mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-07 13:14:51 +00:00
f7f7b759f6
This is to silence warnings that result from different definitions of uint64_t on different architectures, specifically i386 and sparc64. MFC after: 1 month
2024 lines
44 KiB
C
2024 lines
44 KiB
C
/*-
|
|
* Copyright (c) 2007 Doug Rabson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Stand-alone ZFS file reader.
|
|
*/
|
|
|
|
#include <sys/stat.h>
|
|
#include <sys/stdint.h>
|
|
|
|
#include "zfsimpl.h"
|
|
#include "zfssubr.c"
|
|
|
|
|
|
struct zfsmount {
|
|
spa_t *spa;
|
|
objset_phys_t objset;
|
|
uint64_t rootobj;
|
|
};
|
|
|
|
/*
|
|
* List of all vdevs, chained through v_alllink.
|
|
*/
|
|
static vdev_list_t zfs_vdevs;
|
|
|
|
/*
|
|
* List of all pools, chained through spa_link.
|
|
*/
|
|
static spa_list_t zfs_pools;
|
|
|
|
static uint64_t zfs_crc64_table[256];
|
|
static const dnode_phys_t *dnode_cache_obj = 0;
|
|
static uint64_t dnode_cache_bn;
|
|
static char *dnode_cache_buf;
|
|
static char *zap_scratch;
|
|
static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr;
|
|
|
|
#define TEMP_SIZE (1024 * 1024)
|
|
|
|
static int zio_read(spa_t *spa, const blkptr_t *bp, void *buf);
|
|
|
|
static void
|
|
zfs_init(void)
|
|
{
|
|
STAILQ_INIT(&zfs_vdevs);
|
|
STAILQ_INIT(&zfs_pools);
|
|
|
|
zfs_temp_buf = malloc(TEMP_SIZE);
|
|
zfs_temp_end = zfs_temp_buf + TEMP_SIZE;
|
|
zfs_temp_ptr = zfs_temp_buf;
|
|
dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
|
|
zap_scratch = malloc(SPA_MAXBLOCKSIZE);
|
|
|
|
zfs_init_crc();
|
|
}
|
|
|
|
static void *
|
|
zfs_alloc(size_t size)
|
|
{
|
|
char *ptr;
|
|
|
|
if (zfs_temp_ptr + size > zfs_temp_end) {
|
|
printf("ZFS: out of temporary buffer space\n");
|
|
for (;;) ;
|
|
}
|
|
ptr = zfs_temp_ptr;
|
|
zfs_temp_ptr += size;
|
|
|
|
return (ptr);
|
|
}
|
|
|
|
static void
|
|
zfs_free(void *ptr, size_t size)
|
|
{
|
|
|
|
zfs_temp_ptr -= size;
|
|
if (zfs_temp_ptr != ptr) {
|
|
printf("ZFS: zfs_alloc()/zfs_free() mismatch\n");
|
|
for (;;) ;
|
|
}
|
|
}
|
|
|
|
static int
|
|
xdr_int(const unsigned char **xdr, int *ip)
|
|
{
|
|
*ip = ((*xdr)[0] << 24)
|
|
| ((*xdr)[1] << 16)
|
|
| ((*xdr)[2] << 8)
|
|
| ((*xdr)[3] << 0);
|
|
(*xdr) += 4;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
xdr_u_int(const unsigned char **xdr, u_int *ip)
|
|
{
|
|
*ip = ((*xdr)[0] << 24)
|
|
| ((*xdr)[1] << 16)
|
|
| ((*xdr)[2] << 8)
|
|
| ((*xdr)[3] << 0);
|
|
(*xdr) += 4;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
xdr_uint64_t(const unsigned char **xdr, uint64_t *lp)
|
|
{
|
|
u_int hi, lo;
|
|
|
|
xdr_u_int(xdr, &hi);
|
|
xdr_u_int(xdr, &lo);
|
|
*lp = (((uint64_t) hi) << 32) | lo;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nvlist_find(const unsigned char *nvlist, const char *name, int type,
|
|
int* elementsp, void *valuep)
|
|
{
|
|
const unsigned char *p, *pair;
|
|
int junk;
|
|
int encoded_size, decoded_size;
|
|
|
|
p = nvlist;
|
|
xdr_int(&p, &junk);
|
|
xdr_int(&p, &junk);
|
|
|
|
pair = p;
|
|
xdr_int(&p, &encoded_size);
|
|
xdr_int(&p, &decoded_size);
|
|
while (encoded_size && decoded_size) {
|
|
int namelen, pairtype, elements;
|
|
const char *pairname;
|
|
|
|
xdr_int(&p, &namelen);
|
|
pairname = (const char*) p;
|
|
p += roundup(namelen, 4);
|
|
xdr_int(&p, &pairtype);
|
|
|
|
if (!memcmp(name, pairname, namelen) && type == pairtype) {
|
|
xdr_int(&p, &elements);
|
|
if (elementsp)
|
|
*elementsp = elements;
|
|
if (type == DATA_TYPE_UINT64) {
|
|
xdr_uint64_t(&p, (uint64_t *) valuep);
|
|
return (0);
|
|
} else if (type == DATA_TYPE_STRING) {
|
|
int len;
|
|
xdr_int(&p, &len);
|
|
(*(const char**) valuep) = (const char*) p;
|
|
return (0);
|
|
} else if (type == DATA_TYPE_NVLIST
|
|
|| type == DATA_TYPE_NVLIST_ARRAY) {
|
|
(*(const unsigned char**) valuep) =
|
|
(const unsigned char*) p;
|
|
return (0);
|
|
} else {
|
|
return (EIO);
|
|
}
|
|
} else {
|
|
/*
|
|
* Not the pair we are looking for, skip to the next one.
|
|
*/
|
|
p = pair + encoded_size;
|
|
}
|
|
|
|
pair = p;
|
|
xdr_int(&p, &encoded_size);
|
|
xdr_int(&p, &decoded_size);
|
|
}
|
|
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* Return the next nvlist in an nvlist array.
|
|
*/
|
|
static const unsigned char *
|
|
nvlist_next(const unsigned char *nvlist)
|
|
{
|
|
const unsigned char *p, *pair;
|
|
int junk;
|
|
int encoded_size, decoded_size;
|
|
|
|
p = nvlist;
|
|
xdr_int(&p, &junk);
|
|
xdr_int(&p, &junk);
|
|
|
|
pair = p;
|
|
xdr_int(&p, &encoded_size);
|
|
xdr_int(&p, &decoded_size);
|
|
while (encoded_size && decoded_size) {
|
|
p = pair + encoded_size;
|
|
|
|
pair = p;
|
|
xdr_int(&p, &encoded_size);
|
|
xdr_int(&p, &decoded_size);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
#ifdef TEST
|
|
|
|
static const unsigned char *
|
|
nvlist_print(const unsigned char *nvlist, unsigned int indent)
|
|
{
|
|
static const char* typenames[] = {
|
|
"DATA_TYPE_UNKNOWN",
|
|
"DATA_TYPE_BOOLEAN",
|
|
"DATA_TYPE_BYTE",
|
|
"DATA_TYPE_INT16",
|
|
"DATA_TYPE_UINT16",
|
|
"DATA_TYPE_INT32",
|
|
"DATA_TYPE_UINT32",
|
|
"DATA_TYPE_INT64",
|
|
"DATA_TYPE_UINT64",
|
|
"DATA_TYPE_STRING",
|
|
"DATA_TYPE_BYTE_ARRAY",
|
|
"DATA_TYPE_INT16_ARRAY",
|
|
"DATA_TYPE_UINT16_ARRAY",
|
|
"DATA_TYPE_INT32_ARRAY",
|
|
"DATA_TYPE_UINT32_ARRAY",
|
|
"DATA_TYPE_INT64_ARRAY",
|
|
"DATA_TYPE_UINT64_ARRAY",
|
|
"DATA_TYPE_STRING_ARRAY",
|
|
"DATA_TYPE_HRTIME",
|
|
"DATA_TYPE_NVLIST",
|
|
"DATA_TYPE_NVLIST_ARRAY",
|
|
"DATA_TYPE_BOOLEAN_VALUE",
|
|
"DATA_TYPE_INT8",
|
|
"DATA_TYPE_UINT8",
|
|
"DATA_TYPE_BOOLEAN_ARRAY",
|
|
"DATA_TYPE_INT8_ARRAY",
|
|
"DATA_TYPE_UINT8_ARRAY"
|
|
};
|
|
|
|
unsigned int i, j;
|
|
const unsigned char *p, *pair;
|
|
int junk;
|
|
int encoded_size, decoded_size;
|
|
|
|
p = nvlist;
|
|
xdr_int(&p, &junk);
|
|
xdr_int(&p, &junk);
|
|
|
|
pair = p;
|
|
xdr_int(&p, &encoded_size);
|
|
xdr_int(&p, &decoded_size);
|
|
while (encoded_size && decoded_size) {
|
|
int namelen, pairtype, elements;
|
|
const char *pairname;
|
|
|
|
xdr_int(&p, &namelen);
|
|
pairname = (const char*) p;
|
|
p += roundup(namelen, 4);
|
|
xdr_int(&p, &pairtype);
|
|
|
|
for (i = 0; i < indent; i++)
|
|
printf(" ");
|
|
printf("%s %s", typenames[pairtype], pairname);
|
|
|
|
xdr_int(&p, &elements);
|
|
switch (pairtype) {
|
|
case DATA_TYPE_UINT64: {
|
|
uint64_t val;
|
|
xdr_uint64_t(&p, &val);
|
|
printf(" = 0x%jx\n", (uintmax_t)val);
|
|
break;
|
|
}
|
|
|
|
case DATA_TYPE_STRING: {
|
|
int len;
|
|
xdr_int(&p, &len);
|
|
printf(" = \"%s\"\n", p);
|
|
break;
|
|
}
|
|
|
|
case DATA_TYPE_NVLIST:
|
|
printf("\n");
|
|
nvlist_print(p, indent + 1);
|
|
break;
|
|
|
|
case DATA_TYPE_NVLIST_ARRAY:
|
|
for (j = 0; j < elements; j++) {
|
|
printf("[%d]\n", j);
|
|
p = nvlist_print(p, indent + 1);
|
|
if (j != elements - 1) {
|
|
for (i = 0; i < indent; i++)
|
|
printf(" ");
|
|
printf("%s %s", typenames[pairtype], pairname);
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
printf("\n");
|
|
}
|
|
|
|
p = pair + encoded_size;
|
|
|
|
pair = p;
|
|
xdr_int(&p, &encoded_size);
|
|
xdr_int(&p, &decoded_size);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int
|
|
vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
|
|
off_t offset, size_t size)
|
|
{
|
|
size_t psize;
|
|
int rc;
|
|
|
|
if (!vdev->v_phys_read)
|
|
return (EIO);
|
|
|
|
if (bp) {
|
|
psize = BP_GET_PSIZE(bp);
|
|
} else {
|
|
psize = size;
|
|
}
|
|
|
|
/*printf("ZFS: reading %d bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/
|
|
rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize);
|
|
if (rc)
|
|
return (rc);
|
|
if (bp && zio_checksum_verify(bp, buf))
|
|
return (EIO);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
|
|
off_t offset, size_t bytes)
|
|
{
|
|
|
|
return (vdev_read_phys(vdev, bp, buf,
|
|
offset + VDEV_LABEL_START_SIZE, bytes));
|
|
}
|
|
|
|
|
|
static int
|
|
vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
|
|
off_t offset, size_t bytes)
|
|
{
|
|
vdev_t *kid;
|
|
int rc;
|
|
|
|
rc = EIO;
|
|
STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
|
|
if (kid->v_state != VDEV_STATE_HEALTHY)
|
|
continue;
|
|
rc = kid->v_read(kid, bp, buf, offset, bytes);
|
|
if (!rc)
|
|
return (0);
|
|
}
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static int
|
|
vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
|
|
off_t offset, size_t bytes)
|
|
{
|
|
vdev_t *kid;
|
|
|
|
/*
|
|
* Here we should have two kids:
|
|
* First one which is the one we are replacing and we can trust
|
|
* only this one to have valid data, but it might not be present.
|
|
* Second one is that one we are replacing with. It is most likely
|
|
* healthy, but we can't trust it has needed data, so we won't use it.
|
|
*/
|
|
kid = STAILQ_FIRST(&vdev->v_children);
|
|
if (kid == NULL)
|
|
return (EIO);
|
|
if (kid->v_state != VDEV_STATE_HEALTHY)
|
|
return (EIO);
|
|
return (kid->v_read(kid, bp, buf, offset, bytes));
|
|
}
|
|
|
|
static vdev_t *
|
|
vdev_find(uint64_t guid)
|
|
{
|
|
vdev_t *vdev;
|
|
|
|
STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
|
|
if (vdev->v_guid == guid)
|
|
return (vdev);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static vdev_t *
|
|
vdev_create(uint64_t guid, vdev_read_t *read)
|
|
{
|
|
vdev_t *vdev;
|
|
|
|
vdev = malloc(sizeof(vdev_t));
|
|
memset(vdev, 0, sizeof(vdev_t));
|
|
STAILQ_INIT(&vdev->v_children);
|
|
vdev->v_guid = guid;
|
|
vdev->v_state = VDEV_STATE_OFFLINE;
|
|
vdev->v_read = read;
|
|
vdev->v_phys_read = 0;
|
|
vdev->v_read_priv = 0;
|
|
STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
|
|
|
|
return (vdev);
|
|
}
|
|
|
|
static int
|
|
vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev,
|
|
vdev_t **vdevp, int is_newer)
|
|
{
|
|
int rc;
|
|
uint64_t guid, id, ashift, nparity;
|
|
const char *type;
|
|
const char *path;
|
|
vdev_t *vdev, *kid;
|
|
const unsigned char *kids;
|
|
int nkids, i, is_new;
|
|
uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
|
|
|
|
if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID,
|
|
DATA_TYPE_UINT64, 0, &guid)
|
|
|| nvlist_find(nvlist, ZPOOL_CONFIG_ID,
|
|
DATA_TYPE_UINT64, 0, &id)
|
|
|| nvlist_find(nvlist, ZPOOL_CONFIG_TYPE,
|
|
DATA_TYPE_STRING, 0, &type)) {
|
|
printf("ZFS: can't find vdev details\n");
|
|
return (ENOENT);
|
|
}
|
|
|
|
if (strcmp(type, VDEV_TYPE_MIRROR)
|
|
&& strcmp(type, VDEV_TYPE_DISK)
|
|
#ifdef ZFS_TEST
|
|
&& strcmp(type, VDEV_TYPE_FILE)
|
|
#endif
|
|
&& strcmp(type, VDEV_TYPE_RAIDZ)
|
|
&& strcmp(type, VDEV_TYPE_REPLACING)) {
|
|
printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n");
|
|
return (EIO);
|
|
}
|
|
|
|
is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
|
|
|
|
nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, 0,
|
|
&is_offline);
|
|
nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, 0,
|
|
&is_removed);
|
|
nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, 0,
|
|
&is_faulted);
|
|
nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 0,
|
|
&is_degraded);
|
|
nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 0,
|
|
&isnt_present);
|
|
|
|
vdev = vdev_find(guid);
|
|
if (!vdev) {
|
|
is_new = 1;
|
|
|
|
if (!strcmp(type, VDEV_TYPE_MIRROR))
|
|
vdev = vdev_create(guid, vdev_mirror_read);
|
|
else if (!strcmp(type, VDEV_TYPE_RAIDZ))
|
|
vdev = vdev_create(guid, vdev_raidz_read);
|
|
else if (!strcmp(type, VDEV_TYPE_REPLACING))
|
|
vdev = vdev_create(guid, vdev_replacing_read);
|
|
else
|
|
vdev = vdev_create(guid, vdev_disk_read);
|
|
|
|
vdev->v_id = id;
|
|
vdev->v_top = pvdev != NULL ? pvdev : vdev;
|
|
if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
|
|
DATA_TYPE_UINT64, 0, &ashift) == 0)
|
|
vdev->v_ashift = ashift;
|
|
else
|
|
vdev->v_ashift = 0;
|
|
if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
|
|
DATA_TYPE_UINT64, 0, &nparity) == 0)
|
|
vdev->v_nparity = nparity;
|
|
else
|
|
vdev->v_nparity = 0;
|
|
if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
|
|
DATA_TYPE_STRING, 0, &path) == 0) {
|
|
if (strncmp(path, "/dev/", 5) == 0)
|
|
path += 5;
|
|
vdev->v_name = strdup(path);
|
|
} else {
|
|
if (!strcmp(type, "raidz")) {
|
|
if (vdev->v_nparity == 1)
|
|
vdev->v_name = "raidz1";
|
|
else if (vdev->v_nparity == 2)
|
|
vdev->v_name = "raidz2";
|
|
else if (vdev->v_nparity == 3)
|
|
vdev->v_name = "raidz3";
|
|
else {
|
|
printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n");
|
|
return (EIO);
|
|
}
|
|
} else {
|
|
vdev->v_name = strdup(type);
|
|
}
|
|
}
|
|
} else {
|
|
is_new = 0;
|
|
}
|
|
|
|
if (is_new || is_newer) {
|
|
/*
|
|
* This is either new vdev or we've already seen this vdev,
|
|
* but from an older vdev label, so let's refresh its state
|
|
* from the newer label.
|
|
*/
|
|
if (is_offline)
|
|
vdev->v_state = VDEV_STATE_OFFLINE;
|
|
else if (is_removed)
|
|
vdev->v_state = VDEV_STATE_REMOVED;
|
|
else if (is_faulted)
|
|
vdev->v_state = VDEV_STATE_FAULTED;
|
|
else if (is_degraded)
|
|
vdev->v_state = VDEV_STATE_DEGRADED;
|
|
else if (isnt_present)
|
|
vdev->v_state = VDEV_STATE_CANT_OPEN;
|
|
}
|
|
|
|
rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN,
|
|
DATA_TYPE_NVLIST_ARRAY, &nkids, &kids);
|
|
/*
|
|
* Its ok if we don't have any kids.
|
|
*/
|
|
if (rc == 0) {
|
|
vdev->v_nchildren = nkids;
|
|
for (i = 0; i < nkids; i++) {
|
|
rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer);
|
|
if (rc)
|
|
return (rc);
|
|
if (is_new)
|
|
STAILQ_INSERT_TAIL(&vdev->v_children, kid,
|
|
v_childlink);
|
|
kids = nvlist_next(kids);
|
|
}
|
|
} else {
|
|
vdev->v_nchildren = 0;
|
|
}
|
|
|
|
if (vdevp)
|
|
*vdevp = vdev;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_set_state(vdev_t *vdev)
|
|
{
|
|
vdev_t *kid;
|
|
int good_kids;
|
|
int bad_kids;
|
|
|
|
/*
|
|
* A mirror or raidz is healthy if all its kids are healthy. A
|
|
* mirror is degraded if any of its kids is healthy; a raidz
|
|
* is degraded if at most nparity kids are offline.
|
|
*/
|
|
if (STAILQ_FIRST(&vdev->v_children)) {
|
|
good_kids = 0;
|
|
bad_kids = 0;
|
|
STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
|
|
if (kid->v_state == VDEV_STATE_HEALTHY)
|
|
good_kids++;
|
|
else
|
|
bad_kids++;
|
|
}
|
|
if (bad_kids == 0) {
|
|
vdev->v_state = VDEV_STATE_HEALTHY;
|
|
} else {
|
|
if (vdev->v_read == vdev_mirror_read) {
|
|
if (good_kids) {
|
|
vdev->v_state = VDEV_STATE_DEGRADED;
|
|
} else {
|
|
vdev->v_state = VDEV_STATE_OFFLINE;
|
|
}
|
|
} else if (vdev->v_read == vdev_raidz_read) {
|
|
if (bad_kids > vdev->v_nparity) {
|
|
vdev->v_state = VDEV_STATE_OFFLINE;
|
|
} else {
|
|
vdev->v_state = VDEV_STATE_DEGRADED;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static spa_t *
|
|
spa_find_by_guid(uint64_t guid)
|
|
{
|
|
spa_t *spa;
|
|
|
|
STAILQ_FOREACH(spa, &zfs_pools, spa_link)
|
|
if (spa->spa_guid == guid)
|
|
return (spa);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static spa_t *
|
|
spa_find_by_name(const char *name)
|
|
{
|
|
spa_t *spa;
|
|
|
|
STAILQ_FOREACH(spa, &zfs_pools, spa_link)
|
|
if (!strcmp(spa->spa_name, name))
|
|
return (spa);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifndef BOOT2
|
|
static spa_t *
|
|
spa_find_by_unit(int unit)
|
|
{
|
|
spa_t *spa;
|
|
|
|
STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
|
|
if (unit == 0)
|
|
return (spa);
|
|
unit--;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zfs_guid_to_unit(uint64_t guid)
|
|
{
|
|
spa_t *spa;
|
|
int unit;
|
|
|
|
unit = 0;
|
|
STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
|
|
if (spa->spa_guid == guid)
|
|
return (unit);
|
|
unit++;
|
|
}
|
|
|
|
return (-1);
|
|
}
|
|
#endif
|
|
|
|
static spa_t *
|
|
spa_create(uint64_t guid)
|
|
{
|
|
spa_t *spa;
|
|
|
|
spa = malloc(sizeof(spa_t));
|
|
memset(spa, 0, sizeof(spa_t));
|
|
STAILQ_INIT(&spa->spa_vdevs);
|
|
spa->spa_guid = guid;
|
|
STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
|
|
|
|
return (spa);
|
|
}
|
|
|
|
static const char *
|
|
state_name(vdev_state_t state)
|
|
{
|
|
static const char* names[] = {
|
|
"UNKNOWN",
|
|
"CLOSED",
|
|
"OFFLINE",
|
|
"REMOVED",
|
|
"CANT_OPEN",
|
|
"FAULTED",
|
|
"DEGRADED",
|
|
"ONLINE"
|
|
};
|
|
return names[state];
|
|
}
|
|
|
|
#ifdef BOOT2
|
|
|
|
#define pager_printf printf
|
|
|
|
#else
|
|
|
|
static void
|
|
pager_printf(const char *fmt, ...)
|
|
{
|
|
char line[80];
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
vsprintf(line, fmt, args);
|
|
va_end(args);
|
|
pager_output(line);
|
|
}
|
|
|
|
#endif
|
|
|
|
#define STATUS_FORMAT " %s %s\n"
|
|
|
|
static void
|
|
print_state(int indent, const char *name, vdev_state_t state)
|
|
{
|
|
int i;
|
|
char buf[512];
|
|
|
|
buf[0] = 0;
|
|
for (i = 0; i < indent; i++)
|
|
strcat(buf, " ");
|
|
strcat(buf, name);
|
|
pager_printf(STATUS_FORMAT, buf, state_name(state));
|
|
|
|
}
|
|
|
|
static void
|
|
vdev_status(vdev_t *vdev, int indent)
|
|
{
|
|
vdev_t *kid;
|
|
print_state(indent, vdev->v_name, vdev->v_state);
|
|
|
|
STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
|
|
vdev_status(kid, indent + 1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
spa_status(spa_t *spa)
|
|
{
|
|
vdev_t *vdev;
|
|
int good_kids, bad_kids, degraded_kids;
|
|
vdev_state_t state;
|
|
|
|
pager_printf(" pool: %s\n", spa->spa_name);
|
|
pager_printf("config:\n\n");
|
|
pager_printf(STATUS_FORMAT, "NAME", "STATE");
|
|
|
|
good_kids = 0;
|
|
degraded_kids = 0;
|
|
bad_kids = 0;
|
|
STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
|
|
if (vdev->v_state == VDEV_STATE_HEALTHY)
|
|
good_kids++;
|
|
else if (vdev->v_state == VDEV_STATE_DEGRADED)
|
|
degraded_kids++;
|
|
else
|
|
bad_kids++;
|
|
}
|
|
|
|
state = VDEV_STATE_CLOSED;
|
|
if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
|
|
state = VDEV_STATE_HEALTHY;
|
|
else if ((good_kids + degraded_kids) > 0)
|
|
state = VDEV_STATE_DEGRADED;
|
|
|
|
print_state(0, spa->spa_name, state);
|
|
STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
|
|
vdev_status(vdev, 1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
spa_all_status(void)
|
|
{
|
|
spa_t *spa;
|
|
int first = 1;
|
|
|
|
STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
|
|
if (!first)
|
|
pager_printf("\n");
|
|
first = 0;
|
|
spa_status(spa);
|
|
}
|
|
}
|
|
|
|
static int
|
|
vdev_probe(vdev_phys_read_t *read, void *read_priv, spa_t **spap)
|
|
{
|
|
vdev_t vtmp;
|
|
vdev_phys_t *vdev_label = (vdev_phys_t *) zap_scratch;
|
|
spa_t *spa;
|
|
vdev_t *vdev, *top_vdev, *pool_vdev;
|
|
off_t off;
|
|
blkptr_t bp;
|
|
const unsigned char *nvlist;
|
|
uint64_t val;
|
|
uint64_t guid;
|
|
uint64_t pool_txg, pool_guid;
|
|
uint64_t is_log;
|
|
const char *pool_name;
|
|
const unsigned char *vdevs;
|
|
int i, rc, is_newer;
|
|
char *upbuf;
|
|
const struct uberblock *up;
|
|
|
|
/*
|
|
* Load the vdev label and figure out which
|
|
* uberblock is most current.
|
|
*/
|
|
memset(&vtmp, 0, sizeof(vtmp));
|
|
vtmp.v_phys_read = read;
|
|
vtmp.v_read_priv = read_priv;
|
|
off = offsetof(vdev_label_t, vl_vdev_phys);
|
|
BP_ZERO(&bp);
|
|
BP_SET_LSIZE(&bp, sizeof(vdev_phys_t));
|
|
BP_SET_PSIZE(&bp, sizeof(vdev_phys_t));
|
|
BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
|
|
BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
|
|
DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
|
|
ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
|
|
if (vdev_read_phys(&vtmp, &bp, vdev_label, off, 0))
|
|
return (EIO);
|
|
|
|
if (vdev_label->vp_nvlist[0] != NV_ENCODE_XDR) {
|
|
return (EIO);
|
|
}
|
|
|
|
nvlist = (const unsigned char *) vdev_label->vp_nvlist + 4;
|
|
|
|
if (nvlist_find(nvlist,
|
|
ZPOOL_CONFIG_VERSION,
|
|
DATA_TYPE_UINT64, 0, &val)) {
|
|
return (EIO);
|
|
}
|
|
|
|
if (val > SPA_VERSION) {
|
|
printf("ZFS: unsupported ZFS version %u (should be %u)\n",
|
|
(unsigned) val, (unsigned) SPA_VERSION);
|
|
return (EIO);
|
|
}
|
|
|
|
if (nvlist_find(nvlist,
|
|
ZPOOL_CONFIG_POOL_STATE,
|
|
DATA_TYPE_UINT64, 0, &val)) {
|
|
return (EIO);
|
|
}
|
|
|
|
if (val == POOL_STATE_DESTROYED) {
|
|
/* We don't boot only from destroyed pools. */
|
|
return (EIO);
|
|
}
|
|
|
|
if (nvlist_find(nvlist,
|
|
ZPOOL_CONFIG_POOL_TXG,
|
|
DATA_TYPE_UINT64, 0, &pool_txg)
|
|
|| nvlist_find(nvlist,
|
|
ZPOOL_CONFIG_POOL_GUID,
|
|
DATA_TYPE_UINT64, 0, &pool_guid)
|
|
|| nvlist_find(nvlist,
|
|
ZPOOL_CONFIG_POOL_NAME,
|
|
DATA_TYPE_STRING, 0, &pool_name)) {
|
|
/*
|
|
* Cache and spare devices end up here - just ignore
|
|
* them.
|
|
*/
|
|
/*printf("ZFS: can't find pool details\n");*/
|
|
return (EIO);
|
|
}
|
|
|
|
is_log = 0;
|
|
(void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, 0,
|
|
&is_log);
|
|
if (is_log)
|
|
return (EIO);
|
|
|
|
/*
|
|
* Create the pool if this is the first time we've seen it.
|
|
*/
|
|
spa = spa_find_by_guid(pool_guid);
|
|
if (!spa) {
|
|
spa = spa_create(pool_guid);
|
|
spa->spa_name = strdup(pool_name);
|
|
}
|
|
if (pool_txg > spa->spa_txg) {
|
|
spa->spa_txg = pool_txg;
|
|
is_newer = 1;
|
|
} else
|
|
is_newer = 0;
|
|
|
|
/*
|
|
* Get the vdev tree and create our in-core copy of it.
|
|
* If we already have a vdev with this guid, this must
|
|
* be some kind of alias (overlapping slices, dangerously dedicated
|
|
* disks etc).
|
|
*/
|
|
if (nvlist_find(nvlist,
|
|
ZPOOL_CONFIG_GUID,
|
|
DATA_TYPE_UINT64, 0, &guid)) {
|
|
return (EIO);
|
|
}
|
|
vdev = vdev_find(guid);
|
|
if (vdev && vdev->v_phys_read) /* Has this vdev already been inited? */
|
|
return (EIO);
|
|
|
|
if (nvlist_find(nvlist,
|
|
ZPOOL_CONFIG_VDEV_TREE,
|
|
DATA_TYPE_NVLIST, 0, &vdevs)) {
|
|
return (EIO);
|
|
}
|
|
|
|
rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer);
|
|
if (rc)
|
|
return (rc);
|
|
|
|
/*
|
|
* Add the toplevel vdev to the pool if its not already there.
|
|
*/
|
|
STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink)
|
|
if (top_vdev == pool_vdev)
|
|
break;
|
|
if (!pool_vdev && top_vdev)
|
|
STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink);
|
|
|
|
/*
|
|
* We should already have created an incomplete vdev for this
|
|
* vdev. Find it and initialise it with our read proc.
|
|
*/
|
|
vdev = vdev_find(guid);
|
|
if (vdev) {
|
|
vdev->v_phys_read = read;
|
|
vdev->v_read_priv = read_priv;
|
|
vdev->v_state = VDEV_STATE_HEALTHY;
|
|
} else {
|
|
printf("ZFS: inconsistent nvlist contents\n");
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* Re-evaluate top-level vdev state.
|
|
*/
|
|
vdev_set_state(top_vdev);
|
|
|
|
/*
|
|
* Ok, we are happy with the pool so far. Lets find
|
|
* the best uberblock and then we can actually access
|
|
* the contents of the pool.
|
|
*/
|
|
upbuf = zfs_alloc(VDEV_UBERBLOCK_SIZE(vdev));
|
|
up = (const struct uberblock *)upbuf;
|
|
for (i = 0;
|
|
i < VDEV_UBERBLOCK_COUNT(vdev);
|
|
i++) {
|
|
off = VDEV_UBERBLOCK_OFFSET(vdev, i);
|
|
BP_ZERO(&bp);
|
|
DVA_SET_OFFSET(&bp.blk_dva[0], off);
|
|
BP_SET_LSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev));
|
|
BP_SET_PSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev));
|
|
BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
|
|
BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
|
|
ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
|
|
|
|
if (vdev_read_phys(vdev, &bp, upbuf, off, 0))
|
|
continue;
|
|
|
|
if (up->ub_magic != UBERBLOCK_MAGIC)
|
|
continue;
|
|
if (up->ub_txg < spa->spa_txg)
|
|
continue;
|
|
if (up->ub_txg > spa->spa_uberblock.ub_txg) {
|
|
spa->spa_uberblock = *up;
|
|
} else if (up->ub_txg == spa->spa_uberblock.ub_txg) {
|
|
if (up->ub_timestamp > spa->spa_uberblock.ub_timestamp)
|
|
spa->spa_uberblock = *up;
|
|
}
|
|
}
|
|
zfs_free(upbuf, VDEV_UBERBLOCK_SIZE(vdev));
|
|
|
|
if (spap)
|
|
*spap = spa;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ilog2(int n)
|
|
{
|
|
int v;
|
|
|
|
for (v = 0; v < 32; v++)
|
|
if (n == (1 << v))
|
|
return v;
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
zio_read_gang(spa_t *spa, const blkptr_t *bp, void *buf)
|
|
{
|
|
blkptr_t gbh_bp;
|
|
zio_gbh_phys_t zio_gb;
|
|
char *pbuf;
|
|
int i;
|
|
|
|
/* Artificial BP for gang block header. */
|
|
gbh_bp = *bp;
|
|
BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
|
|
BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
|
|
BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
|
|
BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
|
|
for (i = 0; i < SPA_DVAS_PER_BP; i++)
|
|
DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
|
|
|
|
/* Read gang header block using the artificial BP. */
|
|
if (zio_read(spa, &gbh_bp, &zio_gb))
|
|
return (EIO);
|
|
|
|
pbuf = buf;
|
|
for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
|
|
blkptr_t *gbp = &zio_gb.zg_blkptr[i];
|
|
|
|
if (BP_IS_HOLE(gbp))
|
|
continue;
|
|
if (zio_read(spa, gbp, pbuf))
|
|
return (EIO);
|
|
pbuf += BP_GET_PSIZE(gbp);
|
|
}
|
|
|
|
if (zio_checksum_verify(bp, buf))
|
|
return (EIO);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zio_read(spa_t *spa, const blkptr_t *bp, void *buf)
|
|
{
|
|
int cpfunc = BP_GET_COMPRESS(bp);
|
|
uint64_t align, size;
|
|
void *pbuf;
|
|
int i, error;
|
|
|
|
error = EIO;
|
|
|
|
for (i = 0; i < SPA_DVAS_PER_BP; i++) {
|
|
const dva_t *dva = &bp->blk_dva[i];
|
|
vdev_t *vdev;
|
|
int vdevid;
|
|
off_t offset;
|
|
|
|
if (!dva->dva_word[0] && !dva->dva_word[1])
|
|
continue;
|
|
|
|
vdevid = DVA_GET_VDEV(dva);
|
|
offset = DVA_GET_OFFSET(dva);
|
|
STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
|
|
if (vdev->v_id == vdevid)
|
|
break;
|
|
}
|
|
if (!vdev || !vdev->v_read)
|
|
continue;
|
|
|
|
size = BP_GET_PSIZE(bp);
|
|
if (vdev->v_read == vdev_raidz_read) {
|
|
align = 1ULL << vdev->v_top->v_ashift;
|
|
if (P2PHASE(size, align) != 0)
|
|
size = P2ROUNDUP(size, align);
|
|
}
|
|
if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
|
|
pbuf = zfs_alloc(size);
|
|
else
|
|
pbuf = buf;
|
|
|
|
if (DVA_GET_GANG(dva))
|
|
error = zio_read_gang(spa, bp, pbuf);
|
|
else
|
|
error = vdev->v_read(vdev, bp, pbuf, offset, size);
|
|
if (error == 0) {
|
|
if (cpfunc != ZIO_COMPRESS_OFF)
|
|
error = zio_decompress_data(cpfunc, pbuf,
|
|
BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
|
|
else if (size != BP_GET_PSIZE(bp))
|
|
bcopy(pbuf, buf, BP_GET_PSIZE(bp));
|
|
}
|
|
if (buf != pbuf)
|
|
zfs_free(pbuf, size);
|
|
if (error == 0)
|
|
break;
|
|
}
|
|
if (error != 0)
|
|
printf("ZFS: i/o error - all block copies unavailable\n");
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
dnode_read(spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen)
|
|
{
|
|
int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
|
|
int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
|
|
int nlevels = dnode->dn_nlevels;
|
|
int i, rc;
|
|
|
|
/*
|
|
* Note: bsize may not be a power of two here so we need to do an
|
|
* actual divide rather than a bitshift.
|
|
*/
|
|
while (buflen > 0) {
|
|
uint64_t bn = offset / bsize;
|
|
int boff = offset % bsize;
|
|
int ibn;
|
|
const blkptr_t *indbp;
|
|
blkptr_t bp;
|
|
|
|
if (bn > dnode->dn_maxblkid)
|
|
return (EIO);
|
|
|
|
if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
|
|
goto cached;
|
|
|
|
indbp = dnode->dn_blkptr;
|
|
for (i = 0; i < nlevels; i++) {
|
|
/*
|
|
* Copy the bp from the indirect array so that
|
|
* we can re-use the scratch buffer for multi-level
|
|
* objects.
|
|
*/
|
|
ibn = bn >> ((nlevels - i - 1) * ibshift);
|
|
ibn &= ((1 << ibshift) - 1);
|
|
bp = indbp[ibn];
|
|
rc = zio_read(spa, &bp, dnode_cache_buf);
|
|
if (rc)
|
|
return (rc);
|
|
indbp = (const blkptr_t *) dnode_cache_buf;
|
|
}
|
|
dnode_cache_obj = dnode;
|
|
dnode_cache_bn = bn;
|
|
cached:
|
|
|
|
/*
|
|
* The buffer contains our data block. Copy what we
|
|
* need from it and loop.
|
|
*/
|
|
i = bsize - boff;
|
|
if (i > buflen) i = buflen;
|
|
memcpy(buf, &dnode_cache_buf[boff], i);
|
|
buf = ((char*) buf) + i;
|
|
offset += i;
|
|
buflen -= i;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Lookup a value in a microzap directory. Assumes that the zap
|
|
* scratch buffer contains the directory contents.
|
|
*/
|
|
static int
|
|
mzap_lookup(spa_t *spa, const dnode_phys_t *dnode, const char *name, uint64_t *value)
|
|
{
|
|
const mzap_phys_t *mz;
|
|
const mzap_ent_phys_t *mze;
|
|
size_t size;
|
|
int chunks, i;
|
|
|
|
/*
|
|
* Microzap objects use exactly one block. Read the whole
|
|
* thing.
|
|
*/
|
|
size = dnode->dn_datablkszsec * 512;
|
|
|
|
mz = (const mzap_phys_t *) zap_scratch;
|
|
chunks = size / MZAP_ENT_LEN - 1;
|
|
|
|
for (i = 0; i < chunks; i++) {
|
|
mze = &mz->mz_chunk[i];
|
|
if (!strcmp(mze->mze_name, name)) {
|
|
*value = mze->mze_value;
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
return (ENOENT);
|
|
}
|
|
|
|
/*
|
|
* Compare a name with a zap leaf entry. Return non-zero if the name
|
|
* matches.
|
|
*/
|
|
static int
|
|
fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name)
|
|
{
|
|
size_t namelen;
|
|
const zap_leaf_chunk_t *nc;
|
|
const char *p;
|
|
|
|
namelen = zc->l_entry.le_name_length;
|
|
|
|
nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
|
|
p = name;
|
|
while (namelen > 0) {
|
|
size_t len;
|
|
len = namelen;
|
|
if (len > ZAP_LEAF_ARRAY_BYTES)
|
|
len = ZAP_LEAF_ARRAY_BYTES;
|
|
if (memcmp(p, nc->l_array.la_array, len))
|
|
return (0);
|
|
p += len;
|
|
namelen -= len;
|
|
nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Extract a uint64_t value from a zap leaf entry.
|
|
*/
|
|
static uint64_t
|
|
fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
|
|
{
|
|
const zap_leaf_chunk_t *vc;
|
|
int i;
|
|
uint64_t value;
|
|
const uint8_t *p;
|
|
|
|
vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
|
|
for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
|
|
value = (value << 8) | p[i];
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/*
|
|
* Lookup a value in a fatzap directory. Assumes that the zap scratch
|
|
* buffer contains the directory header.
|
|
*/
|
|
static int
|
|
fzap_lookup(spa_t *spa, const dnode_phys_t *dnode, const char *name, uint64_t *value)
|
|
{
|
|
int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
|
|
zap_phys_t zh = *(zap_phys_t *) zap_scratch;
|
|
fat_zap_t z;
|
|
uint64_t *ptrtbl;
|
|
uint64_t hash;
|
|
int rc;
|
|
|
|
if (zh.zap_magic != ZAP_MAGIC)
|
|
return (EIO);
|
|
|
|
z.zap_block_shift = ilog2(bsize);
|
|
z.zap_phys = (zap_phys_t *) zap_scratch;
|
|
|
|
/*
|
|
* Figure out where the pointer table is and read it in if necessary.
|
|
*/
|
|
if (zh.zap_ptrtbl.zt_blk) {
|
|
rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize,
|
|
zap_scratch, bsize);
|
|
if (rc)
|
|
return (rc);
|
|
ptrtbl = (uint64_t *) zap_scratch;
|
|
} else {
|
|
ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0);
|
|
}
|
|
|
|
hash = zap_hash(zh.zap_salt, name);
|
|
|
|
zap_leaf_t zl;
|
|
zl.l_bs = z.zap_block_shift;
|
|
|
|
off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs;
|
|
zap_leaf_chunk_t *zc;
|
|
|
|
rc = dnode_read(spa, dnode, off, zap_scratch, bsize);
|
|
if (rc)
|
|
return (rc);
|
|
|
|
zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
|
|
|
|
/*
|
|
* Make sure this chunk matches our hash.
|
|
*/
|
|
if (zl.l_phys->l_hdr.lh_prefix_len > 0
|
|
&& zl.l_phys->l_hdr.lh_prefix
|
|
!= hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len))
|
|
return (ENOENT);
|
|
|
|
/*
|
|
* Hash within the chunk to find our entry.
|
|
*/
|
|
int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len);
|
|
int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1);
|
|
h = zl.l_phys->l_hash[h];
|
|
if (h == 0xffff)
|
|
return (ENOENT);
|
|
zc = &ZAP_LEAF_CHUNK(&zl, h);
|
|
while (zc->l_entry.le_hash != hash) {
|
|
if (zc->l_entry.le_next == 0xffff) {
|
|
zc = 0;
|
|
break;
|
|
}
|
|
zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next);
|
|
}
|
|
if (fzap_name_equal(&zl, zc, name)) {
|
|
*value = fzap_leaf_value(&zl, zc);
|
|
return (0);
|
|
}
|
|
|
|
return (ENOENT);
|
|
}
|
|
|
|
/*
|
|
* Lookup a name in a zap object and return its value as a uint64_t.
|
|
*/
|
|
static int
|
|
zap_lookup(spa_t *spa, const dnode_phys_t *dnode, const char *name, uint64_t *value)
|
|
{
|
|
int rc;
|
|
uint64_t zap_type;
|
|
size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
|
|
|
|
rc = dnode_read(spa, dnode, 0, zap_scratch, size);
|
|
if (rc)
|
|
return (rc);
|
|
|
|
zap_type = *(uint64_t *) zap_scratch;
|
|
if (zap_type == ZBT_MICRO)
|
|
return mzap_lookup(spa, dnode, name, value);
|
|
else if (zap_type == ZBT_HEADER)
|
|
return fzap_lookup(spa, dnode, name, value);
|
|
printf("ZFS: invalid zap_type=%d\n", (int)zap_type);
|
|
return (EIO);
|
|
}
|
|
|
|
#ifdef BOOT2
|
|
|
|
/*
|
|
* List a microzap directory. Assumes that the zap scratch buffer contains
|
|
* the directory contents.
|
|
*/
|
|
static int
|
|
mzap_list(spa_t *spa, const dnode_phys_t *dnode)
|
|
{
|
|
const mzap_phys_t *mz;
|
|
const mzap_ent_phys_t *mze;
|
|
size_t size;
|
|
int chunks, i;
|
|
|
|
/*
|
|
* Microzap objects use exactly one block. Read the whole
|
|
* thing.
|
|
*/
|
|
size = dnode->dn_datablkszsec * 512;
|
|
mz = (const mzap_phys_t *) zap_scratch;
|
|
chunks = size / MZAP_ENT_LEN - 1;
|
|
|
|
for (i = 0; i < chunks; i++) {
|
|
mze = &mz->mz_chunk[i];
|
|
if (mze->mze_name[0])
|
|
//printf("%-32s 0x%jx\n", mze->mze_name, (uintmax_t)mze->mze_value);
|
|
printf("%s\n", mze->mze_name);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* List a fatzap directory. Assumes that the zap scratch buffer contains
|
|
* the directory header.
|
|
*/
|
|
static int
|
|
fzap_list(spa_t *spa, const dnode_phys_t *dnode)
|
|
{
|
|
int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
|
|
zap_phys_t zh = *(zap_phys_t *) zap_scratch;
|
|
fat_zap_t z;
|
|
int i, j;
|
|
|
|
if (zh.zap_magic != ZAP_MAGIC)
|
|
return (EIO);
|
|
|
|
z.zap_block_shift = ilog2(bsize);
|
|
z.zap_phys = (zap_phys_t *) zap_scratch;
|
|
|
|
/*
|
|
* This assumes that the leaf blocks start at block 1. The
|
|
* documentation isn't exactly clear on this.
|
|
*/
|
|
zap_leaf_t zl;
|
|
zl.l_bs = z.zap_block_shift;
|
|
for (i = 0; i < zh.zap_num_leafs; i++) {
|
|
off_t off = (i + 1) << zl.l_bs;
|
|
char name[256], *p;
|
|
uint64_t value;
|
|
|
|
if (dnode_read(spa, dnode, off, zap_scratch, bsize))
|
|
return (EIO);
|
|
|
|
zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
|
|
|
|
for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
|
|
zap_leaf_chunk_t *zc, *nc;
|
|
int namelen;
|
|
|
|
zc = &ZAP_LEAF_CHUNK(&zl, j);
|
|
if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
|
|
continue;
|
|
namelen = zc->l_entry.le_name_length;
|
|
if (namelen > sizeof(name))
|
|
namelen = sizeof(name);
|
|
|
|
/*
|
|
* Paste the name back together.
|
|
*/
|
|
nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
|
|
p = name;
|
|
while (namelen > 0) {
|
|
int len;
|
|
len = namelen;
|
|
if (len > ZAP_LEAF_ARRAY_BYTES)
|
|
len = ZAP_LEAF_ARRAY_BYTES;
|
|
memcpy(p, nc->l_array.la_array, len);
|
|
p += len;
|
|
namelen -= len;
|
|
nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
|
|
}
|
|
|
|
/*
|
|
* Assume the first eight bytes of the value are
|
|
* a uint64_t.
|
|
*/
|
|
value = fzap_leaf_value(&zl, zc);
|
|
|
|
printf("%s 0x%jx\n", name, (uintmax_t)value);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* List a zap directory.
|
|
*/
|
|
static int
|
|
zap_list(spa_t *spa, const dnode_phys_t *dnode)
|
|
{
|
|
uint64_t zap_type;
|
|
size_t size = dnode->dn_datablkszsec * 512;
|
|
|
|
if (dnode_read(spa, dnode, 0, zap_scratch, size))
|
|
return (EIO);
|
|
|
|
zap_type = *(uint64_t *) zap_scratch;
|
|
if (zap_type == ZBT_MICRO)
|
|
return mzap_list(spa, dnode);
|
|
else
|
|
return fzap_list(spa, dnode);
|
|
}
|
|
|
|
#endif
|
|
|
|
static int
|
|
objset_get_dnode(spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode)
|
|
{
|
|
off_t offset;
|
|
|
|
offset = objnum * sizeof(dnode_phys_t);
|
|
return dnode_read(spa, &os->os_meta_dnode, offset,
|
|
dnode, sizeof(dnode_phys_t));
|
|
}
|
|
|
|
static int
|
|
mzap_rlookup(spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
|
|
{
|
|
const mzap_phys_t *mz;
|
|
const mzap_ent_phys_t *mze;
|
|
size_t size;
|
|
int chunks, i;
|
|
|
|
/*
|
|
* Microzap objects use exactly one block. Read the whole
|
|
* thing.
|
|
*/
|
|
size = dnode->dn_datablkszsec * 512;
|
|
|
|
mz = (const mzap_phys_t *) zap_scratch;
|
|
chunks = size / MZAP_ENT_LEN - 1;
|
|
|
|
for (i = 0; i < chunks; i++) {
|
|
mze = &mz->mz_chunk[i];
|
|
if (value == mze->mze_value) {
|
|
strcpy(name, mze->mze_name);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
return (ENOENT);
|
|
}
|
|
|
|
static void
|
|
fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
|
|
{
|
|
size_t namelen;
|
|
const zap_leaf_chunk_t *nc;
|
|
char *p;
|
|
|
|
namelen = zc->l_entry.le_name_length;
|
|
|
|
nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
|
|
p = name;
|
|
while (namelen > 0) {
|
|
size_t len;
|
|
len = namelen;
|
|
if (len > ZAP_LEAF_ARRAY_BYTES)
|
|
len = ZAP_LEAF_ARRAY_BYTES;
|
|
memcpy(p, nc->l_array.la_array, len);
|
|
p += len;
|
|
namelen -= len;
|
|
nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
|
|
}
|
|
|
|
*p = '\0';
|
|
}
|
|
|
|
static int
|
|
fzap_rlookup(spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
|
|
{
|
|
int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
|
|
zap_phys_t zh = *(zap_phys_t *) zap_scratch;
|
|
fat_zap_t z;
|
|
uint64_t *ptrtbl;
|
|
uint64_t hash;
|
|
int rc;
|
|
|
|
if (zh.zap_magic != ZAP_MAGIC)
|
|
return (EIO);
|
|
|
|
z.zap_block_shift = ilog2(bsize);
|
|
z.zap_phys = (zap_phys_t *) zap_scratch;
|
|
|
|
/*
|
|
* Figure out where the pointer table is and read it in if necessary.
|
|
*/
|
|
if (zh.zap_ptrtbl.zt_blk) {
|
|
rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize,
|
|
zap_scratch, bsize);
|
|
if (rc)
|
|
return (rc);
|
|
ptrtbl = (uint64_t *) zap_scratch;
|
|
} else {
|
|
ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0);
|
|
}
|
|
|
|
hash = zap_hash(zh.zap_salt, name);
|
|
|
|
zap_leaf_t zl;
|
|
zl.l_bs = z.zap_block_shift;
|
|
|
|
off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs;
|
|
zap_leaf_chunk_t *zc;
|
|
|
|
rc = dnode_read(spa, dnode, off, zap_scratch, bsize);
|
|
if (rc)
|
|
return (rc);
|
|
|
|
zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
|
|
|
|
/*
|
|
* Make sure this chunk matches our hash.
|
|
*/
|
|
if (zl.l_phys->l_hdr.lh_prefix_len > 0
|
|
&& zl.l_phys->l_hdr.lh_prefix
|
|
!= hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len))
|
|
return (ENOENT);
|
|
|
|
/*
|
|
* Hash within the chunk to find our entry.
|
|
*/
|
|
int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len);
|
|
int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1);
|
|
h = zl.l_phys->l_hash[h];
|
|
if (h == 0xffff)
|
|
return (ENOENT);
|
|
zc = &ZAP_LEAF_CHUNK(&zl, h);
|
|
while (zc->l_entry.le_hash != hash) {
|
|
if (zc->l_entry.le_next == 0xffff) {
|
|
zc = 0;
|
|
break;
|
|
}
|
|
zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next);
|
|
}
|
|
if (fzap_leaf_value(&zl, zc) == value) {
|
|
fzap_name_copy(&zl, zc, name);
|
|
return (0);
|
|
}
|
|
|
|
return (ENOENT);
|
|
}
|
|
|
|
static int
|
|
zap_rlookup(spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
|
|
{
|
|
int rc;
|
|
uint64_t zap_type;
|
|
size_t size = dnode->dn_datablkszsec * 512;
|
|
|
|
rc = dnode_read(spa, dnode, 0, zap_scratch, size);
|
|
if (rc)
|
|
return (rc);
|
|
|
|
zap_type = *(uint64_t *) zap_scratch;
|
|
if (zap_type == ZBT_MICRO)
|
|
return mzap_rlookup(spa, dnode, name, value);
|
|
else
|
|
return fzap_rlookup(spa, dnode, name, value);
|
|
}
|
|
|
|
static int
|
|
zfs_rlookup(spa_t *spa, uint64_t objnum, char *result)
|
|
{
|
|
char name[256];
|
|
char component[256];
|
|
uint64_t dir_obj, parent_obj, child_dir_zapobj;
|
|
dnode_phys_t child_dir_zap, dataset, dir, parent;
|
|
dsl_dir_phys_t *dd;
|
|
dsl_dataset_phys_t *ds;
|
|
char *p;
|
|
int len;
|
|
|
|
p = &name[sizeof(name) - 1];
|
|
*p = '\0';
|
|
|
|
if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
|
|
printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
|
|
return (EIO);
|
|
}
|
|
ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
|
|
dir_obj = ds->ds_dir_obj;
|
|
|
|
for (;;) {
|
|
if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
|
|
return (EIO);
|
|
dd = (dsl_dir_phys_t *)&dir.dn_bonus;
|
|
|
|
/* Actual loop condition. */
|
|
parent_obj = dd->dd_parent_obj;
|
|
if (parent_obj == 0)
|
|
break;
|
|
|
|
if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0)
|
|
return (EIO);
|
|
dd = (dsl_dir_phys_t *)&parent.dn_bonus;
|
|
child_dir_zapobj = dd->dd_child_dir_zapobj;
|
|
if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0)
|
|
return (EIO);
|
|
if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
|
|
return (EIO);
|
|
|
|
len = strlen(component);
|
|
p -= len;
|
|
memcpy(p, component, len);
|
|
--p;
|
|
*p = '/';
|
|
|
|
/* Actual loop iteration. */
|
|
dir_obj = parent_obj;
|
|
}
|
|
|
|
if (*p != '\0')
|
|
++p;
|
|
strcpy(result, p);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zfs_lookup_dataset(spa_t *spa, const char *name, uint64_t *objnum)
|
|
{
|
|
char element[256];
|
|
uint64_t dir_obj, child_dir_zapobj;
|
|
dnode_phys_t child_dir_zap, dir;
|
|
dsl_dir_phys_t *dd;
|
|
const char *p, *q;
|
|
|
|
if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir))
|
|
return (EIO);
|
|
if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, &dir_obj))
|
|
return (EIO);
|
|
|
|
p = name;
|
|
for (;;) {
|
|
if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
|
|
return (EIO);
|
|
dd = (dsl_dir_phys_t *)&dir.dn_bonus;
|
|
|
|
while (*p == '/')
|
|
p++;
|
|
/* Actual loop condition #1. */
|
|
if (*p == '\0')
|
|
break;
|
|
|
|
q = strchr(p, '/');
|
|
if (q) {
|
|
memcpy(element, p, q - p);
|
|
element[q - p] = '\0';
|
|
p = q + 1;
|
|
} else {
|
|
strcpy(element, p);
|
|
p += strlen(p);
|
|
}
|
|
|
|
child_dir_zapobj = dd->dd_child_dir_zapobj;
|
|
if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0)
|
|
return (EIO);
|
|
|
|
/* Actual loop condition #2. */
|
|
if (zap_lookup(spa, &child_dir_zap, element, &dir_obj) != 0)
|
|
return (ENOENT);
|
|
}
|
|
|
|
*objnum = dd->dd_head_dataset_obj;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Find the object set given the object number of its dataset object
|
|
* and return its details in *objset
|
|
*/
|
|
static int
|
|
zfs_mount_dataset(spa_t *spa, uint64_t objnum, objset_phys_t *objset)
|
|
{
|
|
dnode_phys_t dataset;
|
|
dsl_dataset_phys_t *ds;
|
|
|
|
if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
|
|
printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
|
|
return (EIO);
|
|
}
|
|
|
|
ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
|
|
if (zio_read(spa, &ds->ds_bp, objset)) {
|
|
printf("ZFS: can't read object set for dataset %ju\n",
|
|
(uintmax_t)objnum);
|
|
return (EIO);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Find the object set pointed to by the BOOTFS property or the root
|
|
* dataset if there is none and return its details in *objset
|
|
*/
|
|
static int
|
|
zfs_get_root(spa_t *spa, uint64_t *objid)
|
|
{
|
|
dnode_phys_t dir, propdir;
|
|
uint64_t props, bootfs, root;
|
|
|
|
*objid = 0;
|
|
|
|
/*
|
|
* Start with the MOS directory object.
|
|
*/
|
|
if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) {
|
|
printf("ZFS: can't read MOS object directory\n");
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* Lookup the pool_props and see if we can find a bootfs.
|
|
*/
|
|
if (zap_lookup(spa, &dir, DMU_POOL_PROPS, &props) == 0
|
|
&& objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0
|
|
&& zap_lookup(spa, &propdir, "bootfs", &bootfs) == 0
|
|
&& bootfs != 0)
|
|
{
|
|
*objid = bootfs;
|
|
return (0);
|
|
}
|
|
/*
|
|
* Lookup the root dataset directory
|
|
*/
|
|
if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, &root)
|
|
|| objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
|
|
printf("ZFS: can't find root dsl_dir\n");
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* Use the information from the dataset directory's bonus buffer
|
|
* to find the dataset object and from that the object set itself.
|
|
*/
|
|
dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus;
|
|
*objid = dd->dd_head_dataset_obj;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zfs_mount(spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
|
|
{
|
|
|
|
mount->spa = spa;
|
|
|
|
/*
|
|
* Find the root object set if not explicitly provided
|
|
*/
|
|
if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
|
|
printf("ZFS: can't find root filesystem\n");
|
|
return (EIO);
|
|
}
|
|
|
|
if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
|
|
printf("ZFS: can't open root filesystem\n");
|
|
return (EIO);
|
|
}
|
|
|
|
mount->rootobj = rootobj;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zfs_spa_init(spa_t *spa)
|
|
{
|
|
|
|
if (spa->spa_inited)
|
|
return (0);
|
|
if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
|
|
printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
|
|
return (EIO);
|
|
}
|
|
spa->spa_inited = 1;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zfs_dnode_stat(spa_t *spa, dnode_phys_t *dn, struct stat *sb)
|
|
{
|
|
|
|
if (dn->dn_bonustype != DMU_OT_SA) {
|
|
znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
|
|
|
|
sb->st_mode = zp->zp_mode;
|
|
sb->st_uid = zp->zp_uid;
|
|
sb->st_gid = zp->zp_gid;
|
|
sb->st_size = zp->zp_size;
|
|
} else {
|
|
sa_hdr_phys_t *sahdrp;
|
|
int hdrsize;
|
|
size_t size = 0;
|
|
void *buf = NULL;
|
|
|
|
if (dn->dn_bonuslen != 0)
|
|
sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
|
|
else {
|
|
if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
|
|
blkptr_t *bp = &dn->dn_spill;
|
|
int error;
|
|
|
|
size = BP_GET_LSIZE(bp);
|
|
buf = zfs_alloc(size);
|
|
error = zio_read(spa, bp, buf);
|
|
if (error != 0) {
|
|
zfs_free(buf, size);
|
|
return (error);
|
|
}
|
|
sahdrp = buf;
|
|
} else {
|
|
return (EIO);
|
|
}
|
|
}
|
|
hdrsize = SA_HDR_SIZE(sahdrp);
|
|
sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
|
|
SA_MODE_OFFSET);
|
|
sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
|
|
SA_UID_OFFSET);
|
|
sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
|
|
SA_GID_OFFSET);
|
|
sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
|
|
SA_SIZE_OFFSET);
|
|
if (buf != NULL)
|
|
zfs_free(buf, size);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Lookup a file and return its dnode.
|
|
*/
|
|
static int
|
|
zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
|
|
{
|
|
int rc;
|
|
uint64_t objnum, rootnum, parentnum;
|
|
spa_t *spa;
|
|
dnode_phys_t dn;
|
|
const char *p, *q;
|
|
char element[256];
|
|
char path[1024];
|
|
int symlinks_followed = 0;
|
|
struct stat sb;
|
|
|
|
spa = mount->spa;
|
|
if (mount->objset.os_type != DMU_OST_ZFS) {
|
|
printf("ZFS: unexpected object set type %ju\n",
|
|
(uintmax_t)mount->objset.os_type);
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* Get the root directory dnode.
|
|
*/
|
|
rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
|
|
if (rc)
|
|
return (rc);
|
|
|
|
rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, &rootnum);
|
|
if (rc)
|
|
return (rc);
|
|
|
|
rc = objset_get_dnode(spa, &mount->objset, rootnum, &dn);
|
|
if (rc)
|
|
return (rc);
|
|
|
|
objnum = rootnum;
|
|
p = upath;
|
|
while (p && *p) {
|
|
while (*p == '/')
|
|
p++;
|
|
if (!*p)
|
|
break;
|
|
q = strchr(p, '/');
|
|
if (q) {
|
|
memcpy(element, p, q - p);
|
|
element[q - p] = 0;
|
|
p = q;
|
|
} else {
|
|
strcpy(element, p);
|
|
p = 0;
|
|
}
|
|
|
|
rc = zfs_dnode_stat(spa, &dn, &sb);
|
|
if (rc)
|
|
return (rc);
|
|
if (!S_ISDIR(sb.st_mode))
|
|
return (ENOTDIR);
|
|
|
|
parentnum = objnum;
|
|
rc = zap_lookup(spa, &dn, element, &objnum);
|
|
if (rc)
|
|
return (rc);
|
|
objnum = ZFS_DIRENT_OBJ(objnum);
|
|
|
|
rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
|
|
if (rc)
|
|
return (rc);
|
|
|
|
/*
|
|
* Check for symlink.
|
|
*/
|
|
rc = zfs_dnode_stat(spa, &dn, &sb);
|
|
if (rc)
|
|
return (rc);
|
|
if (S_ISLNK(sb.st_mode)) {
|
|
if (symlinks_followed > 10)
|
|
return (EMLINK);
|
|
symlinks_followed++;
|
|
|
|
/*
|
|
* Read the link value and copy the tail of our
|
|
* current path onto the end.
|
|
*/
|
|
if (p)
|
|
strcpy(&path[sb.st_size], p);
|
|
else
|
|
path[sb.st_size] = 0;
|
|
if (sb.st_size + sizeof(znode_phys_t) <= dn.dn_bonuslen) {
|
|
memcpy(path, &dn.dn_bonus[sizeof(znode_phys_t)],
|
|
sb.st_size);
|
|
} else {
|
|
rc = dnode_read(spa, &dn, 0, path, sb.st_size);
|
|
if (rc)
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* Restart with the new path, starting either at
|
|
* the root or at the parent depending whether or
|
|
* not the link is relative.
|
|
*/
|
|
p = path;
|
|
if (*p == '/')
|
|
objnum = rootnum;
|
|
else
|
|
objnum = parentnum;
|
|
objset_get_dnode(spa, &mount->objset, objnum, &dn);
|
|
}
|
|
}
|
|
|
|
*dnode = dn;
|
|
return (0);
|
|
}
|