1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-28 11:57:28 +00:00
freebsd/sys/netinet/udp_usrreq.c
Attilio Rao 54366c0bd7 - For kernel compiled only with KDTRACE_HOOKS and not any lock debugging
option, unbreak the lock tracing release semantic by embedding
  calls to LOCKSTAT_PROFILE_RELEASE_LOCK() direclty in the inlined
  version of the releasing functions for mutex, rwlock and sxlock.
  Failing to do so skips the lockstat_probe_func invokation for
  unlocking.
- As part of the LOCKSTAT support is inlined in mutex operation, for
  kernel compiled without lock debugging options, potentially every
  consumer must be compiled including opt_kdtrace.h.
  Fix this by moving KDTRACE_HOOKS into opt_global.h and remove the
  dependency by opt_kdtrace.h for all files, as now only KDTRACE_FRAMES
  is linked there and it is only used as a compile-time stub [0].

[0] immediately shows some new bug as DTRACE-derived support for debug
in sfxge is broken and it was never really tested.  As it was not
including correctly opt_kdtrace.h before it was never enabled so it
was kept broken for a while.  Fix this by using a protection stub,
leaving sfxge driver authors the responsibility for fixing it
appropriately [1].

Sponsored by:	EMC / Isilon storage division
Discussed with:	rstone
[0] Reported by:	rstone
[1] Discussed with:	philip
2013-11-25 07:38:45 +00:00

1636 lines
41 KiB
C

/*-
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California.
* Copyright (c) 2008 Robert N. M. Watson
* Copyright (c) 2010-2011 Juniper Networks, Inc.
* All rights reserved.
*
* Portions of this software were developed by Robert N. M. Watson under
* contract to Juniper Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ipfw.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ipsec.h"
#include <sys/param.h>
#include <sys/domain.h>
#include <sys/eventhandler.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/sdt.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <vm/uma.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_kdtrace.h>
#include <netinet/in_pcb.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#ifdef INET6
#include <netinet/ip6.h>
#endif
#include <netinet/ip_icmp.h>
#include <netinet/icmp_var.h>
#include <netinet/ip_var.h>
#include <netinet/ip_options.h>
#ifdef INET6
#include <netinet6/ip6_var.h>
#endif
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#ifdef IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/esp.h>
#endif
#include <machine/in_cksum.h>
#include <security/mac/mac_framework.h>
/*
* UDP protocol implementation.
* Per RFC 768, August, 1980.
*/
/*
* BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums
* removes the only data integrity mechanism for packets and malformed
* packets that would otherwise be discarded due to bad checksums, and may
* cause problems (especially for NFS data blocks).
*/
VNET_DEFINE(int, udp_cksum) = 1;
SYSCTL_VNET_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW,
&VNET_NAME(udp_cksum), 0, "compute udp checksum");
int udp_log_in_vain = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
&udp_log_in_vain, 0, "Log all incoming UDP packets");
VNET_DEFINE(int, udp_blackhole) = 0;
SYSCTL_VNET_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW,
&VNET_NAME(udp_blackhole), 0,
"Do not send port unreachables for refused connects");
u_long udp_sendspace = 9216; /* really max datagram size */
/* 40 1K datagrams */
SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
&udp_sendspace, 0, "Maximum outgoing UDP datagram size");
u_long udp_recvspace = 40 * (1024 +
#ifdef INET6
sizeof(struct sockaddr_in6)
#else
sizeof(struct sockaddr_in)
#endif
);
SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
&udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */
VNET_DEFINE(struct inpcbinfo, udbinfo);
static VNET_DEFINE(uma_zone_t, udpcb_zone);
#define V_udpcb_zone VNET(udpcb_zone)
#ifndef UDBHASHSIZE
#define UDBHASHSIZE 128
#endif
VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */
VNET_PCPUSTAT_SYSINIT(udpstat);
SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
#ifdef VIMAGE
VNET_PCPUSTAT_SYSUNINIT(udpstat);
#endif /* VIMAGE */
#ifdef INET
static void udp_detach(struct socket *so);
static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
struct mbuf *, struct thread *);
#endif
#ifdef IPSEC
#ifdef IPSEC_NAT_T
#define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP)
#ifdef INET
static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int);
#endif
#endif /* IPSEC_NAT_T */
#endif /* IPSEC */
static void
udp_zone_change(void *tag)
{
uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
uma_zone_set_max(V_udpcb_zone, maxsockets);
}
static int
udp_inpcb_init(void *mem, int size, int flags)
{
struct inpcb *inp;
inp = mem;
INP_LOCK_INIT(inp, "inp", "udpinp");
return (0);
}
void
udp_init(void)
{
in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
"udp_inpcb", udp_inpcb_init, NULL, UMA_ZONE_NOFREE,
IPI_HASHFIELDS_2TUPLE);
V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
uma_zone_set_max(V_udpcb_zone, maxsockets);
uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
EVENTHANDLER_PRI_ANY);
}
/*
* Kernel module interface for updating udpstat. The argument is an index
* into udpstat treated as an array of u_long. While this encodes the
* general layout of udpstat into the caller, it doesn't encode its location,
* so that future changes to add, for example, per-CPU stats support won't
* cause binary compatibility problems for kernel modules.
*/
void
kmod_udpstat_inc(int statnum)
{
counter_u64_add(VNET(udpstat)[statnum], 1);
}
int
udp_newudpcb(struct inpcb *inp)
{
struct udpcb *up;
up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
if (up == NULL)
return (ENOBUFS);
inp->inp_ppcb = up;
return (0);
}
void
udp_discardcb(struct udpcb *up)
{
uma_zfree(V_udpcb_zone, up);
}
#ifdef VIMAGE
void
udp_destroy(void)
{
in_pcbinfo_destroy(&V_udbinfo);
uma_zdestroy(V_udpcb_zone);
}
#endif
#ifdef INET
/*
* Subroutine of udp_input(), which appends the provided mbuf chain to the
* passed pcb/socket. The caller must provide a sockaddr_in via udp_in that
* contains the source address. If the socket ends up being an IPv6 socket,
* udp_append() will convert to a sockaddr_in6 before passing the address
* into the socket code.
*/
static void
udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
struct sockaddr_in *udp_in)
{
struct sockaddr *append_sa;
struct socket *so;
struct mbuf *opts = 0;
#ifdef INET6
struct sockaddr_in6 udp_in6;
#endif
struct udpcb *up;
INP_LOCK_ASSERT(inp);
/*
* Engage the tunneling protocol.
*/
up = intoudpcb(inp);
if (up->u_tun_func != NULL) {
(*up->u_tun_func)(n, off, inp);
return;
}
if (n == NULL)
return;
off += sizeof(struct udphdr);
#ifdef IPSEC
/* Check AH/ESP integrity. */
if (ipsec4_in_reject(n, inp)) {
m_freem(n);
IPSECSTAT_INC(ips_in_polvio);
return;
}
#ifdef IPSEC_NAT_T
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
if (up->u_flags & UF_ESPINUDP_ALL) { /* IPSec UDP encaps. */
n = udp4_espdecap(inp, n, off);
if (n == NULL) /* Consumed. */
return;
}
#endif /* IPSEC_NAT_T */
#endif /* IPSEC */
#ifdef MAC
if (mac_inpcb_check_deliver(inp, n) != 0) {
m_freem(n);
return;
}
#endif /* MAC */
if (inp->inp_flags & INP_CONTROLOPTS ||
inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
else
#endif /* INET6 */
ip_savecontrol(inp, &opts, ip, n);
}
#ifdef INET6
if (inp->inp_vflag & INP_IPV6) {
bzero(&udp_in6, sizeof(udp_in6));
udp_in6.sin6_len = sizeof(udp_in6);
udp_in6.sin6_family = AF_INET6;
in6_sin_2_v4mapsin6(udp_in, &udp_in6);
append_sa = (struct sockaddr *)&udp_in6;
} else
#endif /* INET6 */
append_sa = (struct sockaddr *)udp_in;
m_adj(n, off);
so = inp->inp_socket;
SOCKBUF_LOCK(&so->so_rcv);
if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
SOCKBUF_UNLOCK(&so->so_rcv);
m_freem(n);
if (opts)
m_freem(opts);
UDPSTAT_INC(udps_fullsock);
} else
sorwakeup_locked(so);
}
void
udp_input(struct mbuf *m, int off)
{
int iphlen = off;
struct ip *ip;
struct udphdr *uh;
struct ifnet *ifp;
struct inpcb *inp;
uint16_t len, ip_len;
struct ip save_ip;
struct sockaddr_in udp_in;
struct m_tag *fwd_tag;
ifp = m->m_pkthdr.rcvif;
UDPSTAT_INC(udps_ipackets);
/*
* Strip IP options, if any; should skip this, make available to
* user, and use on returned packets, but we don't yet have a way to
* check the checksum with options still present.
*/
if (iphlen > sizeof (struct ip)) {
ip_stripoptions(m);
iphlen = sizeof(struct ip);
}
/*
* Get IP and UDP header together in first mbuf.
*/
ip = mtod(m, struct ip *);
if (m->m_len < iphlen + sizeof(struct udphdr)) {
if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) {
UDPSTAT_INC(udps_hdrops);
return;
}
ip = mtod(m, struct ip *);
}
uh = (struct udphdr *)((caddr_t)ip + iphlen);
/*
* Destination port of 0 is illegal, based on RFC768.
*/
if (uh->uh_dport == 0)
goto badunlocked;
/*
* Construct sockaddr format source address. Stuff source address
* and datagram in user buffer.
*/
bzero(&udp_in, sizeof(udp_in));
udp_in.sin_len = sizeof(udp_in);
udp_in.sin_family = AF_INET;
udp_in.sin_port = uh->uh_sport;
udp_in.sin_addr = ip->ip_src;
/*
* Make mbuf data length reflect UDP length. If not enough data to
* reflect UDP length, drop.
*/
len = ntohs((u_short)uh->uh_ulen);
ip_len = ntohs(ip->ip_len) - iphlen;
if (ip_len != len) {
if (len > ip_len || len < sizeof(struct udphdr)) {
UDPSTAT_INC(udps_badlen);
goto badunlocked;
}
m_adj(m, len - ip_len);
}
/*
* Save a copy of the IP header in case we want restore it for
* sending an ICMP error message in response.
*/
if (!V_udp_blackhole)
save_ip = *ip;
else
memset(&save_ip, 0, sizeof(save_ip));
/*
* Checksum extended UDP header and data.
*/
if (uh->uh_sum) {
u_short uh_sum;
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
uh_sum = m->m_pkthdr.csum_data;
else
uh_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htonl((u_short)len +
m->m_pkthdr.csum_data + IPPROTO_UDP));
uh_sum ^= 0xffff;
} else {
char b[9];
bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
bzero(((struct ipovly *)ip)->ih_x1, 9);
((struct ipovly *)ip)->ih_len = uh->uh_ulen;
uh_sum = in_cksum(m, len + sizeof (struct ip));
bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
}
if (uh_sum) {
UDPSTAT_INC(udps_badsum);
m_freem(m);
return;
}
} else
UDPSTAT_INC(udps_nosum);
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
in_broadcast(ip->ip_dst, ifp)) {
struct inpcb *last;
struct ip_moptions *imo;
INP_INFO_RLOCK(&V_udbinfo);
last = NULL;
LIST_FOREACH(inp, &V_udb, inp_list) {
if (inp->inp_lport != uh->uh_dport)
continue;
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_laddr.s_addr != INADDR_ANY &&
inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
continue;
if (inp->inp_faddr.s_addr != INADDR_ANY &&
inp->inp_faddr.s_addr != ip->ip_src.s_addr)
continue;
if (inp->inp_fport != 0 &&
inp->inp_fport != uh->uh_sport)
continue;
INP_RLOCK(inp);
/*
* XXXRW: Because we weren't holding either the inpcb
* or the hash lock when we checked for a match
* before, we should probably recheck now that the
* inpcb lock is held.
*/
/*
* Handle socket delivery policy for any-source
* and source-specific multicast. [RFC3678]
*/
imo = inp->inp_moptions;
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
struct sockaddr_in group;
int blocked;
if (imo == NULL) {
INP_RUNLOCK(inp);
continue;
}
bzero(&group, sizeof(struct sockaddr_in));
group.sin_len = sizeof(struct sockaddr_in);
group.sin_family = AF_INET;
group.sin_addr = ip->ip_dst;
blocked = imo_multi_filter(imo, ifp,
(struct sockaddr *)&group,
(struct sockaddr *)&udp_in);
if (blocked != MCAST_PASS) {
if (blocked == MCAST_NOTGMEMBER)
IPSTAT_INC(ips_notmember);
if (blocked == MCAST_NOTSMEMBER ||
blocked == MCAST_MUTED)
UDPSTAT_INC(udps_filtermcast);
INP_RUNLOCK(inp);
continue;
}
}
if (last != NULL) {
struct mbuf *n;
n = m_copy(m, 0, M_COPYALL);
udp_append(last, ip, n, iphlen, &udp_in);
INP_RUNLOCK(last);
}
last = inp;
/*
* Don't look for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids
* searching through all pcbs in the common case of a
* non-shared port. It assumes that an application
* will never clear these options after setting them.
*/
if ((last->inp_socket->so_options &
(SO_REUSEPORT|SO_REUSEADDR)) == 0)
break;
}
if (last == NULL) {
/*
* No matching pcb found; discard datagram. (No need
* to send an ICMP Port Unreachable for a broadcast
* or multicast datgram.)
*/
UDPSTAT_INC(udps_noportbcast);
if (inp)
INP_RUNLOCK(inp);
INP_INFO_RUNLOCK(&V_udbinfo);
goto badunlocked;
}
udp_append(last, ip, m, iphlen, &udp_in);
INP_RUNLOCK(last);
INP_INFO_RUNLOCK(&V_udbinfo);
return;
}
/*
* Locate pcb for datagram.
*/
/*
* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
*/
if ((m->m_flags & M_IP_NEXTHOP) &&
(fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
struct sockaddr_in *next_hop;
next_hop = (struct sockaddr_in *)(fwd_tag + 1);
/*
* Transparently forwarded. Pretend to be the destination.
* Already got one like this?
*/
inp = in_pcblookup_mbuf(&V_udbinfo, ip->ip_src, uh->uh_sport,
ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
if (!inp) {
/*
* It's new. Try to find the ambushing socket.
* Because we've rewritten the destination address,
* any hardware-generated hash is ignored.
*/
inp = in_pcblookup(&V_udbinfo, ip->ip_src,
uh->uh_sport, next_hop->sin_addr,
next_hop->sin_port ? htons(next_hop->sin_port) :
uh->uh_dport, INPLOOKUP_WILDCARD |
INPLOOKUP_RLOCKPCB, ifp);
}
/* Remove the tag from the packet. We don't need it anymore. */
m_tag_delete(m, fwd_tag);
m->m_flags &= ~M_IP_NEXTHOP;
} else
inp = in_pcblookup_mbuf(&V_udbinfo, ip->ip_src, uh->uh_sport,
ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
INPLOOKUP_RLOCKPCB, ifp, m);
if (inp == NULL) {
if (udp_log_in_vain) {
char buf[4*sizeof "123"];
strcpy(buf, inet_ntoa(ip->ip_dst));
log(LOG_INFO,
"Connection attempt to UDP %s:%d from %s:%d\n",
buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
ntohs(uh->uh_sport));
}
UDPSTAT_INC(udps_noport);
if (m->m_flags & (M_BCAST | M_MCAST)) {
UDPSTAT_INC(udps_noportbcast);
goto badunlocked;
}
if (V_udp_blackhole)
goto badunlocked;
if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
goto badunlocked;
*ip = save_ip;
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
return;
}
/*
* Check the minimum TTL for socket.
*/
INP_RLOCK_ASSERT(inp);
if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
INP_RUNLOCK(inp);
m_freem(m);
return;
}
UDP_PROBE(receive, NULL, inp, ip, inp, uh);
udp_append(inp, ip, m, iphlen, &udp_in);
INP_RUNLOCK(inp);
return;
badunlocked:
m_freem(m);
}
#endif /* INET */
/*
* Notify a udp user of an asynchronous error; just wake up so that they can
* collect error status.
*/
struct inpcb *
udp_notify(struct inpcb *inp, int errno)
{
/*
* While udp_ctlinput() always calls udp_notify() with a read lock
* when invoking it directly, in_pcbnotifyall() currently uses write
* locks due to sharing code with TCP. For now, accept either a read
* or a write lock, but a read lock is sufficient.
*/
INP_LOCK_ASSERT(inp);
inp->inp_socket->so_error = errno;
sorwakeup(inp->inp_socket);
sowwakeup(inp->inp_socket);
return (inp);
}
#ifdef INET
void
udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
{
struct ip *ip = vip;
struct udphdr *uh;
struct in_addr faddr;
struct inpcb *inp;
faddr = ((struct sockaddr_in *)sa)->sin_addr;
if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
return;
/*
* Redirects don't need to be handled up here.
*/
if (PRC_IS_REDIRECT(cmd))
return;
/*
* Hostdead is ugly because it goes linearly through all PCBs.
*
* XXX: We never get this from ICMP, otherwise it makes an excellent
* DoS attack on machines with many connections.
*/
if (cmd == PRC_HOSTDEAD)
ip = NULL;
else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
return;
if (ip != NULL) {
uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
inp = in_pcblookup(&V_udbinfo, faddr, uh->uh_dport,
ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
if (inp != NULL) {
INP_RLOCK_ASSERT(inp);
if (inp->inp_socket != NULL) {
udp_notify(inp, inetctlerrmap[cmd]);
}
INP_RUNLOCK(inp);
}
} else
in_pcbnotifyall(&V_udbinfo, faddr, inetctlerrmap[cmd],
udp_notify);
}
#endif /* INET */
static int
udp_pcblist(SYSCTL_HANDLER_ARGS)
{
int error, i, n;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the PCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
if (req->oldptr == 0) {
n = V_udbinfo.ipi_count;
n += imax(n / 8, 10);
req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
return (0);
}
if (req->newptr != 0)
return (EPERM);
/*
* OK, now we're committed to doing something.
*/
INP_INFO_RLOCK(&V_udbinfo);
gencnt = V_udbinfo.ipi_gencnt;
n = V_udbinfo.ipi_count;
INP_INFO_RUNLOCK(&V_udbinfo);
error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
+ n * sizeof(struct xinpcb));
if (error != 0)
return (error);
xig.xig_len = sizeof xig;
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error)
return (error);
inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
if (inp_list == 0)
return (ENOMEM);
INP_INFO_RLOCK(&V_udbinfo);
for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
inp = LIST_NEXT(inp, inp_list)) {
INP_WLOCK(inp);
if (inp->inp_gencnt <= gencnt &&
cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
in_pcbref(inp);
inp_list[i++] = inp;
}
INP_WUNLOCK(inp);
}
INP_INFO_RUNLOCK(&V_udbinfo);
n = i;
error = 0;
for (i = 0; i < n; i++) {
inp = inp_list[i];
INP_RLOCK(inp);
if (inp->inp_gencnt <= gencnt) {
struct xinpcb xi;
bzero(&xi, sizeof(xi));
xi.xi_len = sizeof xi;
/* XXX should avoid extra copy */
bcopy(inp, &xi.xi_inp, sizeof *inp);
if (inp->inp_socket)
sotoxsocket(inp->inp_socket, &xi.xi_socket);
xi.xi_inp.inp_gencnt = inp->inp_gencnt;
INP_RUNLOCK(inp);
error = SYSCTL_OUT(req, &xi, sizeof xi);
} else
INP_RUNLOCK(inp);
}
INP_INFO_WLOCK(&V_udbinfo);
for (i = 0; i < n; i++) {
inp = inp_list[i];
INP_RLOCK(inp);
if (!in_pcbrele_rlocked(inp))
INP_RUNLOCK(inp);
}
INP_INFO_WUNLOCK(&V_udbinfo);
if (!error) {
/*
* Give the user an updated idea of our state. If the
* generation differs from what we told her before, she knows
* that something happened while we were processing this
* request, and it might be necessary to retry.
*/
INP_INFO_RLOCK(&V_udbinfo);
xig.xig_gen = V_udbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = V_udbinfo.ipi_count;
INP_INFO_RUNLOCK(&V_udbinfo);
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
free(inp_list, M_TEMP);
return (error);
}
SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
udp_pcblist, "S,xinpcb", "List of active UDP sockets");
#ifdef INET
static int
udp_getcred(SYSCTL_HANDLER_ARGS)
{
struct xucred xuc;
struct sockaddr_in addrs[2];
struct inpcb *inp;
int error;
error = priv_check(req->td, PRIV_NETINET_GETCRED);
if (error)
return (error);
error = SYSCTL_IN(req, addrs, sizeof(addrs));
if (error)
return (error);
inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
addrs[0].sin_addr, addrs[0].sin_port,
INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
if (inp != NULL) {
INP_RLOCK_ASSERT(inp);
if (inp->inp_socket == NULL)
error = ENOENT;
if (error == 0)
error = cr_canseeinpcb(req->td->td_ucred, inp);
if (error == 0)
cru2x(inp->inp_cred, &xuc);
INP_RUNLOCK(inp);
} else
error = ENOENT;
if (error == 0)
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
return (error);
}
SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
#endif /* INET */
int
udp_ctloutput(struct socket *so, struct sockopt *sopt)
{
int error = 0, optval;
struct inpcb *inp;
#ifdef IPSEC_NAT_T
struct udpcb *up;
#endif
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
INP_WLOCK(inp);
if (sopt->sopt_level != IPPROTO_UDP) {
#ifdef INET6
if (INP_CHECK_SOCKAF(so, AF_INET6)) {
INP_WUNLOCK(inp);
error = ip6_ctloutput(so, sopt);
}
#endif
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
{
INP_WUNLOCK(inp);
error = ip_ctloutput(so, sopt);
}
#endif
return (error);
}
switch (sopt->sopt_dir) {
case SOPT_SET:
switch (sopt->sopt_name) {
case UDP_ENCAP:
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
break;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
INP_WLOCK(inp);
#ifdef IPSEC_NAT_T
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: up == NULL", __func__));
#endif
switch (optval) {
case 0:
/* Clear all UDP encap. */
#ifdef IPSEC_NAT_T
up->u_flags &= ~UF_ESPINUDP_ALL;
#endif
break;
#ifdef IPSEC_NAT_T
case UDP_ENCAP_ESPINUDP:
case UDP_ENCAP_ESPINUDP_NON_IKE:
up->u_flags &= ~UF_ESPINUDP_ALL;
if (optval == UDP_ENCAP_ESPINUDP)
up->u_flags |= UF_ESPINUDP;
else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE)
up->u_flags |= UF_ESPINUDP_NON_IKE;
break;
#endif
default:
error = EINVAL;
break;
}
INP_WUNLOCK(inp);
break;
default:
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
break;
case SOPT_GET:
switch (sopt->sopt_name) {
#ifdef IPSEC_NAT_T
case UDP_ENCAP:
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: up == NULL", __func__));
optval = up->u_flags & UF_ESPINUDP_ALL;
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
#endif
default:
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
break;
}
return (error);
}
#ifdef INET
#define UH_WLOCKED 2
#define UH_RLOCKED 1
#define UH_UNLOCKED 0
static int
udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct thread *td)
{
struct udpiphdr *ui;
int len = m->m_pkthdr.len;
struct in_addr faddr, laddr;
struct cmsghdr *cm;
struct sockaddr_in *sin, src;
int error = 0;
int ipflags;
u_short fport, lport;
int unlock_udbinfo;
u_char tos;
/*
* udp_output() may need to temporarily bind or connect the current
* inpcb. As such, we don't know up front whether we will need the
* pcbinfo lock or not. Do any work to decide what is needed up
* front before acquiring any locks.
*/
if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
if (control)
m_freem(control);
m_freem(m);
return (EMSGSIZE);
}
src.sin_family = 0;
INP_RLOCK(inp);
tos = inp->inp_ip_tos;
if (control != NULL) {
/*
* XXX: Currently, we assume all the optional information is
* stored in a single mbuf.
*/
if (control->m_next) {
INP_RUNLOCK(inp);
m_freem(control);
m_freem(m);
return (EINVAL);
}
for (; control->m_len > 0;
control->m_data += CMSG_ALIGN(cm->cmsg_len),
control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
cm = mtod(control, struct cmsghdr *);
if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
|| cm->cmsg_len > control->m_len) {
error = EINVAL;
break;
}
if (cm->cmsg_level != IPPROTO_IP)
continue;
switch (cm->cmsg_type) {
case IP_SENDSRCADDR:
if (cm->cmsg_len !=
CMSG_LEN(sizeof(struct in_addr))) {
error = EINVAL;
break;
}
bzero(&src, sizeof(src));
src.sin_family = AF_INET;
src.sin_len = sizeof(src);
src.sin_port = inp->inp_lport;
src.sin_addr =
*(struct in_addr *)CMSG_DATA(cm);
break;
case IP_TOS:
if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
error = EINVAL;
break;
}
tos = *(u_char *)CMSG_DATA(cm);
break;
default:
error = ENOPROTOOPT;
break;
}
if (error)
break;
}
m_freem(control);
}
if (error) {
INP_RUNLOCK(inp);
m_freem(m);
return (error);
}
/*
* Depending on whether or not the application has bound or connected
* the socket, we may have to do varying levels of work. The optimal
* case is for a connected UDP socket, as a global lock isn't
* required at all.
*
* In order to decide which we need, we require stability of the
* inpcb binding, which we ensure by acquiring a read lock on the
* inpcb. This doesn't strictly follow the lock order, so we play
* the trylock and retry game; note that we may end up with more
* conservative locks than required the second time around, so later
* assertions have to accept that. Further analysis of the number of
* misses under contention is required.
*
* XXXRW: Check that hash locking update here is correct.
*/
sin = (struct sockaddr_in *)addr;
if (sin != NULL &&
(inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
INP_RUNLOCK(inp);
INP_WLOCK(inp);
INP_HASH_WLOCK(&V_udbinfo);
unlock_udbinfo = UH_WLOCKED;
} else if ((sin != NULL && (
(sin->sin_addr.s_addr == INADDR_ANY) ||
(sin->sin_addr.s_addr == INADDR_BROADCAST) ||
(inp->inp_laddr.s_addr == INADDR_ANY) ||
(inp->inp_lport == 0))) ||
(src.sin_family == AF_INET)) {
INP_HASH_RLOCK(&V_udbinfo);
unlock_udbinfo = UH_RLOCKED;
} else
unlock_udbinfo = UH_UNLOCKED;
/*
* If the IP_SENDSRCADDR control message was specified, override the
* source address for this datagram. Its use is invalidated if the
* address thus specified is incomplete or clobbers other inpcbs.
*/
laddr = inp->inp_laddr;
lport = inp->inp_lport;
if (src.sin_family == AF_INET) {
INP_HASH_LOCK_ASSERT(&V_udbinfo);
if ((lport == 0) ||
(laddr.s_addr == INADDR_ANY &&
src.sin_addr.s_addr == INADDR_ANY)) {
error = EINVAL;
goto release;
}
error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
&laddr.s_addr, &lport, td->td_ucred);
if (error)
goto release;
}
/*
* If a UDP socket has been connected, then a local address/port will
* have been selected and bound.
*
* If a UDP socket has not been connected to, then an explicit
* destination address must be used, in which case a local
* address/port may not have been selected and bound.
*/
if (sin != NULL) {
INP_LOCK_ASSERT(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
error = EISCONN;
goto release;
}
/*
* Jail may rewrite the destination address, so let it do
* that before we use it.
*/
error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
if (error)
goto release;
/*
* If a local address or port hasn't yet been selected, or if
* the destination address needs to be rewritten due to using
* a special INADDR_ constant, invoke in_pcbconnect_setup()
* to do the heavy lifting. Once a port is selected, we
* commit the binding back to the socket; we also commit the
* binding of the address if in jail.
*
* If we already have a valid binding and we're not
* requesting a destination address rewrite, use a fast path.
*/
if (inp->inp_laddr.s_addr == INADDR_ANY ||
inp->inp_lport == 0 ||
sin->sin_addr.s_addr == INADDR_ANY ||
sin->sin_addr.s_addr == INADDR_BROADCAST) {
INP_HASH_LOCK_ASSERT(&V_udbinfo);
error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
&lport, &faddr.s_addr, &fport, NULL,
td->td_ucred);
if (error)
goto release;
/*
* XXXRW: Why not commit the port if the address is
* !INADDR_ANY?
*/
/* Commit the local port if newly assigned. */
if (inp->inp_laddr.s_addr == INADDR_ANY &&
inp->inp_lport == 0) {
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK_ASSERT(&V_udbinfo);
/*
* Remember addr if jailed, to prevent
* rebinding.
*/
if (prison_flag(td->td_ucred, PR_IP4))
inp->inp_laddr = laddr;
inp->inp_lport = lport;
if (in_pcbinshash(inp) != 0) {
inp->inp_lport = 0;
error = EAGAIN;
goto release;
}
inp->inp_flags |= INP_ANONPORT;
}
} else {
faddr = sin->sin_addr;
fport = sin->sin_port;
}
} else {
INP_LOCK_ASSERT(inp);
faddr = inp->inp_faddr;
fport = inp->inp_fport;
if (faddr.s_addr == INADDR_ANY) {
error = ENOTCONN;
goto release;
}
}
/*
* Calculate data length and get a mbuf for UDP, IP, and possible
* link-layer headers. Immediate slide the data pointer back forward
* since we won't use that space at this layer.
*/
M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
if (m == NULL) {
error = ENOBUFS;
goto release;
}
m->m_data += max_linkhdr;
m->m_len -= max_linkhdr;
m->m_pkthdr.len -= max_linkhdr;
/*
* Fill in mbuf with extended UDP header and addresses and length put
* into network format.
*/
ui = mtod(m, struct udpiphdr *);
bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */
ui->ui_v = IPVERSION << 4;
ui->ui_pr = IPPROTO_UDP;
ui->ui_src = laddr;
ui->ui_dst = faddr;
ui->ui_sport = lport;
ui->ui_dport = fport;
ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
/*
* Set the Don't Fragment bit in the IP header.
*/
if (inp->inp_flags & INP_DONTFRAG) {
struct ip *ip;
ip = (struct ip *)&ui->ui_i;
ip->ip_off |= htons(IP_DF);
}
ipflags = 0;
if (inp->inp_socket->so_options & SO_DONTROUTE)
ipflags |= IP_ROUTETOIF;
if (inp->inp_socket->so_options & SO_BROADCAST)
ipflags |= IP_ALLOWBROADCAST;
if (inp->inp_flags & INP_ONESBCAST)
ipflags |= IP_SENDONES;
#ifdef MAC
mac_inpcb_create_mbuf(inp, m);
#endif
/*
* Set up checksum and output datagram.
*/
if (V_udp_cksum) {
if (inp->inp_flags & INP_ONESBCAST)
faddr.s_addr = INADDR_BROADCAST;
ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP));
m->m_pkthdr.csum_flags = CSUM_UDP;
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
} else
ui->ui_sum = 0;
((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */
((struct ip *)ui)->ip_tos = tos; /* XXX */
UDPSTAT_INC(udps_opackets);
if (unlock_udbinfo == UH_WLOCKED)
INP_HASH_WUNLOCK(&V_udbinfo);
else if (unlock_udbinfo == UH_RLOCKED)
INP_HASH_RUNLOCK(&V_udbinfo);
UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
error = ip_output(m, inp->inp_options, NULL, ipflags,
inp->inp_moptions, inp);
if (unlock_udbinfo == UH_WLOCKED)
INP_WUNLOCK(inp);
else
INP_RUNLOCK(inp);
return (error);
release:
if (unlock_udbinfo == UH_WLOCKED) {
INP_HASH_WUNLOCK(&V_udbinfo);
INP_WUNLOCK(inp);
} else if (unlock_udbinfo == UH_RLOCKED) {
INP_HASH_RUNLOCK(&V_udbinfo);
INP_RUNLOCK(inp);
} else
INP_RUNLOCK(inp);
m_freem(m);
return (error);
}
#if defined(IPSEC) && defined(IPSEC_NAT_T)
/*
* Potentially decap ESP in UDP frame. Check for an ESP header
* and optional marker; if present, strip the UDP header and
* push the result through IPSec.
*
* Returns mbuf to be processed (potentially re-allocated) or
* NULL if consumed and/or processed.
*/
static struct mbuf *
udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off)
{
size_t minlen, payload, skip, iphlen;
caddr_t data;
struct udpcb *up;
struct m_tag *tag;
struct udphdr *udphdr;
struct ip *ip;
INP_RLOCK_ASSERT(inp);
/*
* Pull up data so the longest case is contiguous:
* IP/UDP hdr + non ESP marker + ESP hdr.
*/
minlen = off + sizeof(uint64_t) + sizeof(struct esp);
if (minlen > m->m_pkthdr.len)
minlen = m->m_pkthdr.len;
if ((m = m_pullup(m, minlen)) == NULL) {
IPSECSTAT_INC(ips_in_inval);
return (NULL); /* Bypass caller processing. */
}
data = mtod(m, caddr_t); /* Points to ip header. */
payload = m->m_len - off; /* Size of payload. */
if (payload == 1 && data[off] == '\xff')
return (m); /* NB: keepalive packet, no decap. */
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0,
("u_flags 0x%x", up->u_flags));
/*
* Check that the payload is large enough to hold an
* ESP header and compute the amount of data to remove.
*
* NB: the caller has already done a pullup for us.
* XXX can we assume alignment and eliminate bcopys?
*/
if (up->u_flags & UF_ESPINUDP_NON_IKE) {
/*
* draft-ietf-ipsec-nat-t-ike-0[01].txt and
* draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring
* possible AH mode non-IKE marker+non-ESP marker
* from draft-ietf-ipsec-udp-encaps-00.txt.
*/
uint64_t marker;
if (payload <= sizeof(uint64_t) + sizeof(struct esp))
return (m); /* NB: no decap. */
bcopy(data + off, &marker, sizeof(uint64_t));
if (marker != 0) /* Non-IKE marker. */
return (m); /* NB: no decap. */
skip = sizeof(uint64_t) + sizeof(struct udphdr);
} else {
uint32_t spi;
if (payload <= sizeof(struct esp)) {
IPSECSTAT_INC(ips_in_inval);
m_freem(m);
return (NULL); /* Discard. */
}
bcopy(data + off, &spi, sizeof(uint32_t));
if (spi == 0) /* Non-ESP marker. */
return (m); /* NB: no decap. */
skip = sizeof(struct udphdr);
}
/*
* Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
* the UDP ports. This is required if we want to select
* the right SPD for multiple hosts behind same NAT.
*
* NB: ports are maintained in network byte order everywhere
* in the NAT-T code.
*/
tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
2 * sizeof(uint16_t), M_NOWAIT);
if (tag == NULL) {
IPSECSTAT_INC(ips_in_nomem);
m_freem(m);
return (NULL); /* Discard. */
}
iphlen = off - sizeof(struct udphdr);
udphdr = (struct udphdr *)(data + iphlen);
((uint16_t *)(tag + 1))[0] = udphdr->uh_sport;
((uint16_t *)(tag + 1))[1] = udphdr->uh_dport;
m_tag_prepend(m, tag);
/*
* Remove the UDP header (and possibly the non ESP marker)
* IP header length is iphlen
* Before:
* <--- off --->
* +----+------+-----+
* | IP | UDP | ESP |
* +----+------+-----+
* <-skip->
* After:
* +----+-----+
* | IP | ESP |
* +----+-----+
* <-skip->
*/
ovbcopy(data, data + skip, iphlen);
m_adj(m, skip);
ip = mtod(m, struct ip *);
ip->ip_len = htons(ntohs(ip->ip_len) - skip);
ip->ip_p = IPPROTO_ESP;
/*
* We cannot yet update the cksums so clear any
* h/w cksum flags as they are no longer valid.
*/
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)
m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
(void) ipsec4_common_input(m, iphlen, ip->ip_p);
return (NULL); /* NB: consumed, bypass processing. */
}
#endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */
static void
udp_abort(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
INP_HASH_WLOCK(&V_udbinfo);
in_pcbdisconnect(inp);
inp->inp_laddr.s_addr = INADDR_ANY;
INP_HASH_WUNLOCK(&V_udbinfo);
soisdisconnected(so);
}
INP_WUNLOCK(inp);
}
static int
udp_attach(struct socket *so, int proto, struct thread *td)
{
struct inpcb *inp;
int error;
inp = sotoinpcb(so);
KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
error = soreserve(so, udp_sendspace, udp_recvspace);
if (error)
return (error);
INP_INFO_WLOCK(&V_udbinfo);
error = in_pcballoc(so, &V_udbinfo);
if (error) {
INP_INFO_WUNLOCK(&V_udbinfo);
return (error);
}
inp = sotoinpcb(so);
inp->inp_vflag |= INP_IPV4;
inp->inp_ip_ttl = V_ip_defttl;
error = udp_newudpcb(inp);
if (error) {
in_pcbdetach(inp);
in_pcbfree(inp);
INP_INFO_WUNLOCK(&V_udbinfo);
return (error);
}
INP_WUNLOCK(inp);
INP_INFO_WUNLOCK(&V_udbinfo);
return (0);
}
#endif /* INET */
int
udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f)
{
struct inpcb *inp;
struct udpcb *up;
KASSERT(so->so_type == SOCK_DGRAM,
("udp_set_kernel_tunneling: !dgram"));
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
INP_WLOCK(inp);
up = intoudpcb(inp);
if (up->u_tun_func != NULL) {
INP_WUNLOCK(inp);
return (EBUSY);
}
up->u_tun_func = f;
INP_WUNLOCK(inp);
return (0);
}
#ifdef INET
static int
udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct inpcb *inp;
int error;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
INP_WLOCK(inp);
INP_HASH_WLOCK(&V_udbinfo);
error = in_pcbbind(inp, nam, td->td_ucred);
INP_HASH_WUNLOCK(&V_udbinfo);
INP_WUNLOCK(inp);
return (error);
}
static void
udp_close(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_close: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
INP_HASH_WLOCK(&V_udbinfo);
in_pcbdisconnect(inp);
inp->inp_laddr.s_addr = INADDR_ANY;
INP_HASH_WUNLOCK(&V_udbinfo);
soisdisconnected(so);
}
INP_WUNLOCK(inp);
}
static int
udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct inpcb *inp;
int error;
struct sockaddr_in *sin;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
INP_WUNLOCK(inp);
return (EISCONN);
}
sin = (struct sockaddr_in *)nam;
error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
if (error != 0) {
INP_WUNLOCK(inp);
return (error);
}
INP_HASH_WLOCK(&V_udbinfo);
error = in_pcbconnect(inp, nam, td->td_ucred);
INP_HASH_WUNLOCK(&V_udbinfo);
if (error == 0)
soisconnected(so);
INP_WUNLOCK(inp);
return (error);
}
static void
udp_detach(struct socket *so)
{
struct inpcb *inp;
struct udpcb *up;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
("udp_detach: not disconnected"));
INP_INFO_WLOCK(&V_udbinfo);
INP_WLOCK(inp);
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: up == NULL", __func__));
inp->inp_ppcb = NULL;
in_pcbdetach(inp);
in_pcbfree(inp);
INP_INFO_WUNLOCK(&V_udbinfo);
udp_discardcb(up);
}
static int
udp_disconnect(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr == INADDR_ANY) {
INP_WUNLOCK(inp);
return (ENOTCONN);
}
INP_HASH_WLOCK(&V_udbinfo);
in_pcbdisconnect(inp);
inp->inp_laddr.s_addr = INADDR_ANY;
INP_HASH_WUNLOCK(&V_udbinfo);
SOCK_LOCK(so);
so->so_state &= ~SS_ISCONNECTED; /* XXX */
SOCK_UNLOCK(so);
INP_WUNLOCK(inp);
return (0);
}
static int
udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct thread *td)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_send: inp == NULL"));
return (udp_output(inp, m, addr, control, td));
}
#endif /* INET */
int
udp_shutdown(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
INP_WLOCK(inp);
socantsendmore(so);
INP_WUNLOCK(inp);
return (0);
}
#ifdef INET
struct pr_usrreqs udp_usrreqs = {
.pru_abort = udp_abort,
.pru_attach = udp_attach,
.pru_bind = udp_bind,
.pru_connect = udp_connect,
.pru_control = in_control,
.pru_detach = udp_detach,
.pru_disconnect = udp_disconnect,
.pru_peeraddr = in_getpeeraddr,
.pru_send = udp_send,
.pru_soreceive = soreceive_dgram,
.pru_sosend = sosend_dgram,
.pru_shutdown = udp_shutdown,
.pru_sockaddr = in_getsockaddr,
.pru_sosetlabel = in_pcbsosetlabel,
.pru_close = udp_close,
};
#endif /* INET */