mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-01 08:27:59 +00:00
497e80a371
of unnecessary path components that are relics of cvs2svn. (These are directory moves)
1520 lines
40 KiB
C
1520 lines
40 KiB
C
/* Common subexpression elimination library for GNU compiler.
|
||
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "flags.h"
|
||
#include "real.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "function.h"
|
||
#include "emit-rtl.h"
|
||
#include "toplev.h"
|
||
#include "output.h"
|
||
#include "ggc.h"
|
||
#include "hashtab.h"
|
||
#include "cselib.h"
|
||
#include "params.h"
|
||
#include "alloc-pool.h"
|
||
#include "target.h"
|
||
|
||
static bool cselib_record_memory;
|
||
static int entry_and_rtx_equal_p (const void *, const void *);
|
||
static hashval_t get_value_hash (const void *);
|
||
static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
|
||
static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
|
||
static void unchain_one_value (cselib_val *);
|
||
static void unchain_one_elt_list (struct elt_list **);
|
||
static void unchain_one_elt_loc_list (struct elt_loc_list **);
|
||
static int discard_useless_locs (void **, void *);
|
||
static int discard_useless_values (void **, void *);
|
||
static void remove_useless_values (void);
|
||
static rtx wrap_constant (enum machine_mode, rtx);
|
||
static unsigned int cselib_hash_rtx (rtx, int);
|
||
static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
|
||
static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
|
||
static cselib_val *cselib_lookup_mem (rtx, int);
|
||
static void cselib_invalidate_regno (unsigned int, enum machine_mode);
|
||
static void cselib_invalidate_mem (rtx);
|
||
static void cselib_record_set (rtx, cselib_val *, cselib_val *);
|
||
static void cselib_record_sets (rtx);
|
||
|
||
/* There are three ways in which cselib can look up an rtx:
|
||
- for a REG, the reg_values table (which is indexed by regno) is used
|
||
- for a MEM, we recursively look up its address and then follow the
|
||
addr_list of that value
|
||
- for everything else, we compute a hash value and go through the hash
|
||
table. Since different rtx's can still have the same hash value,
|
||
this involves walking the table entries for a given value and comparing
|
||
the locations of the entries with the rtx we are looking up. */
|
||
|
||
/* A table that enables us to look up elts by their value. */
|
||
static htab_t cselib_hash_table;
|
||
|
||
/* This is a global so we don't have to pass this through every function.
|
||
It is used in new_elt_loc_list to set SETTING_INSN. */
|
||
static rtx cselib_current_insn;
|
||
static bool cselib_current_insn_in_libcall;
|
||
|
||
/* Every new unknown value gets a unique number. */
|
||
static unsigned int next_unknown_value;
|
||
|
||
/* The number of registers we had when the varrays were last resized. */
|
||
static unsigned int cselib_nregs;
|
||
|
||
/* Count values without known locations. Whenever this grows too big, we
|
||
remove these useless values from the table. */
|
||
static int n_useless_values;
|
||
|
||
/* Number of useless values before we remove them from the hash table. */
|
||
#define MAX_USELESS_VALUES 32
|
||
|
||
/* This table maps from register number to values. It does not
|
||
contain pointers to cselib_val structures, but rather elt_lists.
|
||
The purpose is to be able to refer to the same register in
|
||
different modes. The first element of the list defines the mode in
|
||
which the register was set; if the mode is unknown or the value is
|
||
no longer valid in that mode, ELT will be NULL for the first
|
||
element. */
|
||
static struct elt_list **reg_values;
|
||
static unsigned int reg_values_size;
|
||
#define REG_VALUES(i) reg_values[i]
|
||
|
||
/* The largest number of hard regs used by any entry added to the
|
||
REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
|
||
static unsigned int max_value_regs;
|
||
|
||
/* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
|
||
in cselib_clear_table() for fast emptying. */
|
||
static unsigned int *used_regs;
|
||
static unsigned int n_used_regs;
|
||
|
||
/* We pass this to cselib_invalidate_mem to invalidate all of
|
||
memory for a non-const call instruction. */
|
||
static GTY(()) rtx callmem;
|
||
|
||
/* Set by discard_useless_locs if it deleted the last location of any
|
||
value. */
|
||
static int values_became_useless;
|
||
|
||
/* Used as stop element of the containing_mem list so we can check
|
||
presence in the list by checking the next pointer. */
|
||
static cselib_val dummy_val;
|
||
|
||
/* Used to list all values that contain memory reference.
|
||
May or may not contain the useless values - the list is compacted
|
||
each time memory is invalidated. */
|
||
static cselib_val *first_containing_mem = &dummy_val;
|
||
static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
|
||
|
||
|
||
/* Allocate a struct elt_list and fill in its two elements with the
|
||
arguments. */
|
||
|
||
static inline struct elt_list *
|
||
new_elt_list (struct elt_list *next, cselib_val *elt)
|
||
{
|
||
struct elt_list *el;
|
||
el = pool_alloc (elt_list_pool);
|
||
el->next = next;
|
||
el->elt = elt;
|
||
return el;
|
||
}
|
||
|
||
/* Allocate a struct elt_loc_list and fill in its two elements with the
|
||
arguments. */
|
||
|
||
static inline struct elt_loc_list *
|
||
new_elt_loc_list (struct elt_loc_list *next, rtx loc)
|
||
{
|
||
struct elt_loc_list *el;
|
||
el = pool_alloc (elt_loc_list_pool);
|
||
el->next = next;
|
||
el->loc = loc;
|
||
el->setting_insn = cselib_current_insn;
|
||
el->in_libcall = cselib_current_insn_in_libcall;
|
||
return el;
|
||
}
|
||
|
||
/* The elt_list at *PL is no longer needed. Unchain it and free its
|
||
storage. */
|
||
|
||
static inline void
|
||
unchain_one_elt_list (struct elt_list **pl)
|
||
{
|
||
struct elt_list *l = *pl;
|
||
|
||
*pl = l->next;
|
||
pool_free (elt_list_pool, l);
|
||
}
|
||
|
||
/* Likewise for elt_loc_lists. */
|
||
|
||
static void
|
||
unchain_one_elt_loc_list (struct elt_loc_list **pl)
|
||
{
|
||
struct elt_loc_list *l = *pl;
|
||
|
||
*pl = l->next;
|
||
pool_free (elt_loc_list_pool, l);
|
||
}
|
||
|
||
/* Likewise for cselib_vals. This also frees the addr_list associated with
|
||
V. */
|
||
|
||
static void
|
||
unchain_one_value (cselib_val *v)
|
||
{
|
||
while (v->addr_list)
|
||
unchain_one_elt_list (&v->addr_list);
|
||
|
||
pool_free (cselib_val_pool, v);
|
||
}
|
||
|
||
/* Remove all entries from the hash table. Also used during
|
||
initialization. If CLEAR_ALL isn't set, then only clear the entries
|
||
which are known to have been used. */
|
||
|
||
void
|
||
cselib_clear_table (void)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < n_used_regs; i++)
|
||
REG_VALUES (used_regs[i]) = 0;
|
||
|
||
max_value_regs = 0;
|
||
|
||
n_used_regs = 0;
|
||
|
||
htab_empty (cselib_hash_table);
|
||
|
||
n_useless_values = 0;
|
||
|
||
next_unknown_value = 0;
|
||
|
||
first_containing_mem = &dummy_val;
|
||
}
|
||
|
||
/* The equality test for our hash table. The first argument ENTRY is a table
|
||
element (i.e. a cselib_val), while the second arg X is an rtx. We know
|
||
that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
|
||
CONST of an appropriate mode. */
|
||
|
||
static int
|
||
entry_and_rtx_equal_p (const void *entry, const void *x_arg)
|
||
{
|
||
struct elt_loc_list *l;
|
||
const cselib_val *v = (const cselib_val *) entry;
|
||
rtx x = (rtx) x_arg;
|
||
enum machine_mode mode = GET_MODE (x);
|
||
|
||
gcc_assert (GET_CODE (x) != CONST_INT
|
||
&& (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
|
||
|
||
if (mode != GET_MODE (v->u.val_rtx))
|
||
return 0;
|
||
|
||
/* Unwrap X if necessary. */
|
||
if (GET_CODE (x) == CONST
|
||
&& (GET_CODE (XEXP (x, 0)) == CONST_INT
|
||
|| GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
|
||
x = XEXP (x, 0);
|
||
|
||
/* We don't guarantee that distinct rtx's have different hash values,
|
||
so we need to do a comparison. */
|
||
for (l = v->locs; l; l = l->next)
|
||
if (rtx_equal_for_cselib_p (l->loc, x))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* The hash function for our hash table. The value is always computed with
|
||
cselib_hash_rtx when adding an element; this function just extracts the
|
||
hash value from a cselib_val structure. */
|
||
|
||
static hashval_t
|
||
get_value_hash (const void *entry)
|
||
{
|
||
const cselib_val *v = (const cselib_val *) entry;
|
||
return v->value;
|
||
}
|
||
|
||
/* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
|
||
only return true for values which point to a cselib_val whose value
|
||
element has been set to zero, which implies the cselib_val will be
|
||
removed. */
|
||
|
||
int
|
||
references_value_p (rtx x, int only_useless)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
const char *fmt = GET_RTX_FORMAT (code);
|
||
int i, j;
|
||
|
||
if (GET_CODE (x) == VALUE
|
||
&& (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
|
||
return 1;
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
|
||
return 1;
|
||
else if (fmt[i] == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (references_value_p (XVECEXP (x, i, j), only_useless))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* For all locations found in X, delete locations that reference useless
|
||
values (i.e. values without any location). Called through
|
||
htab_traverse. */
|
||
|
||
static int
|
||
discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
|
||
{
|
||
cselib_val *v = (cselib_val *)*x;
|
||
struct elt_loc_list **p = &v->locs;
|
||
int had_locs = v->locs != 0;
|
||
|
||
while (*p)
|
||
{
|
||
if (references_value_p ((*p)->loc, 1))
|
||
unchain_one_elt_loc_list (p);
|
||
else
|
||
p = &(*p)->next;
|
||
}
|
||
|
||
if (had_locs && v->locs == 0)
|
||
{
|
||
n_useless_values++;
|
||
values_became_useless = 1;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* If X is a value with no locations, remove it from the hashtable. */
|
||
|
||
static int
|
||
discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
|
||
{
|
||
cselib_val *v = (cselib_val *)*x;
|
||
|
||
if (v->locs == 0)
|
||
{
|
||
CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
|
||
htab_clear_slot (cselib_hash_table, x);
|
||
unchain_one_value (v);
|
||
n_useless_values--;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Clean out useless values (i.e. those which no longer have locations
|
||
associated with them) from the hash table. */
|
||
|
||
static void
|
||
remove_useless_values (void)
|
||
{
|
||
cselib_val **p, *v;
|
||
/* First pass: eliminate locations that reference the value. That in
|
||
turn can make more values useless. */
|
||
do
|
||
{
|
||
values_became_useless = 0;
|
||
htab_traverse (cselib_hash_table, discard_useless_locs, 0);
|
||
}
|
||
while (values_became_useless);
|
||
|
||
/* Second pass: actually remove the values. */
|
||
|
||
p = &first_containing_mem;
|
||
for (v = *p; v != &dummy_val; v = v->next_containing_mem)
|
||
if (v->locs)
|
||
{
|
||
*p = v;
|
||
p = &(*p)->next_containing_mem;
|
||
}
|
||
*p = &dummy_val;
|
||
|
||
htab_traverse (cselib_hash_table, discard_useless_values, 0);
|
||
|
||
gcc_assert (!n_useless_values);
|
||
}
|
||
|
||
/* Return the mode in which a register was last set. If X is not a
|
||
register, return its mode. If the mode in which the register was
|
||
set is not known, or the value was already clobbered, return
|
||
VOIDmode. */
|
||
|
||
enum machine_mode
|
||
cselib_reg_set_mode (rtx x)
|
||
{
|
||
if (!REG_P (x))
|
||
return GET_MODE (x);
|
||
|
||
if (REG_VALUES (REGNO (x)) == NULL
|
||
|| REG_VALUES (REGNO (x))->elt == NULL)
|
||
return VOIDmode;
|
||
|
||
return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
|
||
}
|
||
|
||
/* Return nonzero if we can prove that X and Y contain the same value, taking
|
||
our gathered information into account. */
|
||
|
||
int
|
||
rtx_equal_for_cselib_p (rtx x, rtx y)
|
||
{
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
int i;
|
||
|
||
if (REG_P (x) || MEM_P (x))
|
||
{
|
||
cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
|
||
|
||
if (e)
|
||
x = e->u.val_rtx;
|
||
}
|
||
|
||
if (REG_P (y) || MEM_P (y))
|
||
{
|
||
cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
|
||
|
||
if (e)
|
||
y = e->u.val_rtx;
|
||
}
|
||
|
||
if (x == y)
|
||
return 1;
|
||
|
||
if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
|
||
return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
|
||
|
||
if (GET_CODE (x) == VALUE)
|
||
{
|
||
cselib_val *e = CSELIB_VAL_PTR (x);
|
||
struct elt_loc_list *l;
|
||
|
||
for (l = e->locs; l; l = l->next)
|
||
{
|
||
rtx t = l->loc;
|
||
|
||
/* Avoid infinite recursion. */
|
||
if (REG_P (t) || MEM_P (t))
|
||
continue;
|
||
else if (rtx_equal_for_cselib_p (t, y))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
if (GET_CODE (y) == VALUE)
|
||
{
|
||
cselib_val *e = CSELIB_VAL_PTR (y);
|
||
struct elt_loc_list *l;
|
||
|
||
for (l = e->locs; l; l = l->next)
|
||
{
|
||
rtx t = l->loc;
|
||
|
||
if (REG_P (t) || MEM_P (t))
|
||
continue;
|
||
else if (rtx_equal_for_cselib_p (x, t))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
|
||
return 0;
|
||
|
||
/* These won't be handled correctly by the code below. */
|
||
switch (GET_CODE (x))
|
||
{
|
||
case CONST_DOUBLE:
|
||
return 0;
|
||
|
||
case LABEL_REF:
|
||
return XEXP (x, 0) == XEXP (y, 0);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
code = GET_CODE (x);
|
||
fmt = GET_RTX_FORMAT (code);
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
int j;
|
||
|
||
switch (fmt[i])
|
||
{
|
||
case 'w':
|
||
if (XWINT (x, i) != XWINT (y, i))
|
||
return 0;
|
||
break;
|
||
|
||
case 'n':
|
||
case 'i':
|
||
if (XINT (x, i) != XINT (y, i))
|
||
return 0;
|
||
break;
|
||
|
||
case 'V':
|
||
case 'E':
|
||
/* Two vectors must have the same length. */
|
||
if (XVECLEN (x, i) != XVECLEN (y, i))
|
||
return 0;
|
||
|
||
/* And the corresponding elements must match. */
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
|
||
XVECEXP (y, i, j)))
|
||
return 0;
|
||
break;
|
||
|
||
case 'e':
|
||
if (i == 1
|
||
&& targetm.commutative_p (x, UNKNOWN)
|
||
&& rtx_equal_for_cselib_p (XEXP (x, 1), XEXP (y, 0))
|
||
&& rtx_equal_for_cselib_p (XEXP (x, 0), XEXP (y, 1)))
|
||
return 1;
|
||
if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
|
||
return 0;
|
||
break;
|
||
|
||
case 'S':
|
||
case 's':
|
||
if (strcmp (XSTR (x, i), XSTR (y, i)))
|
||
return 0;
|
||
break;
|
||
|
||
case 'u':
|
||
/* These are just backpointers, so they don't matter. */
|
||
break;
|
||
|
||
case '0':
|
||
case 't':
|
||
break;
|
||
|
||
/* It is believed that rtx's at this level will never
|
||
contain anything but integers and other rtx's,
|
||
except for within LABEL_REFs and SYMBOL_REFs. */
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* We need to pass down the mode of constants through the hash table
|
||
functions. For that purpose, wrap them in a CONST of the appropriate
|
||
mode. */
|
||
static rtx
|
||
wrap_constant (enum machine_mode mode, rtx x)
|
||
{
|
||
if (GET_CODE (x) != CONST_INT
|
||
&& (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
|
||
return x;
|
||
gcc_assert (mode != VOIDmode);
|
||
return gen_rtx_CONST (mode, x);
|
||
}
|
||
|
||
/* Hash an rtx. Return 0 if we couldn't hash the rtx.
|
||
For registers and memory locations, we look up their cselib_val structure
|
||
and return its VALUE element.
|
||
Possible reasons for return 0 are: the object is volatile, or we couldn't
|
||
find a register or memory location in the table and CREATE is zero. If
|
||
CREATE is nonzero, table elts are created for regs and mem.
|
||
N.B. this hash function returns the same hash value for RTXes that
|
||
differ only in the order of operands, thus it is suitable for comparisons
|
||
that take commutativity into account.
|
||
If we wanted to also support associative rules, we'd have to use a different
|
||
strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
|
||
We used to have a MODE argument for hashing for CONST_INTs, but that
|
||
didn't make sense, since it caused spurious hash differences between
|
||
(set (reg:SI 1) (const_int))
|
||
(plus:SI (reg:SI 2) (reg:SI 1))
|
||
and
|
||
(plus:SI (reg:SI 2) (const_int))
|
||
If the mode is important in any context, it must be checked specifically
|
||
in a comparison anyway, since relying on hash differences is unsafe. */
|
||
|
||
static unsigned int
|
||
cselib_hash_rtx (rtx x, int create)
|
||
{
|
||
cselib_val *e;
|
||
int i, j;
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
unsigned int hash = 0;
|
||
|
||
code = GET_CODE (x);
|
||
hash += (unsigned) code + (unsigned) GET_MODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case MEM:
|
||
case REG:
|
||
e = cselib_lookup (x, GET_MODE (x), create);
|
||
if (! e)
|
||
return 0;
|
||
|
||
return e->value;
|
||
|
||
case CONST_INT:
|
||
hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
|
||
return hash ? hash : (unsigned int) CONST_INT;
|
||
|
||
case CONST_DOUBLE:
|
||
/* This is like the general case, except that it only counts
|
||
the integers representing the constant. */
|
||
hash += (unsigned) code + (unsigned) GET_MODE (x);
|
||
if (GET_MODE (x) != VOIDmode)
|
||
hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
|
||
else
|
||
hash += ((unsigned) CONST_DOUBLE_LOW (x)
|
||
+ (unsigned) CONST_DOUBLE_HIGH (x));
|
||
return hash ? hash : (unsigned int) CONST_DOUBLE;
|
||
|
||
case CONST_VECTOR:
|
||
{
|
||
int units;
|
||
rtx elt;
|
||
|
||
units = CONST_VECTOR_NUNITS (x);
|
||
|
||
for (i = 0; i < units; ++i)
|
||
{
|
||
elt = CONST_VECTOR_ELT (x, i);
|
||
hash += cselib_hash_rtx (elt, 0);
|
||
}
|
||
|
||
return hash;
|
||
}
|
||
|
||
/* Assume there is only one rtx object for any given label. */
|
||
case LABEL_REF:
|
||
/* We don't hash on the address of the CODE_LABEL to avoid bootstrap
|
||
differences and differences between each stage's debugging dumps. */
|
||
hash += (((unsigned int) LABEL_REF << 7)
|
||
+ CODE_LABEL_NUMBER (XEXP (x, 0)));
|
||
return hash ? hash : (unsigned int) LABEL_REF;
|
||
|
||
case SYMBOL_REF:
|
||
{
|
||
/* Don't hash on the symbol's address to avoid bootstrap differences.
|
||
Different hash values may cause expressions to be recorded in
|
||
different orders and thus different registers to be used in the
|
||
final assembler. This also avoids differences in the dump files
|
||
between various stages. */
|
||
unsigned int h = 0;
|
||
const unsigned char *p = (const unsigned char *) XSTR (x, 0);
|
||
|
||
while (*p)
|
||
h += (h << 7) + *p++; /* ??? revisit */
|
||
|
||
hash += ((unsigned int) SYMBOL_REF << 7) + h;
|
||
return hash ? hash : (unsigned int) SYMBOL_REF;
|
||
}
|
||
|
||
case PRE_DEC:
|
||
case PRE_INC:
|
||
case POST_DEC:
|
||
case POST_INC:
|
||
case POST_MODIFY:
|
||
case PRE_MODIFY:
|
||
case PC:
|
||
case CC0:
|
||
case CALL:
|
||
case UNSPEC_VOLATILE:
|
||
return 0;
|
||
|
||
case ASM_OPERANDS:
|
||
if (MEM_VOLATILE_P (x))
|
||
return 0;
|
||
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
i = GET_RTX_LENGTH (code) - 1;
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (; i >= 0; i--)
|
||
{
|
||
switch (fmt[i])
|
||
{
|
||
case 'e':
|
||
{
|
||
rtx tem = XEXP (x, i);
|
||
unsigned int tem_hash = cselib_hash_rtx (tem, create);
|
||
|
||
if (tem_hash == 0)
|
||
return 0;
|
||
|
||
hash += tem_hash;
|
||
}
|
||
break;
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
{
|
||
unsigned int tem_hash
|
||
= cselib_hash_rtx (XVECEXP (x, i, j), create);
|
||
|
||
if (tem_hash == 0)
|
||
return 0;
|
||
|
||
hash += tem_hash;
|
||
}
|
||
break;
|
||
|
||
case 's':
|
||
{
|
||
const unsigned char *p = (const unsigned char *) XSTR (x, i);
|
||
|
||
if (p)
|
||
while (*p)
|
||
hash += *p++;
|
||
break;
|
||
}
|
||
|
||
case 'i':
|
||
hash += XINT (x, i);
|
||
break;
|
||
|
||
case '0':
|
||
case 't':
|
||
/* unused */
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
return hash ? hash : 1 + (unsigned int) GET_CODE (x);
|
||
}
|
||
|
||
/* Create a new value structure for VALUE and initialize it. The mode of the
|
||
value is MODE. */
|
||
|
||
static inline cselib_val *
|
||
new_cselib_val (unsigned int value, enum machine_mode mode)
|
||
{
|
||
cselib_val *e = pool_alloc (cselib_val_pool);
|
||
|
||
gcc_assert (value);
|
||
|
||
e->value = value;
|
||
/* We use an alloc pool to allocate this RTL construct because it
|
||
accounts for about 8% of the overall memory usage. We know
|
||
precisely when we can have VALUE RTXen (when cselib is active)
|
||
so we don't need to put them in garbage collected memory.
|
||
??? Why should a VALUE be an RTX in the first place? */
|
||
e->u.val_rtx = pool_alloc (value_pool);
|
||
memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
|
||
PUT_CODE (e->u.val_rtx, VALUE);
|
||
PUT_MODE (e->u.val_rtx, mode);
|
||
CSELIB_VAL_PTR (e->u.val_rtx) = e;
|
||
e->addr_list = 0;
|
||
e->locs = 0;
|
||
e->next_containing_mem = 0;
|
||
return e;
|
||
}
|
||
|
||
/* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
|
||
contains the data at this address. X is a MEM that represents the
|
||
value. Update the two value structures to represent this situation. */
|
||
|
||
static void
|
||
add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
|
||
{
|
||
struct elt_loc_list *l;
|
||
|
||
/* Avoid duplicates. */
|
||
for (l = mem_elt->locs; l; l = l->next)
|
||
if (MEM_P (l->loc)
|
||
&& CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
|
||
return;
|
||
|
||
addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
|
||
mem_elt->locs
|
||
= new_elt_loc_list (mem_elt->locs,
|
||
replace_equiv_address_nv (x, addr_elt->u.val_rtx));
|
||
if (mem_elt->next_containing_mem == NULL)
|
||
{
|
||
mem_elt->next_containing_mem = first_containing_mem;
|
||
first_containing_mem = mem_elt;
|
||
}
|
||
}
|
||
|
||
/* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
|
||
If CREATE, make a new one if we haven't seen it before. */
|
||
|
||
static cselib_val *
|
||
cselib_lookup_mem (rtx x, int create)
|
||
{
|
||
enum machine_mode mode = GET_MODE (x);
|
||
void **slot;
|
||
cselib_val *addr;
|
||
cselib_val *mem_elt;
|
||
struct elt_list *l;
|
||
|
||
if (MEM_VOLATILE_P (x) || mode == BLKmode
|
||
|| !cselib_record_memory
|
||
|| (FLOAT_MODE_P (mode) && flag_float_store))
|
||
return 0;
|
||
|
||
/* Look up the value for the address. */
|
||
addr = cselib_lookup (XEXP (x, 0), mode, create);
|
||
if (! addr)
|
||
return 0;
|
||
|
||
/* Find a value that describes a value of our mode at that address. */
|
||
for (l = addr->addr_list; l; l = l->next)
|
||
if (GET_MODE (l->elt->u.val_rtx) == mode)
|
||
return l->elt;
|
||
|
||
if (! create)
|
||
return 0;
|
||
|
||
mem_elt = new_cselib_val (++next_unknown_value, mode);
|
||
add_mem_for_addr (addr, mem_elt, x);
|
||
slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
|
||
mem_elt->value, INSERT);
|
||
*slot = mem_elt;
|
||
return mem_elt;
|
||
}
|
||
|
||
/* Walk rtx X and replace all occurrences of REG and MEM subexpressions
|
||
with VALUE expressions. This way, it becomes independent of changes
|
||
to registers and memory.
|
||
X isn't actually modified; if modifications are needed, new rtl is
|
||
allocated. However, the return value can share rtl with X. */
|
||
|
||
rtx
|
||
cselib_subst_to_values (rtx x)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
const char *fmt = GET_RTX_FORMAT (code);
|
||
cselib_val *e;
|
||
struct elt_list *l;
|
||
rtx copy = x;
|
||
int i;
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
l = REG_VALUES (REGNO (x));
|
||
if (l && l->elt == NULL)
|
||
l = l->next;
|
||
for (; l; l = l->next)
|
||
if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
|
||
return l->elt->u.val_rtx;
|
||
|
||
gcc_unreachable ();
|
||
|
||
case MEM:
|
||
e = cselib_lookup_mem (x, 0);
|
||
if (! e)
|
||
{
|
||
/* This happens for autoincrements. Assign a value that doesn't
|
||
match any other. */
|
||
e = new_cselib_val (++next_unknown_value, GET_MODE (x));
|
||
}
|
||
return e->u.val_rtx;
|
||
|
||
case CONST_DOUBLE:
|
||
case CONST_VECTOR:
|
||
case CONST_INT:
|
||
return x;
|
||
|
||
case POST_INC:
|
||
case PRE_INC:
|
||
case POST_DEC:
|
||
case PRE_DEC:
|
||
case POST_MODIFY:
|
||
case PRE_MODIFY:
|
||
e = new_cselib_val (++next_unknown_value, GET_MODE (x));
|
||
return e->u.val_rtx;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
rtx t = cselib_subst_to_values (XEXP (x, i));
|
||
|
||
if (t != XEXP (x, i) && x == copy)
|
||
copy = shallow_copy_rtx (x);
|
||
|
||
XEXP (copy, i) = t;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j, k;
|
||
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
{
|
||
rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
|
||
|
||
if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
|
||
{
|
||
if (x == copy)
|
||
copy = shallow_copy_rtx (x);
|
||
|
||
XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
|
||
for (k = 0; k < j; k++)
|
||
XVECEXP (copy, i, k) = XVECEXP (x, i, k);
|
||
}
|
||
|
||
XVECEXP (copy, i, j) = t;
|
||
}
|
||
}
|
||
}
|
||
|
||
return copy;
|
||
}
|
||
|
||
/* Look up the rtl expression X in our tables and return the value it has.
|
||
If CREATE is zero, we return NULL if we don't know the value. Otherwise,
|
||
we create a new one if possible, using mode MODE if X doesn't have a mode
|
||
(i.e. because it's a constant). */
|
||
|
||
cselib_val *
|
||
cselib_lookup (rtx x, enum machine_mode mode, int create)
|
||
{
|
||
void **slot;
|
||
cselib_val *e;
|
||
unsigned int hashval;
|
||
|
||
if (GET_MODE (x) != VOIDmode)
|
||
mode = GET_MODE (x);
|
||
|
||
if (GET_CODE (x) == VALUE)
|
||
return CSELIB_VAL_PTR (x);
|
||
|
||
if (REG_P (x))
|
||
{
|
||
struct elt_list *l;
|
||
unsigned int i = REGNO (x);
|
||
|
||
l = REG_VALUES (i);
|
||
if (l && l->elt == NULL)
|
||
l = l->next;
|
||
for (; l; l = l->next)
|
||
if (mode == GET_MODE (l->elt->u.val_rtx))
|
||
return l->elt;
|
||
|
||
if (! create)
|
||
return 0;
|
||
|
||
if (i < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
unsigned int n = hard_regno_nregs[i][mode];
|
||
|
||
if (n > max_value_regs)
|
||
max_value_regs = n;
|
||
}
|
||
|
||
e = new_cselib_val (++next_unknown_value, GET_MODE (x));
|
||
e->locs = new_elt_loc_list (e->locs, x);
|
||
if (REG_VALUES (i) == 0)
|
||
{
|
||
/* Maintain the invariant that the first entry of
|
||
REG_VALUES, if present, must be the value used to set the
|
||
register, or NULL. */
|
||
used_regs[n_used_regs++] = i;
|
||
REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
|
||
}
|
||
REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
|
||
slot = htab_find_slot_with_hash (cselib_hash_table, x, e->value, INSERT);
|
||
*slot = e;
|
||
return e;
|
||
}
|
||
|
||
if (MEM_P (x))
|
||
return cselib_lookup_mem (x, create);
|
||
|
||
hashval = cselib_hash_rtx (x, create);
|
||
/* Can't even create if hashing is not possible. */
|
||
if (! hashval)
|
||
return 0;
|
||
|
||
slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
|
||
hashval, create ? INSERT : NO_INSERT);
|
||
if (slot == 0)
|
||
return 0;
|
||
|
||
e = (cselib_val *) *slot;
|
||
if (e)
|
||
return e;
|
||
|
||
e = new_cselib_val (hashval, mode);
|
||
|
||
/* We have to fill the slot before calling cselib_subst_to_values:
|
||
the hash table is inconsistent until we do so, and
|
||
cselib_subst_to_values will need to do lookups. */
|
||
*slot = (void *) e;
|
||
e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
|
||
return e;
|
||
}
|
||
|
||
/* Invalidate any entries in reg_values that overlap REGNO. This is called
|
||
if REGNO is changing. MODE is the mode of the assignment to REGNO, which
|
||
is used to determine how many hard registers are being changed. If MODE
|
||
is VOIDmode, then only REGNO is being changed; this is used when
|
||
invalidating call clobbered registers across a call. */
|
||
|
||
static void
|
||
cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
|
||
{
|
||
unsigned int endregno;
|
||
unsigned int i;
|
||
|
||
/* If we see pseudos after reload, something is _wrong_. */
|
||
gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
|
||
|| reg_renumber[regno] < 0);
|
||
|
||
/* Determine the range of registers that must be invalidated. For
|
||
pseudos, only REGNO is affected. For hard regs, we must take MODE
|
||
into account, and we must also invalidate lower register numbers
|
||
if they contain values that overlap REGNO. */
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
gcc_assert (mode != VOIDmode);
|
||
|
||
if (regno < max_value_regs)
|
||
i = 0;
|
||
else
|
||
i = regno - max_value_regs;
|
||
|
||
endregno = regno + hard_regno_nregs[regno][mode];
|
||
}
|
||
else
|
||
{
|
||
i = regno;
|
||
endregno = regno + 1;
|
||
}
|
||
|
||
for (; i < endregno; i++)
|
||
{
|
||
struct elt_list **l = ®_VALUES (i);
|
||
|
||
/* Go through all known values for this reg; if it overlaps the range
|
||
we're invalidating, remove the value. */
|
||
while (*l)
|
||
{
|
||
cselib_val *v = (*l)->elt;
|
||
struct elt_loc_list **p;
|
||
unsigned int this_last = i;
|
||
|
||
if (i < FIRST_PSEUDO_REGISTER && v != NULL)
|
||
this_last += hard_regno_nregs[i][GET_MODE (v->u.val_rtx)] - 1;
|
||
|
||
if (this_last < regno || v == NULL)
|
||
{
|
||
l = &(*l)->next;
|
||
continue;
|
||
}
|
||
|
||
/* We have an overlap. */
|
||
if (*l == REG_VALUES (i))
|
||
{
|
||
/* Maintain the invariant that the first entry of
|
||
REG_VALUES, if present, must be the value used to set
|
||
the register, or NULL. This is also nice because
|
||
then we won't push the same regno onto user_regs
|
||
multiple times. */
|
||
(*l)->elt = NULL;
|
||
l = &(*l)->next;
|
||
}
|
||
else
|
||
unchain_one_elt_list (l);
|
||
|
||
/* Now, we clear the mapping from value to reg. It must exist, so
|
||
this code will crash intentionally if it doesn't. */
|
||
for (p = &v->locs; ; p = &(*p)->next)
|
||
{
|
||
rtx x = (*p)->loc;
|
||
|
||
if (REG_P (x) && REGNO (x) == i)
|
||
{
|
||
unchain_one_elt_loc_list (p);
|
||
break;
|
||
}
|
||
}
|
||
if (v->locs == 0)
|
||
n_useless_values++;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return 1 if X has a value that can vary even between two
|
||
executions of the program. 0 means X can be compared reliably
|
||
against certain constants or near-constants. */
|
||
|
||
static int
|
||
cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
|
||
{
|
||
/* We actually don't need to verify very hard. This is because
|
||
if X has actually changed, we invalidate the memory anyway,
|
||
so assume that all common memory addresses are
|
||
invariant. */
|
||
return 0;
|
||
}
|
||
|
||
/* Invalidate any locations in the table which are changed because of a
|
||
store to MEM_RTX. If this is called because of a non-const call
|
||
instruction, MEM_RTX is (mem:BLK const0_rtx). */
|
||
|
||
static void
|
||
cselib_invalidate_mem (rtx mem_rtx)
|
||
{
|
||
cselib_val **vp, *v, *next;
|
||
int num_mems = 0;
|
||
rtx mem_addr;
|
||
|
||
mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
|
||
mem_rtx = canon_rtx (mem_rtx);
|
||
|
||
vp = &first_containing_mem;
|
||
for (v = *vp; v != &dummy_val; v = next)
|
||
{
|
||
bool has_mem = false;
|
||
struct elt_loc_list **p = &v->locs;
|
||
int had_locs = v->locs != 0;
|
||
|
||
while (*p)
|
||
{
|
||
rtx x = (*p)->loc;
|
||
cselib_val *addr;
|
||
struct elt_list **mem_chain;
|
||
|
||
/* MEMs may occur in locations only at the top level; below
|
||
that every MEM or REG is substituted by its VALUE. */
|
||
if (!MEM_P (x))
|
||
{
|
||
p = &(*p)->next;
|
||
continue;
|
||
}
|
||
if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
|
||
&& ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
|
||
x, cselib_rtx_varies_p))
|
||
{
|
||
has_mem = true;
|
||
num_mems++;
|
||
p = &(*p)->next;
|
||
continue;
|
||
}
|
||
|
||
/* This one overlaps. */
|
||
/* We must have a mapping from this MEM's address to the
|
||
value (E). Remove that, too. */
|
||
addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
|
||
mem_chain = &addr->addr_list;
|
||
for (;;)
|
||
{
|
||
if ((*mem_chain)->elt == v)
|
||
{
|
||
unchain_one_elt_list (mem_chain);
|
||
break;
|
||
}
|
||
|
||
mem_chain = &(*mem_chain)->next;
|
||
}
|
||
|
||
unchain_one_elt_loc_list (p);
|
||
}
|
||
|
||
if (had_locs && v->locs == 0)
|
||
n_useless_values++;
|
||
|
||
next = v->next_containing_mem;
|
||
if (has_mem)
|
||
{
|
||
*vp = v;
|
||
vp = &(*vp)->next_containing_mem;
|
||
}
|
||
else
|
||
v->next_containing_mem = NULL;
|
||
}
|
||
*vp = &dummy_val;
|
||
}
|
||
|
||
/* Invalidate DEST, which is being assigned to or clobbered. */
|
||
|
||
void
|
||
cselib_invalidate_rtx (rtx dest)
|
||
{
|
||
while (GET_CODE (dest) == SUBREG
|
||
|| GET_CODE (dest) == ZERO_EXTRACT
|
||
|| GET_CODE (dest) == STRICT_LOW_PART)
|
||
dest = XEXP (dest, 0);
|
||
|
||
if (REG_P (dest))
|
||
cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
|
||
else if (MEM_P (dest))
|
||
cselib_invalidate_mem (dest);
|
||
|
||
/* Some machines don't define AUTO_INC_DEC, but they still use push
|
||
instructions. We need to catch that case here in order to
|
||
invalidate the stack pointer correctly. Note that invalidating
|
||
the stack pointer is different from invalidating DEST. */
|
||
if (push_operand (dest, GET_MODE (dest)))
|
||
cselib_invalidate_rtx (stack_pointer_rtx);
|
||
}
|
||
|
||
/* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
|
||
|
||
static void
|
||
cselib_invalidate_rtx_note_stores (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
cselib_invalidate_rtx (dest);
|
||
}
|
||
|
||
/* Record the result of a SET instruction. DEST is being set; the source
|
||
contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
|
||
describes its address. */
|
||
|
||
static void
|
||
cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
|
||
{
|
||
int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
|
||
|
||
if (src_elt == 0 || side_effects_p (dest))
|
||
return;
|
||
|
||
if (dreg >= 0)
|
||
{
|
||
if (dreg < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
|
||
|
||
if (n > max_value_regs)
|
||
max_value_regs = n;
|
||
}
|
||
|
||
if (REG_VALUES (dreg) == 0)
|
||
{
|
||
used_regs[n_used_regs++] = dreg;
|
||
REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
|
||
}
|
||
else
|
||
{
|
||
/* The register should have been invalidated. */
|
||
gcc_assert (REG_VALUES (dreg)->elt == 0);
|
||
REG_VALUES (dreg)->elt = src_elt;
|
||
}
|
||
|
||
if (src_elt->locs == 0)
|
||
n_useless_values--;
|
||
src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
|
||
}
|
||
else if (MEM_P (dest) && dest_addr_elt != 0
|
||
&& cselib_record_memory)
|
||
{
|
||
if (src_elt->locs == 0)
|
||
n_useless_values--;
|
||
add_mem_for_addr (dest_addr_elt, src_elt, dest);
|
||
}
|
||
}
|
||
|
||
/* Describe a single set that is part of an insn. */
|
||
struct set
|
||
{
|
||
rtx src;
|
||
rtx dest;
|
||
cselib_val *src_elt;
|
||
cselib_val *dest_addr_elt;
|
||
};
|
||
|
||
/* There is no good way to determine how many elements there can be
|
||
in a PARALLEL. Since it's fairly cheap, use a really large number. */
|
||
#define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
|
||
|
||
/* Record the effects of any sets in INSN. */
|
||
static void
|
||
cselib_record_sets (rtx insn)
|
||
{
|
||
int n_sets = 0;
|
||
int i;
|
||
struct set sets[MAX_SETS];
|
||
rtx body = PATTERN (insn);
|
||
rtx cond = 0;
|
||
|
||
body = PATTERN (insn);
|
||
if (GET_CODE (body) == COND_EXEC)
|
||
{
|
||
cond = COND_EXEC_TEST (body);
|
||
body = COND_EXEC_CODE (body);
|
||
}
|
||
|
||
/* Find all sets. */
|
||
if (GET_CODE (body) == SET)
|
||
{
|
||
sets[0].src = SET_SRC (body);
|
||
sets[0].dest = SET_DEST (body);
|
||
n_sets = 1;
|
||
}
|
||
else if (GET_CODE (body) == PARALLEL)
|
||
{
|
||
/* Look through the PARALLEL and record the values being
|
||
set, if possible. Also handle any CLOBBERs. */
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
|
||
{
|
||
rtx x = XVECEXP (body, 0, i);
|
||
|
||
if (GET_CODE (x) == SET)
|
||
{
|
||
sets[n_sets].src = SET_SRC (x);
|
||
sets[n_sets].dest = SET_DEST (x);
|
||
n_sets++;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Look up the values that are read. Do this before invalidating the
|
||
locations that are written. */
|
||
for (i = 0; i < n_sets; i++)
|
||
{
|
||
rtx dest = sets[i].dest;
|
||
|
||
/* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
|
||
the low part after invalidating any knowledge about larger modes. */
|
||
if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
|
||
sets[i].dest = dest = XEXP (dest, 0);
|
||
|
||
/* We don't know how to record anything but REG or MEM. */
|
||
if (REG_P (dest)
|
||
|| (MEM_P (dest) && cselib_record_memory))
|
||
{
|
||
rtx src = sets[i].src;
|
||
if (cond)
|
||
src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
|
||
sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
|
||
if (MEM_P (dest))
|
||
sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
|
||
else
|
||
sets[i].dest_addr_elt = 0;
|
||
}
|
||
}
|
||
|
||
/* Invalidate all locations written by this insn. Note that the elts we
|
||
looked up in the previous loop aren't affected, just some of their
|
||
locations may go away. */
|
||
note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
|
||
|
||
/* If this is an asm, look for duplicate sets. This can happen when the
|
||
user uses the same value as an output multiple times. This is valid
|
||
if the outputs are not actually used thereafter. Treat this case as
|
||
if the value isn't actually set. We do this by smashing the destination
|
||
to pc_rtx, so that we won't record the value later. */
|
||
if (n_sets >= 2 && asm_noperands (body) >= 0)
|
||
{
|
||
for (i = 0; i < n_sets; i++)
|
||
{
|
||
rtx dest = sets[i].dest;
|
||
if (REG_P (dest) || MEM_P (dest))
|
||
{
|
||
int j;
|
||
for (j = i + 1; j < n_sets; j++)
|
||
if (rtx_equal_p (dest, sets[j].dest))
|
||
{
|
||
sets[i].dest = pc_rtx;
|
||
sets[j].dest = pc_rtx;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now enter the equivalences in our tables. */
|
||
for (i = 0; i < n_sets; i++)
|
||
{
|
||
rtx dest = sets[i].dest;
|
||
if (REG_P (dest)
|
||
|| (MEM_P (dest) && cselib_record_memory))
|
||
cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
|
||
}
|
||
}
|
||
|
||
/* Record the effects of INSN. */
|
||
|
||
void
|
||
cselib_process_insn (rtx insn)
|
||
{
|
||
int i;
|
||
rtx x;
|
||
|
||
if (find_reg_note (insn, REG_LIBCALL, NULL))
|
||
cselib_current_insn_in_libcall = true;
|
||
cselib_current_insn = insn;
|
||
|
||
/* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
|
||
if (LABEL_P (insn)
|
||
|| (CALL_P (insn)
|
||
&& find_reg_note (insn, REG_SETJMP, NULL))
|
||
|| (NONJUMP_INSN_P (insn)
|
||
&& GET_CODE (PATTERN (insn)) == ASM_OPERANDS
|
||
&& MEM_VOLATILE_P (PATTERN (insn))))
|
||
{
|
||
if (find_reg_note (insn, REG_RETVAL, NULL))
|
||
cselib_current_insn_in_libcall = false;
|
||
cselib_clear_table ();
|
||
return;
|
||
}
|
||
|
||
if (! INSN_P (insn))
|
||
{
|
||
if (find_reg_note (insn, REG_RETVAL, NULL))
|
||
cselib_current_insn_in_libcall = false;
|
||
cselib_current_insn = 0;
|
||
return;
|
||
}
|
||
|
||
/* If this is a call instruction, forget anything stored in a
|
||
call clobbered register, or, if this is not a const call, in
|
||
memory. */
|
||
if (CALL_P (insn))
|
||
{
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (call_used_regs[i]
|
||
|| (REG_VALUES (i) && REG_VALUES (i)->elt
|
||
&& HARD_REGNO_CALL_PART_CLOBBERED (i,
|
||
GET_MODE (REG_VALUES (i)->elt->u.val_rtx))))
|
||
cselib_invalidate_regno (i, reg_raw_mode[i]);
|
||
|
||
if (! CONST_OR_PURE_CALL_P (insn))
|
||
cselib_invalidate_mem (callmem);
|
||
}
|
||
|
||
cselib_record_sets (insn);
|
||
|
||
#ifdef AUTO_INC_DEC
|
||
/* Clobber any registers which appear in REG_INC notes. We
|
||
could keep track of the changes to their values, but it is
|
||
unlikely to help. */
|
||
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
|
||
if (REG_NOTE_KIND (x) == REG_INC)
|
||
cselib_invalidate_rtx (XEXP (x, 0));
|
||
#endif
|
||
|
||
/* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
|
||
after we have processed the insn. */
|
||
if (CALL_P (insn))
|
||
for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
|
||
if (GET_CODE (XEXP (x, 0)) == CLOBBER)
|
||
cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
|
||
|
||
if (find_reg_note (insn, REG_RETVAL, NULL))
|
||
cselib_current_insn_in_libcall = false;
|
||
cselib_current_insn = 0;
|
||
|
||
if (n_useless_values > MAX_USELESS_VALUES
|
||
/* remove_useless_values is linear in the hash table size. Avoid
|
||
quadratic behaviour for very large hashtables with very few
|
||
useless elements. */
|
||
&& (unsigned int)n_useless_values > cselib_hash_table->n_elements / 4)
|
||
remove_useless_values ();
|
||
}
|
||
|
||
/* Initialize cselib for one pass. The caller must also call
|
||
init_alias_analysis. */
|
||
|
||
void
|
||
cselib_init (bool record_memory)
|
||
{
|
||
elt_list_pool = create_alloc_pool ("elt_list",
|
||
sizeof (struct elt_list), 10);
|
||
elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
|
||
sizeof (struct elt_loc_list), 10);
|
||
cselib_val_pool = create_alloc_pool ("cselib_val_list",
|
||
sizeof (cselib_val), 10);
|
||
value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
|
||
cselib_record_memory = record_memory;
|
||
/* This is only created once. */
|
||
if (! callmem)
|
||
callmem = gen_rtx_MEM (BLKmode, const0_rtx);
|
||
|
||
cselib_nregs = max_reg_num ();
|
||
|
||
/* We preserve reg_values to allow expensive clearing of the whole thing.
|
||
Reallocate it however if it happens to be too large. */
|
||
if (!reg_values || reg_values_size < cselib_nregs
|
||
|| (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
|
||
{
|
||
if (reg_values)
|
||
free (reg_values);
|
||
/* Some space for newly emit instructions so we don't end up
|
||
reallocating in between passes. */
|
||
reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
|
||
reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
|
||
}
|
||
used_regs = XNEWVEC (unsigned int, cselib_nregs);
|
||
n_used_regs = 0;
|
||
cselib_hash_table = htab_create (31, get_value_hash,
|
||
entry_and_rtx_equal_p, NULL);
|
||
cselib_current_insn_in_libcall = false;
|
||
}
|
||
|
||
/* Called when the current user is done with cselib. */
|
||
|
||
void
|
||
cselib_finish (void)
|
||
{
|
||
free_alloc_pool (elt_list_pool);
|
||
free_alloc_pool (elt_loc_list_pool);
|
||
free_alloc_pool (cselib_val_pool);
|
||
free_alloc_pool (value_pool);
|
||
cselib_clear_table ();
|
||
htab_delete (cselib_hash_table);
|
||
free (used_regs);
|
||
used_regs = 0;
|
||
cselib_hash_table = 0;
|
||
n_useless_values = 0;
|
||
next_unknown_value = 0;
|
||
}
|
||
|
||
#include "gt-cselib.h"
|