1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-11-25 07:49:18 +00:00
freebsd/stand/libsa/smbios.c
Warner Losh 1d386b48a5 Remove $FreeBSD$: one-line .c pattern
Remove /^[\s*]*__FBSDID\("\$FreeBSD\$"\);?\s*\n/
2023-08-16 11:54:42 -06:00

654 lines
18 KiB
C

/*-
* Copyright (c) 2005-2009 Jung-uk Kim <jkim@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include <stand.h>
#include <sys/endian.h>
#define PTOV(x) ptov(x)
/* Only enable 64-bit entry point if it makes sense */
#if __SIZEOF_POINTER__ > 4
#define HAS_SMBV3 1
#endif
/*
* Detect SMBIOS and export information about the SMBIOS into the
* environment.
*
* System Management BIOS Reference Specification, v2.6 Final
* http://www.dmtf.org/standards/published_documents/DSP0134_2.6.0.pdf
*
* System Management BIOS (SMBIOS) Reference Specification, 3.6.0
* https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_3.6.0.pdf
*/
/*
* The first quoted paragraph below can also be found in section 2.1.1 SMBIOS
* Structure Table Entry Point of System Management BIOS Reference
* Specification, v2.6 Final
*
* (From System Management BIOS (SMBIOS) Reference Specification, 3.6.0)
* 5.2.1 SMBIOS 2.1 (32-bit) Entry Point
*
* "On non-UEFI systems, the 32-bit SMBIOS Entry Point structure, can be
* located by application software by searching for the anchor-string on
* paragraph (16-byte) boundaries within the physical memory address
* range 000F0000h to 000FFFFFh. This entry point encapsulates an intermediate
* anchor string that is used by some existing DMI browsers.
*
* On UEFI-based systems, the SMBIOS Entry Point structure can be located by
* looking in the EFI Configuration Table for the SMBIOS GUID
* (SMBIOS_TABLE_GUID, {EB9D2D31-2D88-11D3-9A16-0090273FC14D}) and using the
* associated pointer. See section 4.6 of the UEFI Specification for details.
* See section 2.3 of the UEFI Specification for how to report the containing
* memory type.
*
* NOTE While the SMBIOS Major and Minor Versions (offsets 06h and 07h)
* currently duplicate the information that is present in the SMBIOS BCD
* Revision (offset 1Eh), they provide a path for future growth in this
* specification. The BCD Revision, for example, provides only a single digit
* for each of the major and minor version numbers."
*
* 5.2.2 SMBIOS 860 3.0 (64-bit) Entry Point
*
* "On non-UEFI systems, the 64-bit SMBIOS Entry Point structure can be located
* by application software by searching for the anchor-string on paragraph
* (16-byte) boundaries within the physical memory address range 000F0000h to
* 000FFFFFh.
*
* On UEFI-based systems, the SMBIOS Entry Point structure can be located by
* looking in the EFI Configuration Table for the SMBIOS 3.x GUID
* (SMBIOS3_TABLE_GUID, {F2FD1544-9794-4A2C-992E-E5BBCF20E394}) and using the
* associated pointer. See section 4.6 of the UEFI Specification for details.
* See section 2.3 of the UEFI Specification for how to report the containing
* memory type."
*/
#define SMBIOS_START 0xf0000
#define SMBIOS_LENGTH 0x10000
#define SMBIOS_STEP 0x10
#define SMBIOS_SIG "_SM_"
#define SMBIOS3_SIG "_SM3_"
#define SMBIOS_DMI_SIG "_DMI_"
/*
* 5.1 General
*...
* NOTE The Entry Point Structure and all SMBIOS structures assume a
* little-endian ordering convention...
* ...
*
* We use memcpy to avoid unaligned access to memory. To normal memory, this is
* fine, but the memory we are using might be mmap'd /dev/mem which under Linux
* on aarch64 doesn't allow unaligned access. leXdec and friends can't be used
* because those can optimize to an unaligned load (which often is fine, but not
* for mmap'd /dev/mem which has special memory attributes).
*/
static inline uint8_t SMBIOS_GET8(const caddr_t base, int off) { return (base[off]); }
static inline uint16_t
SMBIOS_GET16(const caddr_t base, int off)
{
uint16_t v;
memcpy(&v, base + off, sizeof(v));
return (le16toh(v));
}
static inline uint32_t
SMBIOS_GET32(const caddr_t base, int off)
{
uint32_t v;
memcpy(&v, base + off, sizeof(v));
return (le32toh(v));
}
static inline uint64_t
SMBIOS_GET64(const caddr_t base, int off)
{
uint64_t v;
memcpy(&v, base + off, sizeof(v));
return (le64toh(v));
}
#define SMBIOS_GETLEN(base) SMBIOS_GET8(base, 0x01)
#define SMBIOS_GETSTR(base) ((base) + SMBIOS_GETLEN(base))
struct smbios_attr {
int probed;
caddr_t addr;
size_t length;
size_t count;
int major;
int minor;
int ver;
const char* bios_vendor;
const char* maker;
const char* product;
uint32_t enabled_memory;
uint32_t old_enabled_memory;
uint8_t enabled_sockets;
uint8_t populated_sockets;
};
static struct smbios_attr smbios;
#ifdef HAS_SMBV3
static int isv3;
#endif
static uint8_t
smbios_checksum(const caddr_t addr, const uint8_t len)
{
uint8_t sum;
int i;
for (sum = 0, i = 0; i < len; i++)
sum += SMBIOS_GET8(addr, i);
return (sum);
}
static caddr_t
smbios_sigsearch(const caddr_t addr, const uint32_t len)
{
caddr_t cp;
/* Search on 16-byte boundaries. */
for (cp = addr; cp < addr + len; cp += SMBIOS_STEP) {
/* v2.1, 32-bit Entry point */
if (strncmp(cp, SMBIOS_SIG, sizeof(SMBIOS_SIG) - 1) == 0 &&
smbios_checksum(cp, SMBIOS_GET8(cp, 0x05)) == 0 &&
strncmp(cp + 0x10, SMBIOS_DMI_SIG, 5) == 0 &&
smbios_checksum(cp + 0x10, 0x0f) == 0)
return (cp);
#ifdef HAS_SMBV3
/* v3.0, 64-bit Entry point */
if (strncmp(cp, SMBIOS3_SIG, sizeof(SMBIOS3_SIG) - 1) == 0 &&
smbios_checksum(cp, SMBIOS_GET8(cp, 0x06)) == 0) {
isv3 = 1;
return (cp);
}
#endif
}
return (NULL);
}
static const char*
smbios_getstring(caddr_t addr, const int offset)
{
caddr_t cp;
int i, idx;
idx = SMBIOS_GET8(addr, offset);
if (idx != 0) {
cp = SMBIOS_GETSTR(addr);
for (i = 1; i < idx; i++)
cp += strlen(cp) + 1;
return cp;
}
return (NULL);
}
static void
smbios_setenv(const char *name, caddr_t addr, const int offset)
{
const char* val;
val = smbios_getstring(addr, offset);
if (val != NULL)
setenv(name, val, 1);
}
#ifdef SMBIOS_SERIAL_NUMBERS
#define UUID_SIZE 16
#define UUID_TYPE uint32_t
#define UUID_STEP sizeof(UUID_TYPE)
#define UUID_ALL_BITS (UUID_SIZE / UUID_STEP)
#define UUID_GET(base, off) SMBIOS_GET32(base, off)
static void
smbios_setuuid(const char *name, const caddr_t addr, const int ver __unused)
{
char uuid[37];
int byteorder, i, ones, zeros;
UUID_TYPE n;
uint32_t f1;
uint16_t f2, f3;
for (i = 0, ones = 0, zeros = 0; i < UUID_SIZE; i += UUID_STEP) {
n = UUID_GET(addr, i) + 1;
if (zeros == 0 && n == 0)
ones++;
else if (ones == 0 && n == 1)
zeros++;
else
break;
}
if (ones != UUID_ALL_BITS && zeros != UUID_ALL_BITS) {
/*
* 3.3.2.1 System UUID
*
* "Although RFC 4122 recommends network byte order for all
* fields, the PC industry (including the ACPI, UEFI, and
* Microsoft specifications) has consistently used
* little-endian byte encoding for the first three fields:
* time_low, time_mid, time_hi_and_version. The same encoding,
* also known as wire format, should also be used for the
* SMBIOS representation of the UUID."
*
* Note: We use network byte order for backward compatibility
* unless SMBIOS version is 2.6+ or little-endian is forced.
*/
#if defined(SMBIOS_LITTLE_ENDIAN_UUID)
byteorder = LITTLE_ENDIAN;
#elif defined(SMBIOS_NETWORK_ENDIAN_UUID)
byteorder = BIG_ENDIAN;
#else
byteorder = ver < 0x0206 ? BIG_ENDIAN : LITTLE_ENDIAN;
#endif
if (byteorder != LITTLE_ENDIAN) {
f1 = ntohl(SMBIOS_GET32(addr, 0));
f2 = ntohs(SMBIOS_GET16(addr, 4));
f3 = ntohs(SMBIOS_GET16(addr, 6));
} else {
f1 = le32toh(SMBIOS_GET32(addr, 0));
f2 = le16toh(SMBIOS_GET16(addr, 4));
f3 = le16toh(SMBIOS_GET16(addr, 6));
}
sprintf(uuid,
"%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
f1, f2, f3, SMBIOS_GET8(addr, 8), SMBIOS_GET8(addr, 9),
SMBIOS_GET8(addr, 10), SMBIOS_GET8(addr, 11),
SMBIOS_GET8(addr, 12), SMBIOS_GET8(addr, 13),
SMBIOS_GET8(addr, 14), SMBIOS_GET8(addr, 15));
setenv(name, uuid, 1);
}
}
#undef UUID_SIZE
#undef UUID_TYPE
#undef UUID_STEP
#undef UUID_ALL_BITS
#undef UUID_GET
#endif
static const char *
smbios_parse_chassis_type(caddr_t addr)
{
int type;
type = SMBIOS_GET8(addr, 0x5);
switch (type) {
case 0x1:
return ("Other");
case 0x2:
return ("Unknown");
case 0x3:
return ("Desktop");
case 0x4:
return ("Low Profile Desktop");
case 0x5:
return ("Pizza Box");
case 0x6:
return ("Mini Tower");
case 0x7:
return ("Tower");
case 0x8:
return ("Portable");
case 0x9:
return ("Laptop");
case 0xA:
return ("Notebook");
case 0xB:
return ("Hand Held");
case 0xC:
return ("Docking Station");
case 0xD:
return ("All in One");
case 0xE:
return ("Sub Notebook");
case 0xF:
return ("Lunch Box");
case 0x10:
return ("Space-saving");
case 0x11:
return ("Main Server Chassis");
case 0x12:
return ("Expansion Chassis");
case 0x13:
return ("SubChassis");
case 0x14:
return ("Bus Expansion Chassis");
case 0x15:
return ("Peripheral Chassis");
case 0x16:
return ("RAID Chassis");
case 0x17:
return ("Rack Mount Chassis");
case 0x18:
return ("Sealed-case PC");
case 0x19:
return ("Multi-system chassis");
case 0x1A:
return ("Compact PCI");
case 0x1B:
return ("Advanced TCA");
case 0x1C:
return ("Blade");
case 0x1D:
return ("Blade Enclosure");
case 0x1E:
return ("Tablet");
case 0x1F:
return ("Convertible");
case 0x20:
return ("Detachable");
case 0x21:
return ("IoT Gateway");
case 0x22:
return ("Embedded PC");
case 0x23:
return ("Mini PC");
case 0x24:
return ("Stick PC");
}
return ("Undefined");
}
static caddr_t
smbios_parse_table(const caddr_t addr)
{
caddr_t cp;
int proc, size, osize, type;
uint8_t bios_minor, bios_major;
char buf[16];
type = SMBIOS_GET8(addr, 0); /* 3.1.2 Structure Header Format */
switch(type) {
case 0: /* 3.3.1 BIOS Information (Type 0) */
smbios_setenv("smbios.bios.vendor", addr, 0x04);
smbios_setenv("smbios.bios.version", addr, 0x05);
smbios_setenv("smbios.bios.reldate", addr, 0x08);
bios_major = SMBIOS_GET8(addr, 0x14);
bios_minor = SMBIOS_GET8(addr, 0x15);
if (bios_minor != 0xFF && bios_major != 0xFF) {
snprintf(buf, sizeof(buf), "%u.%u",
bios_major, bios_minor);
setenv("smbios.bios.revision", buf, 1);
}
break;
case 1: /* 3.3.2 System Information (Type 1) */
smbios_setenv("smbios.system.maker", addr, 0x04);
smbios_setenv("smbios.system.product", addr, 0x05);
smbios_setenv("smbios.system.version", addr, 0x06);
#ifdef SMBIOS_SERIAL_NUMBERS
smbios_setenv("smbios.system.serial", addr, 0x07);
smbios_setuuid("smbios.system.uuid", addr + 0x08, smbios.ver);
#endif
if (smbios.major > 2 ||
(smbios.major == 2 && smbios.minor >= 4)) {
smbios_setenv("smbios.system.sku", addr, 0x19);
smbios_setenv("smbios.system.family", addr, 0x1a);
}
break;
case 2: /* 3.3.3 Base Board (or Module) Information (Type 2) */
smbios_setenv("smbios.planar.maker", addr, 0x04);
smbios_setenv("smbios.planar.product", addr, 0x05);
smbios_setenv("smbios.planar.version", addr, 0x06);
#ifdef SMBIOS_SERIAL_NUMBERS
smbios_setenv("smbios.planar.serial", addr, 0x07);
smbios_setenv("smbios.planar.tag", addr, 0x08);
#endif
smbios_setenv("smbios.planar.location", addr, 0x0a);
break;
case 3: /* 3.3.4 System Enclosure or Chassis (Type 3) */
smbios_setenv("smbios.chassis.maker", addr, 0x04);
setenv("smbios.chassis.type", smbios_parse_chassis_type(addr), 1);
smbios_setenv("smbios.chassis.version", addr, 0x06);
#ifdef SMBIOS_SERIAL_NUMBERS
smbios_setenv("smbios.chassis.serial", addr, 0x07);
smbios_setenv("smbios.chassis.tag", addr, 0x08);
#endif
break;
case 4: /* 3.3.5 Processor Information (Type 4) */
/*
* Offset 18h: Processor Status
*
* Bit 7 Reserved, must be 0
* Bit 6 CPU Socket Populated
* 1 - CPU Socket Populated
* 0 - CPU Socket Unpopulated
* Bit 5:3 Reserved, must be zero
* Bit 2:0 CPU Status
* 0h - Unknown
* 1h - CPU Enabled
* 2h - CPU Disabled by User via BIOS Setup
* 3h - CPU Disabled by BIOS (POST Error)
* 4h - CPU is Idle, waiting to be enabled
* 5-6h - Reserved
* 7h - Other
*/
proc = SMBIOS_GET8(addr, 0x18);
if ((proc & 0x07) == 1)
smbios.enabled_sockets++;
if ((proc & 0x40) != 0)
smbios.populated_sockets++;
break;
case 6: /* 3.3.7 Memory Module Information (Type 6, Obsolete) */
/*
* Offset 0Ah: Enabled Size
*
* Bit 7 Bank connection
* 1 - Double-bank connection
* 0 - Single-bank connection
* Bit 6:0 Size (n), where 2**n is the size in MB
* 7Dh - Not determinable (Installed Size only)
* 7Eh - Module is installed, but no memory
* has been enabled
* 7Fh - Not installed
*/
osize = SMBIOS_GET8(addr, 0x0a) & 0x7f;
if (osize > 0 && osize < 22)
smbios.old_enabled_memory += 1 << (osize + 10);
break;
case 17: /* 3.3.18 Memory Device (Type 17) */
/*
* Offset 0Ch: Size
*
* Bit 15 Granularity
* 1 - Value is in kilobytes units
* 0 - Value is in megabytes units
* Bit 14:0 Size
*/
size = SMBIOS_GET16(addr, 0x0c);
if (size != 0 && size != 0xffff)
smbios.enabled_memory += (size & 0x8000) != 0 ?
(size & 0x7fff) : (size << 10);
break;
default: /* skip other types */
break;
}
/* Find structure terminator. */
cp = SMBIOS_GETSTR(addr);
while (SMBIOS_GET16(cp, 0) != 0)
cp++;
return (cp + 2);
}
static caddr_t
smbios_find_struct(int type)
{
caddr_t dmi;
size_t i;
caddr_t ep;
if (smbios.addr == NULL)
return (NULL);
ep = smbios.addr + smbios.length;
for (dmi = smbios.addr, i = 0;
dmi < ep && i < smbios.count; i++) {
if (SMBIOS_GET8(dmi, 0) == type) {
return dmi;
}
/* Find structure terminator. */
dmi = SMBIOS_GETSTR(dmi);
while (SMBIOS_GET16(dmi, 0) != 0 && dmi < ep) {
dmi++;
}
dmi += 2; /* For checksum */
}
return (NULL);
}
static void
smbios_probe(const caddr_t addr)
{
caddr_t saddr, info;
uintptr_t paddr;
int maj_off;
int min_off;
if (smbios.probed)
return;
smbios.probed = 1;
/* Search signatures and validate checksums. */
saddr = smbios_sigsearch(addr ? addr : PTOV(SMBIOS_START),
SMBIOS_LENGTH);
if (saddr == NULL)
return;
#ifdef HAS_SMBV3
if (isv3) {
smbios.length = SMBIOS_GET32(saddr, 0x0c); /* Structure Table Length */
paddr = SMBIOS_GET64(saddr, 0x10); /* Structure Table Address */
smbios.count = -1; /* not present in V3 */
smbios.ver = 0; /* not present in V3 */
maj_off = 0x07;
min_off = 0x08;
} else
#endif
{
smbios.length = SMBIOS_GET16(saddr, 0x16); /* Structure Table Length */
paddr = SMBIOS_GET32(saddr, 0x18); /* Structure Table Address */
smbios.count = SMBIOS_GET16(saddr, 0x1c); /* No of SMBIOS Structures */
smbios.ver = SMBIOS_GET8(saddr, 0x1e); /* SMBIOS BCD Revision */
maj_off = 0x06;
min_off = 0x07;
}
if (smbios.ver != 0) {
smbios.major = smbios.ver >> 4;
smbios.minor = smbios.ver & 0x0f;
if (smbios.major > 9 || smbios.minor > 9)
smbios.ver = 0;
}
if (smbios.ver == 0) {
smbios.major = SMBIOS_GET8(saddr, maj_off);/* SMBIOS Major Version */
smbios.minor = SMBIOS_GET8(saddr, min_off);/* SMBIOS Minor Version */
}
smbios.ver = (smbios.major << 8) | smbios.minor;
smbios.addr = PTOV(paddr);
/* Get system information from SMBIOS */
info = smbios_find_struct(0x00);
if (info != NULL) {
smbios.bios_vendor = smbios_getstring(info, 0x04);
}
info = smbios_find_struct(0x01);
if (info != NULL) {
smbios.maker = smbios_getstring(info, 0x04);
smbios.product = smbios_getstring(info, 0x05);
}
}
void
smbios_detect(const caddr_t addr)
{
char buf[16];
caddr_t dmi;
size_t i;
smbios_probe(addr);
if (smbios.addr == NULL)
return;
for (dmi = smbios.addr, i = 0;
dmi < smbios.addr + smbios.length && i < smbios.count; i++)
dmi = smbios_parse_table(dmi);
sprintf(buf, "%d.%d", smbios.major, smbios.minor);
setenv("smbios.version", buf, 1);
if (smbios.enabled_memory > 0 || smbios.old_enabled_memory > 0) {
sprintf(buf, "%u", smbios.enabled_memory > 0 ?
smbios.enabled_memory : smbios.old_enabled_memory);
setenv("smbios.memory.enabled", buf, 1);
}
if (smbios.enabled_sockets > 0) {
sprintf(buf, "%u", smbios.enabled_sockets);
setenv("smbios.socket.enabled", buf, 1);
}
if (smbios.populated_sockets > 0) {
sprintf(buf, "%u", smbios.populated_sockets);
setenv("smbios.socket.populated", buf, 1);
}
}
static int
smbios_match_str(const char* s1, const char* s2)
{
return (s1 == NULL || (s2 != NULL && !strcmp(s1, s2)));
}
int
smbios_match(const char* bios_vendor, const char* maker,
const char* product)
{
/* XXXRP currently, only called from non-EFI. */
smbios_probe(NULL);
return (smbios_match_str(bios_vendor, smbios.bios_vendor) &&
smbios_match_str(maker, smbios.maker) &&
smbios_match_str(product, smbios.product));
}