = &ch;
error = nvmf_tcp_validate_pdu(qp, pdu, sizeof(ch));
pdu->hdr = NULL;
assert(error != 0);
return (error);
}
/* Read the rest of the PDU. */
pdu->hdr = malloc(plen);
memcpy(pdu->hdr, &ch, sizeof(ch));
error = nvmf_tcp_read_buffer(qp->s, pdu->hdr + 1, plen - sizeof(ch));
if (error != 0)
return (error);
error = nvmf_tcp_validate_pdu(qp, pdu, plen);
if (error != 0) {
free(pdu->hdr);
pdu->hdr = NULL;
}
return (error);
}
static void
nvmf_tcp_free_pdu(struct nvmf_tcp_rxpdu *pdu)
{
free(pdu->hdr);
pdu->hdr = NULL;
}
static int
nvmf_tcp_handle_term_req(struct nvmf_tcp_rxpdu *pdu)
{
struct nvme_tcp_term_req_hdr *hdr;
hdr = (void *)pdu->hdr;
printf("NVMe/TCP: Received termination request: fes %#x fei %#x\n",
le16toh(hdr->fes), le32dec(hdr->fei));
nvmf_tcp_free_pdu(pdu);
return (ECONNRESET);
}
static int
nvmf_tcp_save_command_capsule(struct nvmf_tcp_qpair *qp,
struct nvmf_tcp_rxpdu *pdu)
{
struct nvme_tcp_cmd *cmd;
struct nvmf_capsule *nc;
struct nvmf_tcp_capsule *tc;
cmd = (void *)pdu->hdr;
nc = nvmf_allocate_command(&qp->qp, &cmd->ccsqe);
if (nc == NULL)
return (ENOMEM);
tc = TCAP(nc);
tc->rx_pdu = *pdu;
TAILQ_INSERT_TAIL(&qp->rx_capsules, tc, link);
return (0);
}
static int
nvmf_tcp_save_response_capsule(struct nvmf_tcp_qpair *qp,
struct nvmf_tcp_rxpdu *pdu)
{
struct nvme_tcp_rsp *rsp;
struct nvmf_capsule *nc;
struct nvmf_tcp_capsule *tc;
rsp = (void *)pdu->hdr;
nc = nvmf_allocate_response(&qp->qp, &rsp->rccqe);
if (nc == NULL)
return (ENOMEM);
nc->nc_sqhd_valid = true;
tc = TCAP(nc);
tc->rx_pdu = *pdu;
TAILQ_INSERT_TAIL(&qp->rx_capsules, tc, link);
/*
* Once the CQE has been received, no further transfers to the
* command buffer for the associated CID can occur.
*/
tcp_purge_command_buffer(qp, rsp->rccqe.cid, 0, true);
tcp_purge_command_buffer(qp, rsp->rccqe.cid, 0, false);
return (0);
}
/*
* Construct and send a PDU that contains an optional data payload.
* This includes dealing with digests and the length fields in the
* common header.
*/
static int
nvmf_tcp_construct_pdu(struct nvmf_tcp_qpair *qp, void *hdr, size_t hlen,
void *data, uint32_t data_len)
{
struct nvme_tcp_common_pdu_hdr *ch;
struct iovec iov[5];
u_int iovcnt;
uint32_t header_digest, data_digest, pad, pdo, plen;
plen = hlen;
if (qp->header_digests)
plen += sizeof(header_digest);
if (data_len != 0) {
pdo = roundup2(plen, qp->txpda);
pad = pdo - plen;
plen = pdo + data_len;
if (qp->data_digests)
plen += sizeof(data_digest);
} else {
assert(data == NULL);
pdo = 0;
pad = 0;
}
ch = hdr;
ch->hlen = hlen;
if (qp->header_digests)
ch->flags |= NVME_TCP_CH_FLAGS_HDGSTF;
if (qp->data_digests && data_len != 0)
ch->flags |= NVME_TCP_CH_FLAGS_DDGSTF;
ch->pdo = pdo;
ch->plen = htole32(plen);
/* CH + PSH */
iov[0].iov_base = hdr;
iov[0].iov_len = hlen;
iovcnt = 1;
/* HDGST */
if (qp->header_digests) {
header_digest = compute_digest(hdr, hlen);
iov[iovcnt].iov_base = &header_digest;
iov[iovcnt].iov_len = sizeof(header_digest);
iovcnt++;
}
if (pad != 0) {
/* PAD */
iov[iovcnt].iov_base = __DECONST(char *, zero_padding);
iov[iovcnt].iov_len = pad;
iovcnt++;
}
if (data_len != 0) {
/* DATA */
iov[iovcnt].iov_base = data;
iov[iovcnt].iov_len = data_len;
iovcnt++;
/* DDGST */
if (qp->data_digests) {
data_digest = compute_digest(data, data_len);
iov[iovcnt].iov_base = &data_digest;
iov[iovcnt].iov_len = sizeof(data_digest);
iovcnt++;
}
}
return (nvmf_tcp_write_pdu_iov(qp, iov, iovcnt, plen));
}
static int
nvmf_tcp_handle_h2c_data(struct nvmf_tcp_qpair *qp, struct nvmf_tcp_rxpdu *pdu)
{
struct nvme_tcp_h2c_data_hdr *h2c;
struct nvmf_tcp_command_buffer *cb;
uint32_t data_len, data_offset;
const char *icd;
h2c = (void *)pdu->hdr;
if (le32toh(h2c->datal) > qp->maxh2cdata) {
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED, 0,
pdu->hdr, le32toh(pdu->hdr->plen), pdu->hdr->hlen);
nvmf_tcp_free_pdu(pdu);
return (EBADMSG);
}
cb = tcp_find_command_buffer(qp, h2c->cccid, h2c->ttag, true);
if (cb == NULL) {
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD,
offsetof(struct nvme_tcp_h2c_data_hdr, ttag), pdu->hdr,
le32toh(pdu->hdr->plen), pdu->hdr->hlen);
nvmf_tcp_free_pdu(pdu);
return (EBADMSG);
}
data_len = le32toh(h2c->datal);
if (data_len != pdu->data_len) {
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD,
offsetof(struct nvme_tcp_h2c_data_hdr, datal), pdu->hdr,
le32toh(pdu->hdr->plen), pdu->hdr->hlen);
nvmf_tcp_free_pdu(pdu);
return (EBADMSG);
}
data_offset = le32toh(h2c->datao);
if (data_offset < cb->data_offset ||
data_offset + data_len > cb->data_offset + cb->data_len) {
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE, 0,
pdu->hdr, le32toh(pdu->hdr->plen), pdu->hdr->hlen);
nvmf_tcp_free_pdu(pdu);
return (EBADMSG);
}
if (data_offset != cb->data_offset + cb->data_xfered) {
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR, 0, pdu->hdr,
le32toh(pdu->hdr->plen), pdu->hdr->hlen);
nvmf_tcp_free_pdu(pdu);
return (EBADMSG);
}
if ((cb->data_xfered + data_len == cb->data_len) !=
((pdu->hdr->flags & NVME_TCP_H2C_DATA_FLAGS_LAST_PDU) != 0)) {
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR, 0, pdu->hdr,
le32toh(pdu->hdr->plen), pdu->hdr->hlen);
nvmf_tcp_free_pdu(pdu);
return (EBADMSG);
}
cb->data_xfered += data_len;
data_offset -= cb->data_offset;
icd = (const char *)pdu->hdr + pdu->hdr->pdo;
memcpy((char *)cb->data + data_offset, icd, data_len);
nvmf_tcp_free_pdu(pdu);
return (0);
}
static int
nvmf_tcp_handle_c2h_data(struct nvmf_tcp_qpair *qp, struct nvmf_tcp_rxpdu *pdu)
{
struct nvme_tcp_c2h_data_hdr *c2h;
struct nvmf_tcp_command_buffer *cb;
uint32_t data_len, data_offset;
const char *icd;
c2h = (void *)pdu->hdr;
cb = tcp_find_command_buffer(qp, c2h->cccid, 0, true);
if (cb == NULL) {
/*
* XXX: Could be PDU sequence error if cccid is for a
* command that doesn't use a command buffer.
*/
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD,
offsetof(struct nvme_tcp_c2h_data_hdr, cccid), pdu->hdr,
le32toh(pdu->hdr->plen), pdu->hdr->hlen);
nvmf_tcp_free_pdu(pdu);
return (EBADMSG);
}
data_len = le32toh(c2h->datal);
if (data_len != pdu->data_len) {
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD,
offsetof(struct nvme_tcp_c2h_data_hdr, datal), pdu->hdr,
le32toh(pdu->hdr->plen), pdu->hdr->hlen);
nvmf_tcp_free_pdu(pdu);
return (EBADMSG);
}
data_offset = le32toh(c2h->datao);
if (data_offset < cb->data_offset ||
data_offset + data_len > cb->data_offset + cb->data_len) {
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE, 0,
pdu->hdr, le32toh(pdu->hdr->plen), pdu->hdr->hlen);
nvmf_tcp_free_pdu(pdu);
return (EBADMSG);
}
if (data_offset != cb->data_offset + cb->data_xfered) {
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR, 0, pdu->hdr,
le32toh(pdu->hdr->plen), pdu->hdr->hlen);
nvmf_tcp_free_pdu(pdu);
return (EBADMSG);
}
if ((cb->data_xfered + data_len == cb->data_len) !=
((pdu->hdr->flags & NVME_TCP_C2H_DATA_FLAGS_LAST_PDU) != 0)) {
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR, 0, pdu->hdr,
le32toh(pdu->hdr->plen), pdu->hdr->hlen);
nvmf_tcp_free_pdu(pdu);
return (EBADMSG);
}
cb->data_xfered += data_len;
data_offset -= cb->data_offset;
icd = (const char *)pdu->hdr + pdu->hdr->pdo;
memcpy((char *)cb->data + data_offset, icd, data_len);
if ((pdu->hdr->flags & NVME_TCP_C2H_DATA_FLAGS_SUCCESS) != 0) {
struct nvme_completion cqe;
struct nvmf_tcp_capsule *tc;
struct nvmf_capsule *nc;
memset(&cqe, 0, sizeof(cqe));
cqe.cid = cb->cid;
nc = nvmf_allocate_response(&qp->qp, &cqe);
if (nc == NULL) {
nvmf_tcp_free_pdu(pdu);
return (ENOMEM);
}
nc->nc_sqhd_valid = false;
tc = TCAP(nc);
TAILQ_INSERT_TAIL(&qp->rx_capsules, tc, link);
}
nvmf_tcp_free_pdu(pdu);
return (0);
}
/* NB: cid and ttag and little-endian already. */
static int
tcp_send_h2c_pdu(struct nvmf_tcp_qpair *qp, uint16_t cid, uint16_t ttag,
uint32_t data_offset, void *buf, size_t len, bool last_pdu)
{
struct nvme_tcp_h2c_data_hdr h2c;
memset(&h2c, 0, sizeof(h2c));
h2c.common.pdu_type = NVME_TCP_PDU_TYPE_H2C_DATA;
if (last_pdu)
h2c.common.flags |= NVME_TCP_H2C_DATA_FLAGS_LAST_PDU;
h2c.cccid = cid;
h2c.ttag = ttag;
h2c.datao = htole32(data_offset);
h2c.datal = htole32(len);
return (nvmf_tcp_construct_pdu(qp, &h2c, sizeof(h2c), buf, len));
}
/* Sends one or more H2C_DATA PDUs, subject to MAXH2CDATA. */
static int
tcp_send_h2c_pdus(struct nvmf_tcp_qpair *qp, uint16_t cid, uint16_t ttag,
uint32_t data_offset, void *buf, size_t len, bool last_pdu)
{
char *p;
p = buf;
while (len != 0) {
size_t todo;
int error;
todo = len;
if (todo > qp->maxh2cdata)
todo = qp->maxh2cdata;
error = tcp_send_h2c_pdu(qp, cid, ttag, data_offset, p, todo,
last_pdu && todo == len);
if (error != 0)
return (error);
p += todo;
len -= todo;
}
return (0);
}
static int
nvmf_tcp_handle_r2t(struct nvmf_tcp_qpair *qp, struct nvmf_tcp_rxpdu *pdu)
{
struct nvmf_tcp_command_buffer *cb;
struct nvme_tcp_r2t_hdr *r2t;
uint32_t data_len, data_offset;
int error;
r2t = (void *)pdu->hdr;
cb = tcp_find_command_buffer(qp, r2t->cccid, 0, false);
if (cb == NULL) {
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD,
offsetof(struct nvme_tcp_r2t_hdr, cccid), pdu->hdr,
le32toh(pdu->hdr->plen), pdu->hdr->hlen);
nvmf_tcp_free_pdu(pdu);
return (EBADMSG);
}
data_offset = le32toh(r2t->r2to);
if (data_offset != cb->data_xfered) {
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR, 0, pdu->hdr,
le32toh(pdu->hdr->plen), pdu->hdr->hlen);
nvmf_tcp_free_pdu(pdu);
return (EBADMSG);
}
/*
* XXX: The spec does not specify how to handle R2T tranfers
* out of range of the original command.
*/
data_len = le32toh(r2t->r2tl);
if (data_offset + data_len > cb->data_len) {
nvmf_tcp_report_error(qp->qp.nq_association, qp,
NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE, 0,
pdu->hdr, le32toh(pdu->hdr->plen), pdu->hdr->hlen);
nvmf_tcp_free_pdu(pdu);
return (EBADMSG);
}
cb->data_xfered += data_len;
/*
* Write out one or more H2C_DATA PDUs containing the
* requested data.
*/
error = tcp_send_h2c_pdus(qp, r2t->cccid, r2t->ttag,
data_offset, (char *)cb->data + data_offset, data_len, true);
nvmf_tcp_free_pdu(pdu);
return (error);
}
static int
nvmf_tcp_receive_pdu(struct nvmf_tcp_qpair *qp)
{
struct nvmf_tcp_rxpdu pdu;
int error;
error = nvmf_tcp_read_pdu(qp, &pdu);
if (error != 0)
return (error);
switch (pdu.hdr->pdu_type) {
default:
__unreachable();
break;
case NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
case NVME_TCP_PDU_TYPE_C2H_TERM_REQ:
return (nvmf_tcp_handle_term_req(&pdu));
case NVME_TCP_PDU_TYPE_CAPSULE_CMD:
return (nvmf_tcp_save_command_capsule(qp, &pdu));
case NVME_TCP_PDU_TYPE_CAPSULE_RESP:
return (nvmf_tcp_save_response_capsule(qp, &pdu));
case NVME_TCP_PDU_TYPE_H2C_DATA:
return (nvmf_tcp_handle_h2c_data(qp, &pdu));
case NVME_TCP_PDU_TYPE_C2H_DATA:
return (nvmf_tcp_handle_c2h_data(qp, &pdu));
case NVME_TCP_PDU_TYPE_R2T:
return (nvmf_tcp_handle_r2t(qp, &pdu));
}
}
static bool
nvmf_tcp_validate_ic_pdu(struct nvmf_association *na, struct nvmf_tcp_qpair *qp,
const struct nvme_tcp_common_pdu_hdr *ch, size_t pdu_len)
{
const struct nvme_tcp_ic_req *pdu;
uint32_t plen;
u_int hlen;
/* Determine how large of a PDU header to return for errors. */
hlen = ch->hlen;
plen = le32toh(ch->plen);
if (hlen < sizeof(*ch) || hlen > plen)
hlen = sizeof(*ch);
/*
* Errors must be reported for the lowest incorrect field
* first, so validate fields in order.
*/
/* Validate pdu_type. */
/* Controllers only receive PDUs with a PDU direction of 0. */
if (na->na_controller != ((ch->pdu_type & 0x01) == 0)) {
na_error(na, "NVMe/TCP: Invalid PDU type %u", ch->pdu_type);
nvmf_tcp_report_error(na, qp,
NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD, 0, ch, pdu_len,
hlen);
return (false);
}
switch (ch->pdu_type) {
case NVME_TCP_PDU_TYPE_IC_REQ:
case NVME_TCP_PDU_TYPE_IC_RESP:
break;
default:
na_error(na, "NVMe/TCP: Invalid PDU type %u", ch->pdu_type);
nvmf_tcp_report_error(na, qp,
NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD, 0, ch, pdu_len,
hlen);
return (false);
}
/* Validate flags. */
if (ch->flags != 0) {
na_error(na, "NVMe/TCP: Invalid PDU header flags %#x",
ch->flags);
nvmf_tcp_report_error(na, qp,
NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD, 1, ch, pdu_len,
hlen);
return (false);
}
/* Validate hlen. */
if (ch->hlen != 128) {
na_error(na, "NVMe/TCP: Invalid PDU header length %u",
ch->hlen);
nvmf_tcp_report_error(na, qp,
NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD, 2, ch, pdu_len,
hlen);
return (false);
}
/* Validate pdo. */
if (ch->pdo != 0) {
na_error(na, "NVMe/TCP: Invalid PDU data offset %u", ch->pdo);
nvmf_tcp_report_error(na, qp,
NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD, 3, ch, pdu_len,
hlen);
return (false);
}
/* Validate plen. */
if (plen != 128) {
na_error(na, "NVMe/TCP: Invalid PDU length %u", plen);
nvmf_tcp_report_error(na, qp,
NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD, 4, ch, pdu_len,
hlen);
return (false);
}
/* Validate fields common to both ICReq and ICResp. */
pdu = (const struct nvme_tcp_ic_req *)ch;
if (le16toh(pdu->pfv) != 0) {
na_error(na, "NVMe/TCP: Unsupported PDU version %u",
le16toh(pdu->pfv));
nvmf_tcp_report_error(na, qp,
NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER,
8, ch, pdu_len, hlen);
return (false);
}
if (pdu->hpda > NVME_TCP_HPDA_MAX) {
na_error(na, "NVMe/TCP: Unsupported PDA %u", pdu->hpda);
nvmf_tcp_report_error(na, qp,
NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD, 10, ch, pdu_len,
hlen);
return (false);
}
if (pdu->dgst.bits.reserved != 0) {
na_error(na, "NVMe/TCP: Invalid digest settings");
nvmf_tcp_report_error(na, qp,
NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD, 11, ch, pdu_len,
hlen);
return (false);
}
return (true);
}
static bool
nvmf_tcp_read_ic_req(struct nvmf_association *na, struct nvmf_tcp_qpair *qp,
struct nvme_tcp_ic_req *pdu)
{
int error;
error = nvmf_tcp_read_buffer(qp->s, pdu, sizeof(*pdu));
if (error != 0) {
na_error(na, "NVMe/TCP: Failed to read IC request: %s",
strerror(error));
return (false);
}
return (nvmf_tcp_validate_ic_pdu(na, qp, &pdu->common, sizeof(*pdu)));
}
static bool
nvmf_tcp_read_ic_resp(struct nvmf_association *na, struct nvmf_tcp_qpair *qp,
struct nvme_tcp_ic_resp *pdu)
{
int error;
error = nvmf_tcp_read_buffer(qp->s, pdu, sizeof(*pdu));
if (error != 0) {
na_error(na, "NVMe/TCP: Failed to read IC response: %s",
strerror(error));
return (false);
}
return (nvmf_tcp_validate_ic_pdu(na, qp, &pdu->common, sizeof(*pdu)));
}
static struct nvmf_association *
tcp_allocate_association(bool controller,
const struct nvmf_association_params *params)
{
struct nvmf_tcp_association *ta;
if (controller) {
/* 7.4.10.3 */
if (params->tcp.maxh2cdata < 4096 ||
params->tcp.maxh2cdata % 4 != 0)
return (NULL);
}
ta = calloc(1, sizeof(*ta));
return (&ta->na);
}
static void
tcp_update_association(struct nvmf_association *na,
const struct nvme_controller_data *cdata)
{
struct nvmf_tcp_association *ta = TASSOC(na);
ta->ioccsz = le32toh(cdata->ioccsz);
}
static void
tcp_free_association(struct nvmf_association *na)
{
free(na);
}
static bool
tcp_connect(struct nvmf_tcp_qpair *qp, struct nvmf_association *na, bool admin)
{
const struct nvmf_association_params *params = &na->na_params;
struct nvmf_tcp_association *ta = TASSOC(na);
struct nvme_tcp_ic_req ic_req;
struct nvme_tcp_ic_resp ic_resp;
uint32_t maxh2cdata;
int error;
if (!admin) {
if (ta->ioccsz == 0) {
na_error(na, "TCP I/O queues require cdata");
return (false);
}
if (ta->ioccsz < 4) {
na_error(na, "Invalid IOCCSZ %u", ta->ioccsz);
return (false);
}
}
memset(&ic_req, 0, sizeof(ic_req));
ic_req.common.pdu_type = NVME_TCP_PDU_TYPE_IC_REQ;
ic_req.common.hlen = sizeof(ic_req);
ic_req.common.plen = htole32(sizeof(ic_req));
ic_req.pfv = htole16(0);
ic_req.hpda = params->tcp.pda;
if (params->tcp.header_digests)
ic_req.dgst.bits.hdgst_enable = 1;
if (params->tcp.data_digests)
ic_req.dgst.bits.ddgst_enable = 1;
ic_req.maxr2t = htole32(params->tcp.maxr2t);
error = nvmf_tcp_write_pdu(qp, &ic_req, sizeof(ic_req));
if (error != 0) {
na_error(na, "Failed to write IC request: %s", strerror(error));
return (false);
}
if (!nvmf_tcp_read_ic_resp(na, qp, &ic_resp))
return (false);
/* Ensure the controller didn't enable digests we didn't request. */
if ((!params->tcp.header_digests &&
ic_resp.dgst.bits.hdgst_enable != 0) ||
(!params->tcp.data_digests &&
ic_resp.dgst.bits.ddgst_enable != 0)) {
na_error(na, "Controller enabled unrequested digests");
nvmf_tcp_report_error(na, qp,
NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER,
11, &ic_resp, sizeof(ic_resp), sizeof(ic_resp));
return (false);
}
/*
* XXX: Is there an upper-bound to enforce here? Perhaps pick
* some large value and report larger values as an unsupported
* parameter?
*/
maxh2cdata = le32toh(ic_resp.maxh2cdata);
if (maxh2cdata < 4096 || maxh2cdata % 4 != 0) {
na_error(na, "Invalid MAXH2CDATA %u", maxh2cdata);
nvmf_tcp_report_error(na, qp,
NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD, 12, &ic_resp,
sizeof(ic_resp), sizeof(ic_resp));
return (false);
}
qp->txpda = (params->tcp.pda + 1) * 4;
qp->rxpda = (ic_resp.cpda + 1) * 4;
qp->header_digests = ic_resp.dgst.bits.hdgst_enable != 0;
qp->data_digests = ic_resp.dgst.bits.ddgst_enable != 0;
qp->maxr2t = params->tcp.maxr2t;
qp->maxh2cdata = maxh2cdata;
if (admin)
/* 7.4.3 */
qp->max_icd = 8192;
else
qp->max_icd = (ta->ioccsz - 4) * 16;
return (0);
}
static bool
tcp_accept(struct nvmf_tcp_qpair *qp, struct nvmf_association *na)
{
const struct nvmf_association_params *params = &na->na_params;
struct nvme_tcp_ic_req ic_req;
struct nvme_tcp_ic_resp ic_resp;
int error;
if (!nvmf_tcp_read_ic_req(na, qp, &ic_req))
return (false);
memset(&ic_resp, 0, sizeof(ic_resp));
ic_resp.common.pdu_type = NVME_TCP_PDU_TYPE_IC_RESP;
ic_resp.common.hlen = sizeof(ic_req);
ic_resp.common.plen = htole32(sizeof(ic_req));
ic_resp.pfv = htole16(0);
ic_resp.cpda = params->tcp.pda;
if (params->tcp.header_digests && ic_req.dgst.bits.hdgst_enable != 0)
ic_resp.dgst.bits.hdgst_enable = 1;
if (params->tcp.data_digests && ic_req.dgst.bits.ddgst_enable != 0)
ic_resp.dgst.bits.ddgst_enable = 1;
ic_resp.maxh2cdata = htole32(params->tcp.maxh2cdata);
error = nvmf_tcp_write_pdu(qp, &ic_resp, sizeof(ic_resp));
if (error != 0) {
na_error(na, "Failed to write IC response: %s",
strerror(error));
return (false);
}
qp->txpda = (params->tcp.pda + 1) * 4;
qp->rxpda = (ic_req.hpda + 1) * 4;
qp->header_digests = ic_resp.dgst.bits.hdgst_enable != 0;
qp->data_digests = ic_resp.dgst.bits.ddgst_enable != 0;
qp->maxr2t = le32toh(ic_req.maxr2t);
qp->maxh2cdata = params->tcp.maxh2cdata;
qp->max_icd = 0; /* XXX */
return (0);
}
static struct nvmf_qpair *
tcp_allocate_qpair(struct nvmf_association *na,
const struct nvmf_qpair_params *qparams)
{
const struct nvmf_association_params *aparams = &na->na_params;
struct nvmf_tcp_qpair *qp;
int error;
if (aparams->tcp.pda > NVME_TCP_CPDA_MAX) {
na_error(na, "Invalid PDA");
return (NULL);
}
qp = calloc(1, sizeof(*qp));
qp->s = qparams->tcp.fd;
LIST_INIT(&qp->rx_buffers);
LIST_INIT(&qp->tx_buffers);
TAILQ_INIT(&qp->rx_capsules);
if (na->na_controller)
error = tcp_accept(qp, na);
else
error = tcp_connect(qp, na, qparams->admin);
if (error != 0) {
free(qp);
return (NULL);
}
return (&qp->qp);
}
static void
tcp_free_qpair(struct nvmf_qpair *nq)
{
struct nvmf_tcp_qpair *qp = TQP(nq);
struct nvmf_tcp_capsule *ntc, *tc;
struct nvmf_tcp_command_buffer *ncb, *cb;
TAILQ_FOREACH_SAFE(tc, &qp->rx_capsules, link, ntc) {
TAILQ_REMOVE(&qp->rx_capsules, tc, link);
nvmf_free_capsule(&tc->nc);
}
LIST_FOREACH_SAFE(cb, &qp->rx_buffers, link, ncb) {
tcp_free_command_buffer(cb);
}
LIST_FOREACH_SAFE(cb, &qp->tx_buffers, link, ncb) {
tcp_free_command_buffer(cb);
}
free(qp);
}
static int
tcp_kernel_handoff_params(struct nvmf_qpair *nq,
struct nvmf_handoff_qpair_params *qparams)
{
struct nvmf_tcp_qpair *qp = TQP(nq);
qparams->tcp.fd = qp->s;
qparams->tcp.rxpda = qp->rxpda;
qparams->tcp.txpda = qp->txpda;
qparams->tcp.header_digests = qp->header_digests;
qparams->tcp.data_digests = qp->data_digests;
qparams->tcp.maxr2t = qp->maxr2t;
qparams->tcp.maxh2cdata = qp->maxh2cdata;
qparams->tcp.max_icd = qp->max_icd;
return (0);
}
static struct nvmf_capsule *
tcp_allocate_capsule(struct nvmf_qpair *qp __unused)
{
struct nvmf_tcp_capsule *nc;
nc = calloc(1, sizeof(*nc));
return (&nc->nc);
}
static void
tcp_free_capsule(struct nvmf_capsule *nc)
{
struct nvmf_tcp_capsule *tc = TCAP(nc);
nvmf_tcp_free_pdu(&tc->rx_pdu);
if (tc->cb != NULL)
tcp_free_command_buffer(tc->cb);
free(tc);
}
static int
tcp_transmit_command(struct nvmf_capsule *nc)
{
struct nvmf_tcp_qpair *qp = TQP(nc->nc_qpair);
struct nvmf_tcp_capsule *tc = TCAP(nc);
struct nvme_tcp_cmd cmd;
struct nvme_sgl_descriptor *sgl;
int error;
bool use_icd;
use_icd = false;
if (nc->nc_data_len != 0 && nc->nc_send_data &&
nc->nc_data_len <= qp->max_icd)
use_icd = true;
memset(&cmd, 0, sizeof(cmd));
cmd.common.pdu_type = NVME_TCP_PDU_TYPE_CAPSULE_CMD;
cmd.ccsqe = nc->nc_sqe;
/* Populate SGL in SQE. */
sgl = &cmd.ccsqe.sgl;
memset(sgl, 0, sizeof(*sgl));
sgl->address = 0;
sgl->length = htole32(nc->nc_data_len);
if (use_icd) {
/* Use in-capsule data. */
sgl->type = NVME_SGL_TYPE_ICD;
} else {
/* Use a command buffer. */
sgl->type = NVME_SGL_TYPE_COMMAND_BUFFER;
}
/* Send command capsule. */
error = nvmf_tcp_construct_pdu(qp, &cmd, sizeof(cmd), use_icd ?
nc->nc_data : NULL, use_icd ? nc->nc_data_len : 0);
if (error != 0)
return (error);
/*
* If data will be transferred using a command buffer, allocate a
* buffer structure and queue it.
*/
if (nc->nc_data_len != 0 && !use_icd)
tc->cb = tcp_alloc_command_buffer(qp, nc->nc_data, 0,
nc->nc_data_len, cmd.ccsqe.cid, 0, !nc->nc_send_data);
return (0);
}
static int
tcp_transmit_response(struct nvmf_capsule *nc)
{
struct nvmf_tcp_qpair *qp = TQP(nc->nc_qpair);
struct nvme_tcp_rsp rsp;
memset(&rsp, 0, sizeof(rsp));
rsp.common.pdu_type = NVME_TCP_PDU_TYPE_CAPSULE_RESP;
rsp.rccqe = nc->nc_cqe;
return (nvmf_tcp_construct_pdu(qp, &rsp, sizeof(rsp), NULL, 0));
}
static int
tcp_transmit_capsule(struct nvmf_capsule *nc)
{
if (nc->nc_qe_len == sizeof(struct nvme_command))
return (tcp_transmit_command(nc));
else
return (tcp_transmit_response(nc));
}
static int
tcp_receive_capsule(struct nvmf_qpair *nq, struct nvmf_capsule **ncp)
{
struct nvmf_tcp_qpair *qp = TQP(nq);
struct nvmf_tcp_capsule *tc;
int error;
while (TAILQ_EMPTY(&qp->rx_capsules)) {
error = nvmf_tcp_receive_pdu(qp);
if (error != 0)
return (error);
}
tc = TAILQ_FIRST(&qp->rx_capsules);
TAILQ_REMOVE(&qp->rx_capsules, tc, link);
*ncp = &tc->nc;
return (0);
}
static uint8_t
tcp_validate_command_capsule(const struct nvmf_capsule *nc)
{
const struct nvmf_tcp_capsule *tc = CTCAP(nc);
const struct nvme_sgl_descriptor *sgl;
assert(tc->rx_pdu.hdr != NULL);
sgl = &nc->nc_sqe.sgl;
switch (sgl->type) {
case NVME_SGL_TYPE_ICD:
if (tc->rx_pdu.data_len != le32toh(sgl->length)) {
printf("NVMe/TCP: Command Capsule with mismatched ICD length\n");
return (NVME_SC_DATA_SGL_LENGTH_INVALID);
}
break;
case NVME_SGL_TYPE_COMMAND_BUFFER:
if (tc->rx_pdu.data_len != 0) {
printf("NVMe/TCP: Command Buffer SGL with ICD\n");
return (NVME_SC_INVALID_FIELD);
}
break;
default:
printf("NVMe/TCP: Invalid SGL type in Command Capsule\n");
return (NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID);
}
if (sgl->address != 0) {
printf("NVMe/TCP: Invalid SGL offset in Command Capsule\n");
return (NVME_SC_SGL_OFFSET_INVALID);
}
return (NVME_SC_SUCCESS);
}
static size_t
tcp_capsule_data_len(const struct nvmf_capsule *nc)
{
assert(nc->nc_qe_len == sizeof(struct nvme_command));
return (le32toh(nc->nc_sqe.sgl.length));
}
/* NB: cid and ttag are both little-endian already. */
static int
tcp_send_r2t(struct nvmf_tcp_qpair *qp, uint16_t cid, uint16_t ttag,
uint32_t data_offset, uint32_t data_len)
{
struct nvme_tcp_r2t_hdr r2t;
memset(&r2t, 0, sizeof(r2t));
r2t.common.pdu_type = NVME_TCP_PDU_TYPE_R2T;
r2t.cccid = cid;
r2t.ttag = ttag;
r2t.r2to = htole32(data_offset);
r2t.r2tl = htole32(data_len);
return (nvmf_tcp_construct_pdu(qp, &r2t, sizeof(r2t), NULL, 0));
}
static int
tcp_receive_r2t_data(const struct nvmf_capsule *nc, uint32_t data_offset,
void *buf, size_t len)
{
struct nvmf_tcp_qpair *qp = TQP(nc->nc_qpair);
struct nvmf_tcp_command_buffer *cb;
int error;
uint16_t ttag;
/*
* Don't bother byte-swapping ttag as it is just a cookie
* value returned by the other end as-is.
*/
ttag = qp->next_ttag++;
error = tcp_send_r2t(qp, nc->nc_sqe.cid, ttag, data_offset, len);
if (error != 0)
return (error);
cb = tcp_alloc_command_buffer(qp, buf, data_offset, len,
nc->nc_sqe.cid, ttag, true);
/* Parse received PDUs until the data transfer is complete. */
while (cb->data_xfered < cb->data_len) {
error = nvmf_tcp_receive_pdu(qp);
if (error != 0)
break;
}
tcp_free_command_buffer(cb);
return (error);
}
static int
tcp_receive_icd_data(const struct nvmf_capsule *nc, uint32_t data_offset,
void *buf, size_t len)
{
const struct nvmf_tcp_capsule *tc = CTCAP(nc);
const char *icd;
icd = (const char *)tc->rx_pdu.hdr + tc->rx_pdu.hdr->pdo + data_offset;
memcpy(buf, icd, len);
return (0);
}
static int
tcp_receive_controller_data(const struct nvmf_capsule *nc, uint32_t data_offset,
void *buf, size_t len)
{
struct nvmf_association *na = nc->nc_qpair->nq_association;
const struct nvme_sgl_descriptor *sgl;
size_t data_len;
if (nc->nc_qe_len != sizeof(struct nvme_command) || !na->na_controller)
return (EINVAL);
sgl = &nc->nc_sqe.sgl;
data_len = le32toh(sgl->length);
if (data_offset + len > data_len)
return (EFBIG);
if (sgl->type == NVME_SGL_TYPE_ICD)
return (tcp_receive_icd_data(nc, data_offset, buf, len));
else
return (tcp_receive_r2t_data(nc, data_offset, buf, len));
}
/* NB: cid is little-endian already. */
static int
tcp_send_c2h_pdu(struct nvmf_tcp_qpair *qp, uint16_t cid,
uint32_t data_offset, const void *buf, size_t len, bool last_pdu,
bool success)
{
struct nvme_tcp_c2h_data_hdr c2h;
memset(&c2h, 0, sizeof(c2h));
c2h.common.pdu_type = NVME_TCP_PDU_TYPE_C2H_DATA;
if (last_pdu)
c2h.common.flags |= NVME_TCP_C2H_DATA_FLAGS_LAST_PDU;
if (success)
c2h.common.flags |= NVME_TCP_C2H_DATA_FLAGS_SUCCESS;
c2h.cccid = cid;
c2h.datao = htole32(data_offset);
c2h.datal = htole32(len);
return (nvmf_tcp_construct_pdu(qp, &c2h, sizeof(c2h),
__DECONST(void *, buf), len));
}
static int
tcp_send_controller_data(const struct nvmf_capsule *nc, const void *buf,
size_t len)
{
struct nvmf_association *na = nc->nc_qpair->nq_association;
struct nvmf_tcp_qpair *qp = TQP(nc->nc_qpair);
const struct nvme_sgl_descriptor *sgl;
const char *src;
size_t todo;
uint32_t data_len, data_offset;
int error;
bool last_pdu, send_success_flag;
if (nc->nc_qe_len != sizeof(struct nvme_command) || !na->na_controller)
return (EINVAL);
sgl = &nc->nc_sqe.sgl;
data_len = le32toh(sgl->length);
if (len != data_len) {
nvmf_send_generic_error(nc, NVME_SC_INVALID_FIELD);
return (EFBIG);
}
if (sgl->type != NVME_SGL_TYPE_COMMAND_BUFFER) {
nvmf_send_generic_error(nc, NVME_SC_INVALID_FIELD);
return (EINVAL);
}
/* Use the SUCCESS flag if SQ flow control is disabled. */
send_success_flag = !qp->qp.nq_flow_control;
/*
* Write out one or more C2H_DATA PDUs containing the data.
* Each PDU is arbitrarily capped at 256k.
*/
data_offset = 0;
src = buf;
while (len > 0) {
if (len > 256 * 1024) {
todo = 256 * 1024;
last_pdu = false;
} else {
todo = len;
last_pdu = true;
}
error = tcp_send_c2h_pdu(qp, nc->nc_sqe.cid, data_offset,
src, todo, last_pdu, last_pdu && send_success_flag);
if (error != 0) {
nvmf_send_generic_error(nc,
NVME_SC_TRANSIENT_TRANSPORT_ERROR);
return (error);
}
data_offset += todo;
src += todo;
len -= todo;
}
if (!send_success_flag)
nvmf_send_success(nc);
return (0);
}
struct nvmf_transport_ops tcp_ops = {
.allocate_association = tcp_allocate_association,
.update_association = tcp_update_association,
.free_association = tcp_free_association,
.allocate_qpair = tcp_allocate_qpair,
.free_qpair = tcp_free_qpair,
.kernel_handoff_params = tcp_kernel_handoff_params,
.allocate_capsule = tcp_allocate_capsule,
.free_capsule = tcp_free_capsule,
.transmit_capsule = tcp_transmit_capsule,
.receive_capsule = tcp_receive_capsule,
.validate_command_capsule = tcp_validate_command_capsule,
.capsule_data_len = tcp_capsule_data_len,
.receive_controller_data = tcp_receive_controller_data,
.send_controller_data = tcp_send_controller_data,
};