mirror of
https://git.FreeBSD.org/src.git
synced 2024-11-27 08:00:11 +00:00
689 lines
16 KiB
C
689 lines
16 KiB
C
/*-
|
|
* Copyright (C) 1996 Wolfgang Solfrank.
|
|
* Copyright (C) 1996 TooLs GmbH.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by TooLs GmbH.
|
|
* 4. The name of TooLs GmbH may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $NetBSD: fpu.c,v 1.5 2001/07/22 11:29:46 wiz Exp $
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/limits.h>
|
|
|
|
#include <machine/altivec.h>
|
|
#include <machine/fpu.h>
|
|
#include <machine/ieeefp.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/psl.h>
|
|
|
|
#include <powerpc/fpu/fpu_arith.h>
|
|
#include <powerpc/fpu/fpu_emu.h>
|
|
#include <powerpc/fpu/fpu_extern.h>
|
|
|
|
void spe_handle_fpdata(struct trapframe *);
|
|
void spe_handle_fpround(struct trapframe *);
|
|
static int spe_emu_instr(uint32_t, struct fpemu *, struct fpn **, uint32_t *);
|
|
|
|
static void
|
|
save_vec_int(struct thread *td)
|
|
{
|
|
int msr;
|
|
struct pcb *pcb;
|
|
|
|
pcb = td->td_pcb;
|
|
|
|
/*
|
|
* Temporarily re-enable the vector unit during the save
|
|
*/
|
|
msr = mfmsr();
|
|
mtmsr(msr | PSL_VEC);
|
|
|
|
/*
|
|
* Save the vector registers and SPEFSCR to the PCB
|
|
*/
|
|
#define EVSTDW(n) __asm ("evstdw %1,0(%0)" \
|
|
:: "b"(pcb->pcb_vec.vr[n]), "n"(n));
|
|
EVSTDW(0); EVSTDW(1); EVSTDW(2); EVSTDW(3);
|
|
EVSTDW(4); EVSTDW(5); EVSTDW(6); EVSTDW(7);
|
|
EVSTDW(8); EVSTDW(9); EVSTDW(10); EVSTDW(11);
|
|
EVSTDW(12); EVSTDW(13); EVSTDW(14); EVSTDW(15);
|
|
EVSTDW(16); EVSTDW(17); EVSTDW(18); EVSTDW(19);
|
|
EVSTDW(20); EVSTDW(21); EVSTDW(22); EVSTDW(23);
|
|
EVSTDW(24); EVSTDW(25); EVSTDW(26); EVSTDW(27);
|
|
EVSTDW(28); EVSTDW(29); EVSTDW(30); EVSTDW(31);
|
|
#undef EVSTDW
|
|
|
|
__asm ( "evxor 0,0,0\n"
|
|
"evmwumiaa 0,0,0\n"
|
|
"evstdd 0,0(%0)" :: "b"(&pcb->pcb_vec.spare[0]));
|
|
pcb->pcb_vec.vscr = mfspr(SPR_SPEFSCR);
|
|
|
|
/*
|
|
* Disable vector unit again
|
|
*/
|
|
isync();
|
|
mtmsr(msr);
|
|
|
|
}
|
|
|
|
void
|
|
enable_vec(struct thread *td)
|
|
{
|
|
int msr;
|
|
struct pcb *pcb;
|
|
struct trapframe *tf;
|
|
|
|
pcb = td->td_pcb;
|
|
tf = trapframe(td);
|
|
|
|
/*
|
|
* Save the thread's SPE CPU number, and set the CPU's current
|
|
* vector thread
|
|
*/
|
|
td->td_pcb->pcb_veccpu = PCPU_GET(cpuid);
|
|
PCPU_SET(vecthread, td);
|
|
|
|
/*
|
|
* Enable the vector unit for when the thread returns from the
|
|
* exception. If this is the first time the unit has been used by
|
|
* the thread, initialise the vector registers and VSCR to 0, and
|
|
* set the flag to indicate that the vector unit is in use.
|
|
*/
|
|
tf->srr1 |= PSL_VEC;
|
|
if (!(pcb->pcb_flags & PCB_VEC)) {
|
|
memset(&pcb->pcb_vec, 0, sizeof pcb->pcb_vec);
|
|
pcb->pcb_flags |= PCB_VEC;
|
|
pcb->pcb_vec.vscr = mfspr(SPR_SPEFSCR);
|
|
}
|
|
|
|
/*
|
|
* Temporarily enable the vector unit so the registers
|
|
* can be restored.
|
|
*/
|
|
msr = mfmsr();
|
|
mtmsr(msr | PSL_VEC);
|
|
|
|
/* Restore SPEFSCR and ACC. Use %r0 as the scratch for ACC. */
|
|
mtspr(SPR_SPEFSCR, pcb->pcb_vec.vscr);
|
|
__asm __volatile("isync;evldd 0, 0(%0); evmra 0,0\n"
|
|
:: "b"(&pcb->pcb_vec.spare[0]));
|
|
|
|
/*
|
|
* The lower half of each register will be restored on trap return. Use
|
|
* %r0 as a scratch register, and restore it last.
|
|
*/
|
|
#define EVLDW(n) __asm __volatile("evldw 0, 0(%0); evmergehilo "#n",0,"#n \
|
|
:: "b"(&pcb->pcb_vec.vr[n]));
|
|
EVLDW(1); EVLDW(2); EVLDW(3); EVLDW(4);
|
|
EVLDW(5); EVLDW(6); EVLDW(7); EVLDW(8);
|
|
EVLDW(9); EVLDW(10); EVLDW(11); EVLDW(12);
|
|
EVLDW(13); EVLDW(14); EVLDW(15); EVLDW(16);
|
|
EVLDW(17); EVLDW(18); EVLDW(19); EVLDW(20);
|
|
EVLDW(21); EVLDW(22); EVLDW(23); EVLDW(24);
|
|
EVLDW(25); EVLDW(26); EVLDW(27); EVLDW(28);
|
|
EVLDW(29); EVLDW(30); EVLDW(31); EVLDW(0);
|
|
#undef EVLDW
|
|
|
|
isync();
|
|
mtmsr(msr);
|
|
}
|
|
|
|
void
|
|
save_vec(struct thread *td)
|
|
{
|
|
struct pcb *pcb;
|
|
|
|
pcb = td->td_pcb;
|
|
|
|
save_vec_int(td);
|
|
|
|
/*
|
|
* Clear the current vec thread and pcb's CPU id
|
|
* XXX should this be left clear to allow lazy save/restore ?
|
|
*/
|
|
pcb->pcb_veccpu = INT_MAX;
|
|
PCPU_SET(vecthread, NULL);
|
|
}
|
|
|
|
/*
|
|
* Save SPE state without dropping ownership. This will only save state if
|
|
* the current vector-thread is `td'. This is used for taking core dumps, so
|
|
* don't leak kernel information; overwrite the low words of each vector with
|
|
* their real value, taken from the thread's trap frame, unconditionally.
|
|
*/
|
|
void
|
|
save_vec_nodrop(struct thread *td)
|
|
{
|
|
struct pcb *pcb;
|
|
int i;
|
|
|
|
if (td == PCPU_GET(vecthread))
|
|
save_vec_int(td);
|
|
|
|
pcb = td->td_pcb;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
pcb->pcb_vec.vr[i][1] =
|
|
td->td_frame ? td->td_frame->fixreg[i] : 0;
|
|
}
|
|
}
|
|
|
|
#define SPE_INST_MASK 0x31f
|
|
#define EADD 0x200
|
|
#define ESUB 0x201
|
|
#define EABS 0x204
|
|
#define ENABS 0x205
|
|
#define ENEG 0x206
|
|
#define EMUL 0x208
|
|
#define EDIV 0x209
|
|
#define ECMPGT 0x20c
|
|
#define ECMPLT 0x20d
|
|
#define ECMPEQ 0x20e
|
|
#define ECFUI 0x210
|
|
#define ECFSI 0x211
|
|
#define ECTUI 0x214
|
|
#define ECTSI 0x215
|
|
#define ECTUF 0x216
|
|
#define ECTSF 0x217
|
|
#define ECTUIZ 0x218
|
|
#define ECTSIZ 0x21a
|
|
|
|
#define SPE 0x4
|
|
#define SPFP 0x6
|
|
#define DPFP 0x7
|
|
|
|
#define SPE_OPC 4
|
|
#define OPC_SHIFT 26
|
|
|
|
#define EVFSADD 0x280
|
|
#define EVFSSUB 0x281
|
|
#define EVFSABS 0x284
|
|
#define EVFSNABS 0x285
|
|
#define EVFSNEG 0x286
|
|
#define EVFSMUL 0x288
|
|
#define EVFSDIV 0x289
|
|
#define EVFSCMPGT 0x28c
|
|
#define EVFSCMPLT 0x28d
|
|
#define EVFSCMPEQ 0x28e
|
|
#define EVFSCFUI 0x290
|
|
#define EVFSCFSI 0x291
|
|
#define EVFSCTUI 0x294
|
|
#define EVFSCTSI 0x295
|
|
#define EVFSCTUF 0x296
|
|
#define EVFSCTSF 0x297
|
|
#define EVFSCTUIZ 0x298
|
|
#define EVFSCTSIZ 0x29a
|
|
|
|
#define EFSADD 0x2c0
|
|
#define EFSSUB 0x2c1
|
|
#define EFSABS 0x2c4
|
|
#define EFSNABS 0x2c5
|
|
#define EFSNEG 0x2c6
|
|
#define EFSMUL 0x2c8
|
|
#define EFSDIV 0x2c9
|
|
#define EFSCMPGT 0x2cc
|
|
#define EFSCMPLT 0x2cd
|
|
#define EFSCMPEQ 0x2ce
|
|
#define EFSCFD 0x2cf
|
|
#define EFSCFUI 0x2d0
|
|
#define EFSCFSI 0x2d1
|
|
#define EFSCTUI 0x2d4
|
|
#define EFSCTSI 0x2d5
|
|
#define EFSCTUF 0x2d6
|
|
#define EFSCTSF 0x2d7
|
|
#define EFSCTUIZ 0x2d8
|
|
#define EFSCTSIZ 0x2da
|
|
|
|
#define EFDADD 0x2e0
|
|
#define EFDSUB 0x2e1
|
|
#define EFDABS 0x2e4
|
|
#define EFDNABS 0x2e5
|
|
#define EFDNEG 0x2e6
|
|
#define EFDMUL 0x2e8
|
|
#define EFDDIV 0x2e9
|
|
#define EFDCMPGT 0x2ec
|
|
#define EFDCMPLT 0x2ed
|
|
#define EFDCMPEQ 0x2ee
|
|
#define EFDCFS 0x2ef
|
|
#define EFDCFUI 0x2f0
|
|
#define EFDCFSI 0x2f1
|
|
#define EFDCTUI 0x2f4
|
|
#define EFDCTSI 0x2f5
|
|
#define EFDCTUF 0x2f6
|
|
#define EFDCTSF 0x2f7
|
|
#define EFDCTUIZ 0x2f8
|
|
#define EFDCTSIZ 0x2fa
|
|
|
|
enum {
|
|
NONE,
|
|
SINGLE,
|
|
DOUBLE,
|
|
VECTOR,
|
|
};
|
|
|
|
static uint32_t fpscr_to_spefscr(uint32_t fpscr)
|
|
{
|
|
uint32_t spefscr;
|
|
|
|
spefscr = 0;
|
|
|
|
if (fpscr & FPSCR_VX)
|
|
spefscr |= SPEFSCR_FINV;
|
|
if (fpscr & FPSCR_OX)
|
|
spefscr |= SPEFSCR_FOVF;
|
|
if (fpscr & FPSCR_UX)
|
|
spefscr |= SPEFSCR_FUNF;
|
|
if (fpscr & FPSCR_ZX)
|
|
spefscr |= SPEFSCR_FDBZ;
|
|
if (fpscr & FPSCR_XX)
|
|
spefscr |= SPEFSCR_FX;
|
|
|
|
return (spefscr);
|
|
}
|
|
|
|
/* Sign is 0 for unsigned, 1 for signed. */
|
|
static int
|
|
spe_to_int(struct fpemu *fpemu, struct fpn *fpn, uint32_t *val, int sign)
|
|
{
|
|
uint32_t res[2];
|
|
|
|
res[0] = fpu_ftox(fpemu, fpn, res);
|
|
if (res[0] != UINT_MAX && res[0] != 0)
|
|
fpemu->fe_cx |= FPSCR_OX;
|
|
else if (sign == 0 && res[0] != 0)
|
|
fpemu->fe_cx |= FPSCR_UX;
|
|
else
|
|
*val = res[1];
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Masked instruction */
|
|
/*
|
|
* For compare instructions, returns 1 if success, 0 if not. For all others,
|
|
* returns -1, or -2 if no result needs recorded.
|
|
*/
|
|
static int
|
|
spe_emu_instr(uint32_t instr, struct fpemu *fpemu,
|
|
struct fpn **result, uint32_t *iresult)
|
|
{
|
|
switch (instr & SPE_INST_MASK) {
|
|
case EABS:
|
|
case ENABS:
|
|
case ENEG:
|
|
/* Taken care of elsewhere. */
|
|
break;
|
|
case ECTUIZ:
|
|
fpemu->fe_cx &= ~FPSCR_RN;
|
|
fpemu->fe_cx |= FP_RZ;
|
|
case ECTUI:
|
|
spe_to_int(fpemu, &fpemu->fe_f2, iresult, 0);
|
|
return (-1);
|
|
case ECTSIZ:
|
|
fpemu->fe_cx &= ~FPSCR_RN;
|
|
fpemu->fe_cx |= FP_RZ;
|
|
case ECTSI:
|
|
spe_to_int(fpemu, &fpemu->fe_f2, iresult, 1);
|
|
return (-1);
|
|
case EADD:
|
|
*result = fpu_add(fpemu);
|
|
break;
|
|
case ESUB:
|
|
*result = fpu_sub(fpemu);
|
|
break;
|
|
case EMUL:
|
|
*result = fpu_mul(fpemu);
|
|
break;
|
|
case EDIV:
|
|
*result = fpu_div(fpemu);
|
|
break;
|
|
case ECMPGT:
|
|
fpu_compare(fpemu, 0);
|
|
if (fpemu->fe_cx & FPSCR_FG)
|
|
return (1);
|
|
return (0);
|
|
case ECMPLT:
|
|
fpu_compare(fpemu, 0);
|
|
if (fpemu->fe_cx & FPSCR_FL)
|
|
return (1);
|
|
return (0);
|
|
case ECMPEQ:
|
|
fpu_compare(fpemu, 0);
|
|
if (fpemu->fe_cx & FPSCR_FE)
|
|
return (1);
|
|
return (0);
|
|
default:
|
|
printf("Unknown instruction %x\n", instr);
|
|
}
|
|
|
|
return (-1);
|
|
}
|
|
|
|
static int
|
|
spe_explode(struct fpemu *fe, struct fpn *fp, uint32_t type,
|
|
uint32_t hi, uint32_t lo)
|
|
{
|
|
uint32_t s;
|
|
|
|
fp->fp_sign = hi >> 31;
|
|
fp->fp_sticky = 0;
|
|
switch (type) {
|
|
case SINGLE:
|
|
s = fpu_stof(fp, hi);
|
|
break;
|
|
|
|
case DOUBLE:
|
|
s = fpu_dtof(fp, hi, lo);
|
|
break;
|
|
}
|
|
|
|
if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
|
|
/*
|
|
* Input is a signalling NaN. All operations that return
|
|
* an input NaN operand put it through a ``NaN conversion'',
|
|
* which basically just means ``turn on the quiet bit''.
|
|
* We do this here so that all NaNs internally look quiet
|
|
* (we can tell signalling ones by their class).
|
|
*/
|
|
fp->fp_mant[0] |= FP_QUIETBIT;
|
|
fe->fe_cx = FPSCR_VXSNAN; /* assert invalid operand */
|
|
s = FPC_SNAN;
|
|
}
|
|
fp->fp_class = s;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Save the high word of a 64-bit GPR for manipulation in the exception handler.
|
|
*/
|
|
static uint32_t
|
|
spe_save_reg_high(int reg)
|
|
{
|
|
uint32_t vec[2];
|
|
#define EVSTDW(n) case n: __asm __volatile ("evstdw %1,0(%0)" \
|
|
:: "b"(vec), "n"(n) : "memory"); break;
|
|
switch (reg) {
|
|
EVSTDW(0); EVSTDW(1); EVSTDW(2); EVSTDW(3);
|
|
EVSTDW(4); EVSTDW(5); EVSTDW(6); EVSTDW(7);
|
|
EVSTDW(8); EVSTDW(9); EVSTDW(10); EVSTDW(11);
|
|
EVSTDW(12); EVSTDW(13); EVSTDW(14); EVSTDW(15);
|
|
EVSTDW(16); EVSTDW(17); EVSTDW(18); EVSTDW(19);
|
|
EVSTDW(20); EVSTDW(21); EVSTDW(22); EVSTDW(23);
|
|
EVSTDW(24); EVSTDW(25); EVSTDW(26); EVSTDW(27);
|
|
EVSTDW(28); EVSTDW(29); EVSTDW(30); EVSTDW(31);
|
|
}
|
|
#undef EVSTDW
|
|
|
|
return (vec[0]);
|
|
}
|
|
|
|
/*
|
|
* Load the given value into the high word of the requested register.
|
|
*/
|
|
static void
|
|
spe_load_reg_high(int reg, uint32_t val)
|
|
{
|
|
#define EVLDW(n) case n: __asm __volatile("evmergelo "#n",%0,"#n \
|
|
:: "r"(val)); break;
|
|
switch (reg) {
|
|
EVLDW(1); EVLDW(2); EVLDW(3); EVLDW(4);
|
|
EVLDW(5); EVLDW(6); EVLDW(7); EVLDW(8);
|
|
EVLDW(9); EVLDW(10); EVLDW(11); EVLDW(12);
|
|
EVLDW(13); EVLDW(14); EVLDW(15); EVLDW(16);
|
|
EVLDW(17); EVLDW(18); EVLDW(19); EVLDW(20);
|
|
EVLDW(21); EVLDW(22); EVLDW(23); EVLDW(24);
|
|
EVLDW(25); EVLDW(26); EVLDW(27); EVLDW(28);
|
|
EVLDW(29); EVLDW(30); EVLDW(31); EVLDW(0);
|
|
}
|
|
#undef EVLDW
|
|
|
|
}
|
|
|
|
void
|
|
spe_handle_fpdata(struct trapframe *frame)
|
|
{
|
|
struct fpemu fpemu;
|
|
struct fpn *result;
|
|
uint32_t instr, instr_sec_op;
|
|
uint32_t cr_shift, ra, rb, rd, src;
|
|
uint32_t high, low, res, tmp; /* For vector operations. */
|
|
uint32_t spefscr = 0;
|
|
uint32_t ftod_res[2];
|
|
int width; /* Single, Double, Vector, Integer */
|
|
int err;
|
|
uint32_t msr;
|
|
|
|
err = fueword32((void *)frame->srr0, &instr);
|
|
|
|
if (err != 0)
|
|
return;
|
|
/* Fault. */;
|
|
|
|
if ((instr >> OPC_SHIFT) != SPE_OPC)
|
|
return;
|
|
|
|
msr = mfmsr();
|
|
/*
|
|
* 'cr' field is the upper 3 bits of rd. Magically, since a) rd is 5
|
|
* bits, b) each 'cr' field is 4 bits, and c) Only the 'GT' bit is
|
|
* modified for most compare operations, the full value of rd can be
|
|
* used as a shift value.
|
|
*/
|
|
rd = (instr >> 21) & 0x1f;
|
|
ra = (instr >> 16) & 0x1f;
|
|
rb = (instr >> 11) & 0x1f;
|
|
src = (instr >> 5) & 0x7;
|
|
cr_shift = 28 - (rd & 0x1f);
|
|
|
|
instr_sec_op = (instr & 0x7ff);
|
|
|
|
memset(&fpemu, 0, sizeof(fpemu));
|
|
|
|
width = NONE;
|
|
switch (src) {
|
|
case SPE:
|
|
mtmsr(msr | PSL_VEC);
|
|
switch (instr_sec_op) {
|
|
case EVFSABS:
|
|
high = spe_save_reg_high(ra) & ~(1U << 31);
|
|
frame->fixreg[rd] = frame->fixreg[ra] & ~(1U << 31);
|
|
spe_load_reg_high(rd, high);
|
|
break;
|
|
case EVFSNABS:
|
|
high = spe_save_reg_high(ra) | (1U << 31);
|
|
frame->fixreg[rd] = frame->fixreg[ra] | (1U << 31);
|
|
spe_load_reg_high(rd, high);
|
|
break;
|
|
case EVFSNEG:
|
|
high = spe_save_reg_high(ra) ^ (1U << 31);
|
|
frame->fixreg[rd] = frame->fixreg[ra] ^ (1U << 31);
|
|
spe_load_reg_high(rd, high);
|
|
break;
|
|
default:
|
|
/* High word */
|
|
spe_explode(&fpemu, &fpemu.fe_f1, SINGLE,
|
|
spe_save_reg_high(ra), 0);
|
|
spe_explode(&fpemu, &fpemu.fe_f2, SINGLE,
|
|
spe_save_reg_high(rb), 0);
|
|
high = spe_emu_instr(instr_sec_op, &fpemu, &result,
|
|
&tmp);
|
|
|
|
if (high < 0)
|
|
spe_load_reg_high(rd, tmp);
|
|
|
|
spefscr = fpscr_to_spefscr(fpemu.fe_cx) << 16;
|
|
/* Clear the fpemu to start over on the lower bits. */
|
|
memset(&fpemu, 0, sizeof(fpemu));
|
|
|
|
/* Now low word */
|
|
spe_explode(&fpemu, &fpemu.fe_f1, SINGLE,
|
|
frame->fixreg[ra], 0);
|
|
spe_explode(&fpemu, &fpemu.fe_f2, SINGLE,
|
|
frame->fixreg[rb], 0);
|
|
spefscr |= fpscr_to_spefscr(fpemu.fe_cx);
|
|
low = spe_emu_instr(instr_sec_op, &fpemu, &result,
|
|
&frame->fixreg[rd]);
|
|
if (instr_sec_op == EVFSCMPEQ ||
|
|
instr_sec_op == EVFSCMPGT ||
|
|
instr_sec_op == EVFSCMPLT) {
|
|
res = (high << 3) | (low << 2) |
|
|
((high | low) << 1) | (high & low);
|
|
width = NONE;
|
|
} else
|
|
width = VECTOR;
|
|
break;
|
|
}
|
|
goto end;
|
|
|
|
case SPFP:
|
|
switch (instr_sec_op) {
|
|
case EFSABS:
|
|
frame->fixreg[rd] = frame->fixreg[ra] & ~(1U << 31);
|
|
break;
|
|
case EFSNABS:
|
|
frame->fixreg[rd] = frame->fixreg[ra] | (1U << 31);
|
|
break;
|
|
case EFSNEG:
|
|
frame->fixreg[rd] = frame->fixreg[ra] ^ (1U << 31);
|
|
break;
|
|
case EFSCFD:
|
|
mtmsr(msr | PSL_VEC);
|
|
spe_explode(&fpemu, &fpemu.fe_f3, DOUBLE,
|
|
spe_save_reg_high(rb), frame->fixreg[rb]);
|
|
result = &fpemu.fe_f3;
|
|
width = SINGLE;
|
|
break;
|
|
default:
|
|
spe_explode(&fpemu, &fpemu.fe_f1, SINGLE,
|
|
frame->fixreg[ra], 0);
|
|
spe_explode(&fpemu, &fpemu.fe_f2, SINGLE,
|
|
frame->fixreg[rb], 0);
|
|
width = SINGLE;
|
|
}
|
|
break;
|
|
case DPFP:
|
|
mtmsr(msr | PSL_VEC);
|
|
switch (instr_sec_op) {
|
|
case EFDABS:
|
|
high = spe_save_reg_high(ra) & ~(1U << 31);
|
|
frame->fixreg[rd] = frame->fixreg[ra];
|
|
spe_load_reg_high(rd, high);
|
|
break;
|
|
case EFDNABS:
|
|
high = spe_save_reg_high(ra) | (1U << 31);
|
|
frame->fixreg[rd] = frame->fixreg[ra];
|
|
spe_load_reg_high(rd, high);
|
|
break;
|
|
case EFDNEG:
|
|
high = spe_save_reg_high(ra) ^ (1U << 31);
|
|
frame->fixreg[rd] = frame->fixreg[ra];
|
|
spe_load_reg_high(rd, high);
|
|
break;
|
|
case EFDCFS:
|
|
spe_explode(&fpemu, &fpemu.fe_f3, SINGLE,
|
|
frame->fixreg[rb], 0);
|
|
result = &fpemu.fe_f3;
|
|
width = DOUBLE;
|
|
break;
|
|
default:
|
|
spe_explode(&fpemu, &fpemu.fe_f1, DOUBLE,
|
|
spe_save_reg_high(ra), frame->fixreg[ra]);
|
|
spe_explode(&fpemu, &fpemu.fe_f2, DOUBLE,
|
|
spe_save_reg_high(rb), frame->fixreg[rb]);
|
|
width = DOUBLE;
|
|
}
|
|
break;
|
|
}
|
|
switch (instr_sec_op) {
|
|
case EFDCFS:
|
|
case EFSCFD:
|
|
/* Already handled. */
|
|
break;
|
|
default:
|
|
res = spe_emu_instr(instr_sec_op, &fpemu, &result,
|
|
&frame->fixreg[rd]);
|
|
if (res != -1)
|
|
res <<= 2;
|
|
break;
|
|
}
|
|
|
|
switch (instr_sec_op & SPE_INST_MASK) {
|
|
case ECMPEQ:
|
|
case ECMPGT:
|
|
case ECMPLT:
|
|
frame->cr &= ~(0xf << cr_shift);
|
|
frame->cr |= (res << cr_shift);
|
|
break;
|
|
case ECTUI:
|
|
case ECTUIZ:
|
|
case ECTSI:
|
|
case ECTSIZ:
|
|
break;
|
|
default:
|
|
switch (width) {
|
|
case NONE:
|
|
case VECTOR:
|
|
break;
|
|
case SINGLE:
|
|
frame->fixreg[rd] = fpu_ftos(&fpemu, result);
|
|
break;
|
|
case DOUBLE:
|
|
spe_load_reg_high(rd, fpu_ftod(&fpemu, result, ftod_res));
|
|
frame->fixreg[rd] = ftod_res[1];
|
|
break;
|
|
default:
|
|
panic("Unknown storage width %d", width);
|
|
break;
|
|
}
|
|
}
|
|
|
|
end:
|
|
spefscr |= (mfspr(SPR_SPEFSCR) & ~SPEFSCR_FINVS);
|
|
mtspr(SPR_SPEFSCR, spefscr);
|
|
frame->srr0 += 4;
|
|
mtmsr(msr);
|
|
|
|
return;
|
|
}
|
|
|
|
void
|
|
spe_handle_fpround(struct trapframe *frame)
|
|
{
|
|
|
|
/*
|
|
* Punt fpround exceptions for now. This leaves the truncated result in
|
|
* the register. We'll deal with overflow/underflow later.
|
|
*/
|
|
return;
|
|
}
|