1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-29 12:03:03 +00:00
freebsd/sys/dev/nge/if_nge.c
Pyun YongHyeon a2621dd29b Receive filter configuration is done in nge_rxfilter(). Remove
unnecessary filter configuration code in nge_init_locked().
While I'm here add a check for driver running state for multicast
filter handling.  Also remove unnecessary assignment to error
variable since it is cleared in the function entry.

Suggested by:	brad@OpenBSD.org
2015-01-12 07:43:19 +00:00

2738 lines
72 KiB
C

/*-
* Copyright (c) 2001 Wind River Systems
* Copyright (c) 1997, 1998, 1999, 2000, 2001
* Bill Paul <wpaul@bsdi.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* National Semiconductor DP83820/DP83821 gigabit ethernet driver
* for FreeBSD. Datasheets are available from:
*
* http://www.national.com/ds/DP/DP83820.pdf
* http://www.national.com/ds/DP/DP83821.pdf
*
* These chips are used on several low cost gigabit ethernet NICs
* sold by D-Link, Addtron, SMC and Asante. Both parts are
* virtually the same, except the 83820 is a 64-bit/32-bit part,
* while the 83821 is 32-bit only.
*
* Many cards also use National gigE transceivers, such as the
* DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
* contains a full register description that applies to all of these
* components:
*
* http://www.national.com/ds/DP/DP83861.pdf
*
* Written by Bill Paul <wpaul@bsdi.com>
* BSDi Open Source Solutions
*/
/*
* The NatSemi DP83820 and 83821 controllers are enhanced versions
* of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
* and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
* ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
* hardware checksum offload (IPv4 only), VLAN tagging and filtering,
* priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
* matching buffers, one perfect address filter buffer and interrupt
* moderation. The 83820 supports both 64-bit and 32-bit addressing
* and data transfers: the 64-bit support can be toggled on or off
* via software. This affects the size of certain fields in the DMA
* descriptors.
*
* There are two bugs/misfeatures in the 83820/83821 that I have
* discovered so far:
*
* - Receive buffers must be aligned on 64-bit boundaries, which means
* you must resort to copying data in order to fix up the payload
* alignment.
*
* - In order to transmit jumbo frames larger than 8170 bytes, you have
* to turn off transmit checksum offloading, because the chip can't
* compute the checksum on an outgoing frame unless it fits entirely
* within the TX FIFO, which is only 8192 bytes in size. If you have
* TX checksum offload enabled and you transmit attempt to transmit a
* frame larger than 8170 bytes, the transmitter will wedge.
*
* To work around the latter problem, TX checksum offload is disabled
* if the user selects an MTU larger than 8152 (8170 - 18).
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <dev/mii/mii.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <dev/nge/if_ngereg.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
MODULE_DEPEND(nge, pci, 1, 1, 1);
MODULE_DEPEND(nge, ether, 1, 1, 1);
MODULE_DEPEND(nge, miibus, 1, 1, 1);
#define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
/*
* Various supported device vendors/types and their names.
*/
static const struct nge_type nge_devs[] = {
{ NGE_VENDORID, NGE_DEVICEID,
"National Semiconductor Gigabit Ethernet" },
{ 0, 0, NULL }
};
static int nge_probe(device_t);
static int nge_attach(device_t);
static int nge_detach(device_t);
static int nge_shutdown(device_t);
static int nge_suspend(device_t);
static int nge_resume(device_t);
static __inline void nge_discard_rxbuf(struct nge_softc *, int);
static int nge_newbuf(struct nge_softc *, int);
static int nge_encap(struct nge_softc *, struct mbuf **);
#ifndef __NO_STRICT_ALIGNMENT
static __inline void nge_fixup_rx(struct mbuf *);
#endif
static int nge_rxeof(struct nge_softc *);
static void nge_txeof(struct nge_softc *);
static void nge_intr(void *);
static void nge_tick(void *);
static void nge_stats_update(struct nge_softc *);
static void nge_start(struct ifnet *);
static void nge_start_locked(struct ifnet *);
static int nge_ioctl(struct ifnet *, u_long, caddr_t);
static void nge_init(void *);
static void nge_init_locked(struct nge_softc *);
static int nge_stop_mac(struct nge_softc *);
static void nge_stop(struct nge_softc *);
static void nge_wol(struct nge_softc *);
static void nge_watchdog(struct nge_softc *);
static int nge_mediachange(struct ifnet *);
static void nge_mediastatus(struct ifnet *, struct ifmediareq *);
static void nge_delay(struct nge_softc *);
static void nge_eeprom_idle(struct nge_softc *);
static void nge_eeprom_putbyte(struct nge_softc *, int);
static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
static int nge_miibus_readreg(device_t, int, int);
static int nge_miibus_writereg(device_t, int, int, int);
static void nge_miibus_statchg(device_t);
static void nge_rxfilter(struct nge_softc *);
static void nge_reset(struct nge_softc *);
static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int nge_dma_alloc(struct nge_softc *);
static void nge_dma_free(struct nge_softc *);
static int nge_list_rx_init(struct nge_softc *);
static int nge_list_tx_init(struct nge_softc *);
static void nge_sysctl_node(struct nge_softc *);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
/*
* MII bit-bang glue
*/
static uint32_t nge_mii_bitbang_read(device_t);
static void nge_mii_bitbang_write(device_t, uint32_t);
static const struct mii_bitbang_ops nge_mii_bitbang_ops = {
nge_mii_bitbang_read,
nge_mii_bitbang_write,
{
NGE_MEAR_MII_DATA, /* MII_BIT_MDO */
NGE_MEAR_MII_DATA, /* MII_BIT_MDI */
NGE_MEAR_MII_CLK, /* MII_BIT_MDC */
NGE_MEAR_MII_DIR, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
static device_method_t nge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, nge_probe),
DEVMETHOD(device_attach, nge_attach),
DEVMETHOD(device_detach, nge_detach),
DEVMETHOD(device_shutdown, nge_shutdown),
DEVMETHOD(device_suspend, nge_suspend),
DEVMETHOD(device_resume, nge_resume),
/* MII interface */
DEVMETHOD(miibus_readreg, nge_miibus_readreg),
DEVMETHOD(miibus_writereg, nge_miibus_writereg),
DEVMETHOD(miibus_statchg, nge_miibus_statchg),
DEVMETHOD_END
};
static driver_t nge_driver = {
"nge",
nge_methods,
sizeof(struct nge_softc)
};
static devclass_t nge_devclass;
DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
#define NGE_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | (x))
#define NGE_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) \
CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
#define SIO_CLR(x) \
CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
static void
nge_delay(struct nge_softc *sc)
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
CSR_READ_4(sc, NGE_CSR);
}
static void
nge_eeprom_idle(struct nge_softc *sc)
{
int i;
SIO_SET(NGE_MEAR_EE_CSEL);
nge_delay(sc);
SIO_SET(NGE_MEAR_EE_CLK);
nge_delay(sc);
for (i = 0; i < 25; i++) {
SIO_CLR(NGE_MEAR_EE_CLK);
nge_delay(sc);
SIO_SET(NGE_MEAR_EE_CLK);
nge_delay(sc);
}
SIO_CLR(NGE_MEAR_EE_CLK);
nge_delay(sc);
SIO_CLR(NGE_MEAR_EE_CSEL);
nge_delay(sc);
CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void
nge_eeprom_putbyte(struct nge_softc *sc, int addr)
{
int d, i;
d = addr | NGE_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(NGE_MEAR_EE_DIN);
} else {
SIO_CLR(NGE_MEAR_EE_DIN);
}
nge_delay(sc);
SIO_SET(NGE_MEAR_EE_CLK);
nge_delay(sc);
SIO_CLR(NGE_MEAR_EE_CLK);
nge_delay(sc);
}
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
{
int i;
uint16_t word = 0;
/* Force EEPROM to idle state. */
nge_eeprom_idle(sc);
/* Enter EEPROM access mode. */
nge_delay(sc);
SIO_CLR(NGE_MEAR_EE_CLK);
nge_delay(sc);
SIO_SET(NGE_MEAR_EE_CSEL);
nge_delay(sc);
/*
* Send address of word we want to read.
*/
nge_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(NGE_MEAR_EE_CLK);
nge_delay(sc);
if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
word |= i;
nge_delay(sc);
SIO_CLR(NGE_MEAR_EE_CLK);
nge_delay(sc);
}
/* Turn off EEPROM access mode. */
nge_eeprom_idle(sc);
*dest = word;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void
nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
{
int i;
uint16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
nge_eeprom_getword(sc, off + i, &word);
ptr = (uint16_t *)(dest + (i * 2));
*ptr = word;
}
}
/*
* Read the MII serial port for the MII bit-bang module.
*/
static uint32_t
nge_mii_bitbang_read(device_t dev)
{
struct nge_softc *sc;
uint32_t val;
sc = device_get_softc(dev);
val = CSR_READ_4(sc, NGE_MEAR);
CSR_BARRIER_4(sc, NGE_MEAR,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (val);
}
/*
* Write the MII serial port for the MII bit-bang module.
*/
static void
nge_mii_bitbang_write(device_t dev, uint32_t val)
{
struct nge_softc *sc;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, NGE_MEAR, val);
CSR_BARRIER_4(sc, NGE_MEAR,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
static int
nge_miibus_readreg(device_t dev, int phy, int reg)
{
struct nge_softc *sc;
int rv;
sc = device_get_softc(dev);
if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
/* Pretend PHY is at address 0. */
if (phy != 0)
return (0);
switch (reg) {
case MII_BMCR:
reg = NGE_TBI_BMCR;
break;
case MII_BMSR:
/* 83820/83821 has different bit layout for BMSR. */
rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
reg = CSR_READ_4(sc, NGE_TBI_BMSR);
if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
rv |= BMSR_ACOMP;
if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
rv |= BMSR_LINK;
return (rv);
case MII_ANAR:
reg = NGE_TBI_ANAR;
break;
case MII_ANLPAR:
reg = NGE_TBI_ANLPAR;
break;
case MII_ANER:
reg = NGE_TBI_ANER;
break;
case MII_EXTSR:
reg = NGE_TBI_ESR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
return (0);
default:
device_printf(sc->nge_dev,
"bad phy register read : %d\n", reg);
return (0);
}
return (CSR_READ_4(sc, reg));
}
return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg));
}
static int
nge_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct nge_softc *sc;
sc = device_get_softc(dev);
if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
/* Pretend PHY is at address 0. */
if (phy != 0)
return (0);
switch (reg) {
case MII_BMCR:
reg = NGE_TBI_BMCR;
break;
case MII_BMSR:
return (0);
case MII_ANAR:
reg = NGE_TBI_ANAR;
break;
case MII_ANLPAR:
reg = NGE_TBI_ANLPAR;
break;
case MII_ANER:
reg = NGE_TBI_ANER;
break;
case MII_EXTSR:
reg = NGE_TBI_ESR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
return (0);
default:
device_printf(sc->nge_dev,
"bad phy register write : %d\n", reg);
return (0);
}
CSR_WRITE_4(sc, reg, data);
return (0);
}
mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data);
return (0);
}
/*
* media status/link state change handler.
*/
static void
nge_miibus_statchg(device_t dev)
{
struct nge_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
struct nge_txdesc *txd;
uint32_t done, reg, status;
int i;
sc = device_get_softc(dev);
NGE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->nge_miibus);
ifp = sc->nge_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
sc->nge_flags &= ~NGE_FLAG_LINK;
if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
(IFM_AVALID | IFM_ACTIVE)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
case IFM_1000_T:
case IFM_1000_SX:
case IFM_1000_LX:
case IFM_1000_CX:
sc->nge_flags |= NGE_FLAG_LINK;
break;
default:
break;
}
}
/* Stop Tx/Rx MACs. */
if (nge_stop_mac(sc) == ETIMEDOUT)
device_printf(sc->nge_dev,
"%s: unable to stop Tx/Rx MAC\n", __func__);
nge_txeof(sc);
nge_rxeof(sc);
if (sc->nge_head != NULL) {
m_freem(sc->nge_head);
sc->nge_head = sc->nge_tail = NULL;
}
/* Release queued frames. */
for (i = 0; i < NGE_TX_RING_CNT; i++) {
txd = &sc->nge_cdata.nge_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
/* Program MAC with resolved speed/duplex. */
if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
NGE_SETBIT(sc, NGE_TX_CFG,
(NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
#ifdef notyet
/* Enable flow-control. */
if ((IFM_OPTIONS(mii->mii_media_active) &
(IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
NGE_SETBIT(sc, NGE_PAUSECSR,
NGE_PAUSECSR_PAUSE_ENB);
#endif
} else {
NGE_CLRBIT(sc, NGE_TX_CFG,
(NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
}
/* If we have a 1000Mbps link, set the mode_1000 bit. */
reg = CSR_READ_4(sc, NGE_CFG);
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_SX:
case IFM_1000_LX:
case IFM_1000_CX:
case IFM_1000_T:
reg |= NGE_CFG_MODE_1000;
break;
default:
reg &= ~NGE_CFG_MODE_1000;
break;
}
CSR_WRITE_4(sc, NGE_CFG, reg);
/* Reset Tx/Rx MAC. */
reg = CSR_READ_4(sc, NGE_CSR);
reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
CSR_WRITE_4(sc, NGE_CSR, reg);
/* Check the completion of reset. */
done = 0;
for (i = 0; i < NGE_TIMEOUT; i++) {
DELAY(1);
status = CSR_READ_4(sc, NGE_ISR);
if ((status & NGE_ISR_RX_RESET_DONE) != 0)
done |= NGE_ISR_RX_RESET_DONE;
if ((status & NGE_ISR_TX_RESET_DONE) != 0)
done |= NGE_ISR_TX_RESET_DONE;
if (done ==
(NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
break;
}
if (i == NGE_TIMEOUT)
device_printf(sc->nge_dev,
"%s: unable to reset Tx/Rx MAC\n", __func__);
/* Reuse Rx buffer and reset consumer pointer. */
sc->nge_cdata.nge_rx_cons = 0;
/*
* It seems that resetting Rx/Tx MAC results in
* resetting Tx/Rx descriptor pointer registers such
* that reloading Tx/Rx lists address are needed.
*/
CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
/* Reinitialize Tx buffers. */
nge_list_tx_init(sc);
/* Restart Rx MAC. */
reg = CSR_READ_4(sc, NGE_CSR);
reg |= NGE_CSR_RX_ENABLE;
CSR_WRITE_4(sc, NGE_CSR, reg);
for (i = 0; i < NGE_TIMEOUT; i++) {
if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
break;
DELAY(1);
}
if (i == NGE_TIMEOUT)
device_printf(sc->nge_dev,
"%s: unable to restart Rx MAC\n", __func__);
}
/* Data LED off for TBI mode */
if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
CSR_WRITE_4(sc, NGE_GPIO,
CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
}
static void
nge_rxfilter(struct nge_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t h, i, rxfilt;
int bit, index;
NGE_LOCK_ASSERT(sc);
ifp = sc->nge_ifp;
/* Make sure to stop Rx filtering. */
rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
rxfilt &= ~NGE_RXFILTCTL_ENABLE;
CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
rxfilt &= ~NGE_RXFILTCTL_BROAD;
/*
* We don't want to use the hash table for matching unicast
* addresses.
*/
rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
/*
* For the NatSemi chip, we have to explicitly enable the
* reception of ARP frames, as well as turn on the 'perfect
* match' filter where we store the station address, otherwise
* we won't receive unicasts meant for this host.
*/
rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
/*
* Set the capture broadcast bit to capture broadcast frames.
*/
if ((ifp->if_flags & IFF_BROADCAST) != 0)
rxfilt |= NGE_RXFILTCTL_BROAD;
if ((ifp->if_flags & IFF_PROMISC) != 0 ||
(ifp->if_flags & IFF_ALLMULTI) != 0) {
rxfilt |= NGE_RXFILTCTL_ALLMULTI;
if ((ifp->if_flags & IFF_PROMISC) != 0)
rxfilt |= NGE_RXFILTCTL_ALLPHYS;
goto done;
}
/*
* We have to explicitly enable the multicast hash table
* on the NatSemi chip if we want to use it, which we do.
*/
rxfilt |= NGE_RXFILTCTL_MCHASH;
/* first, zot all the existing hash bits */
for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
}
/*
* From the 11 bits returned by the crc routine, the top 7
* bits represent the 16-bit word in the mcast hash table
* that needs to be updated, and the lower 4 bits represent
* which bit within that byte needs to be set.
*/
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
index = (h >> 4) & 0x7F;
bit = h & 0xF;
CSR_WRITE_4(sc, NGE_RXFILT_CTL,
NGE_FILTADDR_MCAST_LO + (index * 2));
NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
}
if_maddr_runlock(ifp);
done:
CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
/* Turn the receive filter on. */
rxfilt |= NGE_RXFILTCTL_ENABLE;
CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
}
static void
nge_reset(struct nge_softc *sc)
{
uint32_t v;
int i;
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
for (i = 0; i < NGE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
break;
DELAY(1);
}
if (i == NGE_TIMEOUT)
device_printf(sc->nge_dev, "reset never completed\n");
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
/*
* If this is a NetSemi chip, make sure to clear
* PME mode.
*/
CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
CSR_WRITE_4(sc, NGE_CLKRUN, 0);
/* Clear WOL events which may interfere normal Rx filter opertaion. */
CSR_WRITE_4(sc, NGE_WOLCSR, 0);
/*
* Only DP83820 supports 64bits addressing/data transfers and
* 64bit addressing requires different descriptor structures.
* To make it simple, disable 64bit addressing/data transfers.
*/
v = CSR_READ_4(sc, NGE_CFG);
v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
CSR_WRITE_4(sc, NGE_CFG, v);
}
/*
* Probe for a NatSemi chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
nge_probe(device_t dev)
{
const struct nge_type *t;
t = nge_devs;
while (t->nge_name != NULL) {
if ((pci_get_vendor(dev) == t->nge_vid) &&
(pci_get_device(dev) == t->nge_did)) {
device_set_desc(dev, t->nge_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
nge_attach(device_t dev)
{
uint8_t eaddr[ETHER_ADDR_LEN];
uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
struct nge_softc *sc;
struct ifnet *ifp;
int error, i, rid;
error = 0;
sc = device_get_softc(dev);
sc->nge_dev = dev;
NGE_LOCK_INIT(sc, device_get_nameunit(dev));
callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
#ifdef NGE_USEIOSPACE
sc->nge_res_type = SYS_RES_IOPORT;
sc->nge_res_id = PCIR_BAR(0);
#else
sc->nge_res_type = SYS_RES_MEMORY;
sc->nge_res_id = PCIR_BAR(1);
#endif
sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
&sc->nge_res_id, RF_ACTIVE);
if (sc->nge_res == NULL) {
if (sc->nge_res_type == SYS_RES_MEMORY) {
sc->nge_res_type = SYS_RES_IOPORT;
sc->nge_res_id = PCIR_BAR(0);
} else {
sc->nge_res_type = SYS_RES_MEMORY;
sc->nge_res_id = PCIR_BAR(1);
}
sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
&sc->nge_res_id, RF_ACTIVE);
if (sc->nge_res == NULL) {
device_printf(dev, "couldn't allocate %s resources\n",
sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
"I/O");
NGE_LOCK_DESTROY(sc);
return (ENXIO);
}
}
/* Allocate interrupt */
rid = 0;
sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->nge_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/* Enable MWI. */
reg = pci_read_config(dev, PCIR_COMMAND, 2);
reg |= PCIM_CMD_MWRICEN;
pci_write_config(dev, PCIR_COMMAND, reg, 2);
/* Reset the adapter. */
nge_reset(sc);
/*
* Get station address from the EEPROM.
*/
nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
ea[i] = le16toh(ea[i]);
ea_temp = ea[0];
ea[0] = ea[2];
ea[2] = ea_temp;
bcopy(ea, eaddr, sizeof(eaddr));
if (nge_dma_alloc(sc) != 0) {
error = ENXIO;
goto fail;
}
nge_sysctl_node(sc);
ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not allocate ifnet structure\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = nge_ioctl;
ifp->if_start = nge_start;
ifp->if_init = nge_init;
ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
ifp->if_hwassist = NGE_CSUM_FEATURES;
ifp->if_capabilities = IFCAP_HWCSUM;
/*
* It seems that some hardwares doesn't provide 3.3V auxiliary
* supply(3VAUX) to drive PME such that checking PCI power
* management capability is necessary.
*/
if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
ifp->if_capabilities |= IFCAP_WOL;
ifp->if_capenable = ifp->if_capabilities;
if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
sc->nge_flags |= NGE_FLAG_TBI;
device_printf(dev, "Using TBI\n");
/* Configure GPIO. */
CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
| NGE_GPIO_GP4_OUT
| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
| NGE_GPIO_GP3_OUTENB
| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
}
/*
* Do MII setup.
*/
error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/* VLAN capability setup. */
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/*
* Tell the upper layer(s) we support long frames.
* Must appear after the call to ether_ifattach() because
* ether_ifattach() sets ifi_hdrlen to the default value.
*/
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
/*
* Hookup IRQ last.
*/
error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, nge_intr, sc, &sc->nge_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
goto fail;
}
fail:
if (error != 0)
nge_detach(dev);
return (error);
}
static int
nge_detach(device_t dev)
{
struct nge_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->nge_ifp;
#ifdef DEVICE_POLLING
if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
if (device_is_attached(dev)) {
NGE_LOCK(sc);
sc->nge_flags |= NGE_FLAG_DETACH;
nge_stop(sc);
NGE_UNLOCK(sc);
callout_drain(&sc->nge_stat_ch);
if (ifp != NULL)
ether_ifdetach(ifp);
}
if (sc->nge_miibus != NULL) {
device_delete_child(dev, sc->nge_miibus);
sc->nge_miibus = NULL;
}
bus_generic_detach(dev);
if (sc->nge_intrhand != NULL)
bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
if (sc->nge_irq != NULL)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
if (sc->nge_res != NULL)
bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
sc->nge_res);
nge_dma_free(sc);
if (ifp != NULL)
if_free(ifp);
NGE_LOCK_DESTROY(sc);
return (0);
}
struct nge_dmamap_arg {
bus_addr_t nge_busaddr;
};
static void
nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct nge_dmamap_arg *ctx;
if (error != 0)
return;
ctx = arg;
ctx->nge_busaddr = segs[0].ds_addr;
}
static int
nge_dma_alloc(struct nge_softc *sc)
{
struct nge_dmamap_arg ctx;
struct nge_txdesc *txd;
struct nge_rxdesc *rxd;
int error, i;
/* Create parent DMA tag. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->nge_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->nge_cdata.nge_parent_tag);
if (error != 0) {
device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
NGE_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
NGE_TX_RING_SIZE, /* maxsize */
1, /* nsegments */
NGE_TX_RING_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->nge_cdata.nge_tx_ring_tag);
if (error != 0) {
device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
NGE_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
NGE_RX_RING_SIZE, /* maxsize */
1, /* nsegments */
NGE_RX_RING_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->nge_cdata.nge_rx_ring_tag);
if (error != 0) {
device_printf(sc->nge_dev,
"failed to create Rx ring DMA tag\n");
goto fail;
}
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * NGE_MAXTXSEGS, /* maxsize */
NGE_MAXTXSEGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->nge_cdata.nge_tx_tag);
if (error != 0) {
device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
NGE_RX_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->nge_cdata.nge_rx_tag);
if (error != 0) {
device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
(void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
if (error != 0) {
device_printf(sc->nge_dev,
"failed to allocate DMA'able memory for Tx ring\n");
goto fail;
}
ctx.nge_busaddr = 0;
error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.nge_busaddr == 0) {
device_printf(sc->nge_dev,
"failed to load DMA'able memory for Tx ring\n");
goto fail;
}
sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
(void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
if (error != 0) {
device_printf(sc->nge_dev,
"failed to allocate DMA'able memory for Rx ring\n");
goto fail;
}
ctx.nge_busaddr = 0;
error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.nge_busaddr == 0) {
device_printf(sc->nge_dev,
"failed to load DMA'able memory for Rx ring\n");
goto fail;
}
sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < NGE_TX_RING_CNT; i++) {
txd = &sc->nge_cdata.nge_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->nge_dev,
"failed to create Tx dmamap\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
&sc->nge_cdata.nge_rx_sparemap)) != 0) {
device_printf(sc->nge_dev,
"failed to create spare Rx dmamap\n");
goto fail;
}
for (i = 0; i < NGE_RX_RING_CNT; i++) {
rxd = &sc->nge_cdata.nge_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->nge_dev,
"failed to create Rx dmamap\n");
goto fail;
}
}
fail:
return (error);
}
static void
nge_dma_free(struct nge_softc *sc)
{
struct nge_txdesc *txd;
struct nge_rxdesc *rxd;
int i;
/* Tx ring. */
if (sc->nge_cdata.nge_tx_ring_tag) {
if (sc->nge_rdata.nge_tx_ring_paddr)
bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
sc->nge_cdata.nge_tx_ring_map);
if (sc->nge_rdata.nge_tx_ring)
bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
sc->nge_rdata.nge_tx_ring,
sc->nge_cdata.nge_tx_ring_map);
sc->nge_rdata.nge_tx_ring = NULL;
sc->nge_rdata.nge_tx_ring_paddr = 0;
bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
sc->nge_cdata.nge_tx_ring_tag = NULL;
}
/* Rx ring. */
if (sc->nge_cdata.nge_rx_ring_tag) {
if (sc->nge_rdata.nge_rx_ring_paddr)
bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
sc->nge_cdata.nge_rx_ring_map);
if (sc->nge_rdata.nge_rx_ring)
bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
sc->nge_rdata.nge_rx_ring,
sc->nge_cdata.nge_rx_ring_map);
sc->nge_rdata.nge_rx_ring = NULL;
sc->nge_rdata.nge_rx_ring_paddr = 0;
bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
sc->nge_cdata.nge_rx_ring_tag = NULL;
}
/* Tx buffers. */
if (sc->nge_cdata.nge_tx_tag) {
for (i = 0; i < NGE_TX_RING_CNT; i++) {
txd = &sc->nge_cdata.nge_txdesc[i];
if (txd->tx_dmamap) {
bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
sc->nge_cdata.nge_tx_tag = NULL;
}
/* Rx buffers. */
if (sc->nge_cdata.nge_rx_tag) {
for (i = 0; i < NGE_RX_RING_CNT; i++) {
rxd = &sc->nge_cdata.nge_rxdesc[i];
if (rxd->rx_dmamap) {
bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->nge_cdata.nge_rx_sparemap) {
bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
sc->nge_cdata.nge_rx_sparemap);
sc->nge_cdata.nge_rx_sparemap = 0;
}
bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
sc->nge_cdata.nge_rx_tag = NULL;
}
if (sc->nge_cdata.nge_parent_tag) {
bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
sc->nge_cdata.nge_parent_tag = NULL;
}
}
/*
* Initialize the transmit descriptors.
*/
static int
nge_list_tx_init(struct nge_softc *sc)
{
struct nge_ring_data *rd;
struct nge_txdesc *txd;
bus_addr_t addr;
int i;
sc->nge_cdata.nge_tx_prod = 0;
sc->nge_cdata.nge_tx_cons = 0;
sc->nge_cdata.nge_tx_cnt = 0;
rd = &sc->nge_rdata;
bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
for (i = 0; i < NGE_TX_RING_CNT; i++) {
if (i == NGE_TX_RING_CNT - 1)
addr = NGE_TX_RING_ADDR(sc, 0);
else
addr = NGE_TX_RING_ADDR(sc, i + 1);
rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
txd = &sc->nge_cdata.nge_txdesc[i];
txd->tx_m = NULL;
}
bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
sc->nge_cdata.nge_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
nge_list_rx_init(struct nge_softc *sc)
{
struct nge_ring_data *rd;
bus_addr_t addr;
int i;
sc->nge_cdata.nge_rx_cons = 0;
sc->nge_head = sc->nge_tail = NULL;
rd = &sc->nge_rdata;
bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
for (i = 0; i < NGE_RX_RING_CNT; i++) {
if (nge_newbuf(sc, i) != 0)
return (ENOBUFS);
if (i == NGE_RX_RING_CNT - 1)
addr = NGE_RX_RING_ADDR(sc, 0);
else
addr = NGE_RX_RING_ADDR(sc, i + 1);
rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
}
bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
sc->nge_cdata.nge_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static __inline void
nge_discard_rxbuf(struct nge_softc *sc, int idx)
{
struct nge_desc *desc;
desc = &sc->nge_rdata.nge_rx_ring[idx];
desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
desc->nge_extsts = 0;
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
nge_newbuf(struct nge_softc *sc, int idx)
{
struct nge_desc *desc;
struct nge_rxdesc *rxd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, sizeof(uint64_t));
if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc->nge_cdata.nge_rxdesc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
sc->nge_cdata.nge_rx_sparemap = map;
bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
desc = &sc->nge_rdata.nge_rx_ring[idx];
desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
desc->nge_cmdsts = htole32(segs[0].ds_len);
desc->nge_extsts = 0;
return (0);
}
#ifndef __NO_STRICT_ALIGNMENT
static __inline void
nge_fixup_rx(struct mbuf *m)
{
int i;
uint16_t *src, *dst;
src = mtod(m, uint16_t *);
dst = src - 1;
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= ETHER_ALIGN;
}
#endif
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static int
nge_rxeof(struct nge_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp;
struct nge_desc *cur_rx;
struct nge_rxdesc *rxd;
int cons, prog, rx_npkts, total_len;
uint32_t cmdsts, extsts;
NGE_LOCK_ASSERT(sc);
ifp = sc->nge_ifp;
cons = sc->nge_cdata.nge_rx_cons;
rx_npkts = 0;
bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
sc->nge_cdata.nge_rx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (prog = 0; prog < NGE_RX_RING_CNT &&
(ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
NGE_INC(cons, NGE_RX_RING_CNT)) {
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif
cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
cmdsts = le32toh(cur_rx->nge_cmdsts);
extsts = le32toh(cur_rx->nge_extsts);
if ((cmdsts & NGE_CMDSTS_OWN) == 0)
break;
prog++;
rxd = &sc->nge_cdata.nge_rxdesc[cons];
m = rxd->rx_m;
total_len = cmdsts & NGE_CMDSTS_BUFLEN;
if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
if (nge_newbuf(sc, cons) != 0) {
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
if (sc->nge_head != NULL) {
m_freem(sc->nge_head);
sc->nge_head = sc->nge_tail = NULL;
}
nge_discard_rxbuf(sc, cons);
continue;
}
m->m_len = total_len;
if (sc->nge_head == NULL) {
m->m_pkthdr.len = total_len;
sc->nge_head = sc->nge_tail = m;
} else {
m->m_flags &= ~M_PKTHDR;
sc->nge_head->m_pkthdr.len += total_len;
sc->nge_tail->m_next = m;
sc->nge_tail = m;
}
continue;
}
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
if ((cmdsts & NGE_RXSTAT_RUNT) &&
total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
/*
* Work-around hardware bug, accept runt frames
* if its length is larger than or equal to 56.
*/
} else {
/*
* Input error counters are updated by hardware.
*/
if (sc->nge_head != NULL) {
m_freem(sc->nge_head);
sc->nge_head = sc->nge_tail = NULL;
}
nge_discard_rxbuf(sc, cons);
continue;
}
}
/* Try conjure up a replacement mbuf. */
if (nge_newbuf(sc, cons) != 0) {
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
if (sc->nge_head != NULL) {
m_freem(sc->nge_head);
sc->nge_head = sc->nge_tail = NULL;
}
nge_discard_rxbuf(sc, cons);
continue;
}
/* Chain received mbufs. */
if (sc->nge_head != NULL) {
m->m_len = total_len;
m->m_flags &= ~M_PKTHDR;
sc->nge_tail->m_next = m;
m = sc->nge_head;
m->m_pkthdr.len += total_len;
sc->nge_head = sc->nge_tail = NULL;
} else
m->m_pkthdr.len = m->m_len = total_len;
/*
* Ok. NatSemi really screwed up here. This is the
* only gigE chip I know of with alignment constraints
* on receive buffers. RX buffers must be 64-bit aligned.
*/
/*
* By popular demand, ignore the alignment problems
* on the non-strict alignment platform. The performance hit
* incurred due to unaligned accesses is much smaller
* than the hit produced by forcing buffer copies all
* the time, especially with jumbo frames. We still
* need to fix up the alignment everywhere else though.
*/
#ifndef __NO_STRICT_ALIGNMENT
nge_fixup_rx(m);
#endif
m->m_pkthdr.rcvif = ifp;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
/* Do IP checksum checking. */
if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((extsts & NGE_RXEXTSTS_TCPPKT &&
!(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
(extsts & NGE_RXEXTSTS_UDPPKT &&
!(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
/*
* If we received a packet with a vlan tag, pass it
* to vlan_input() instead of ether_input().
*/
if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
m->m_pkthdr.ether_vtag =
bswap16(extsts & NGE_RXEXTSTS_VTCI);
m->m_flags |= M_VLANTAG;
}
NGE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
NGE_LOCK(sc);
rx_npkts++;
}
if (prog > 0) {
sc->nge_cdata.nge_rx_cons = cons;
bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
sc->nge_cdata.nge_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
return (rx_npkts);
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
nge_txeof(struct nge_softc *sc)
{
struct nge_desc *cur_tx;
struct nge_txdesc *txd;
struct ifnet *ifp;
uint32_t cmdsts;
int cons, prod;
NGE_LOCK_ASSERT(sc);
ifp = sc->nge_ifp;
cons = sc->nge_cdata.nge_tx_cons;
prod = sc->nge_cdata.nge_tx_prod;
if (cons == prod)
return;
bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
sc->nge_cdata.nge_tx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
cmdsts = le32toh(cur_tx->nge_cmdsts);
if ((cmdsts & NGE_CMDSTS_OWN) != 0)
break;
sc->nge_cdata.nge_tx_cnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if ((cmdsts & NGE_CMDSTS_MORE) != 0)
continue;
txd = &sc->nge_cdata.nge_txdesc[cons];
bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
} else
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (cmdsts & NGE_TXSTAT_COLLCNT) >> 16);
KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
__func__));
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
sc->nge_cdata.nge_tx_cons = cons;
if (sc->nge_cdata.nge_tx_cnt == 0)
sc->nge_watchdog_timer = 0;
}
static void
nge_tick(void *xsc)
{
struct nge_softc *sc;
struct mii_data *mii;
sc = xsc;
NGE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->nge_miibus);
mii_tick(mii);
/*
* For PHYs that does not reset established link, it is
* necessary to check whether driver still have a valid
* link(e.g link state change callback is not called).
* Otherwise, driver think it lost link because driver
* initialization routine clears link state flag.
*/
if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
nge_miibus_statchg(sc->nge_dev);
nge_stats_update(sc);
nge_watchdog(sc);
callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
}
static void
nge_stats_update(struct nge_softc *sc)
{
struct ifnet *ifp;
struct nge_stats now, *stats, *nstats;
NGE_LOCK_ASSERT(sc);
ifp = sc->nge_ifp;
stats = &now;
stats->rx_pkts_errs =
CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
stats->rx_crc_errs =
CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
stats->rx_fifo_oflows =
CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
stats->rx_align_errs =
CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
stats->rx_sym_errs =
CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
stats->rx_pkts_jumbos =
CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
stats->rx_len_errs =
CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
stats->rx_unctl_frames =
CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
stats->rx_pause =
CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
stats->tx_pause =
CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
stats->tx_seq_errs =
CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
/*
* Since we've accept errored frames exclude Rx length errors.
*/
if_inc_counter(ifp, IFCOUNTER_IERRORS,
stats->rx_pkts_errs + stats->rx_crc_errs +
stats->rx_fifo_oflows + stats->rx_sym_errs);
nstats = &sc->nge_stats;
nstats->rx_pkts_errs += stats->rx_pkts_errs;
nstats->rx_crc_errs += stats->rx_crc_errs;
nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
nstats->rx_align_errs += stats->rx_align_errs;
nstats->rx_sym_errs += stats->rx_sym_errs;
nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
nstats->rx_len_errs += stats->rx_len_errs;
nstats->rx_unctl_frames += stats->rx_unctl_frames;
nstats->rx_pause += stats->rx_pause;
nstats->tx_pause += stats->tx_pause;
nstats->tx_seq_errs += stats->tx_seq_errs;
}
#ifdef DEVICE_POLLING
static poll_handler_t nge_poll;
static int
nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct nge_softc *sc;
int rx_npkts = 0;
sc = ifp->if_softc;
NGE_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
NGE_UNLOCK(sc);
return (rx_npkts);
}
/*
* On the nge, reading the status register also clears it.
* So before returning to intr mode we must make sure that all
* possible pending sources of interrupts have been served.
* In practice this means run to completion the *eof routines,
* and then call the interrupt routine.
*/
sc->rxcycles = count;
rx_npkts = nge_rxeof(sc);
nge_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
nge_start_locked(ifp);
if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
uint32_t status;
/* Reading the ISR register clears all interrupts. */
status = CSR_READ_4(sc, NGE_ISR);
if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
rx_npkts += nge_rxeof(sc);
if ((status & NGE_ISR_RX_IDLE) != 0)
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
if ((status & NGE_ISR_SYSERR) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
nge_init_locked(sc);
}
}
NGE_UNLOCK(sc);
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
static void
nge_intr(void *arg)
{
struct nge_softc *sc;
struct ifnet *ifp;
uint32_t status;
sc = (struct nge_softc *)arg;
ifp = sc->nge_ifp;
NGE_LOCK(sc);
if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
goto done_locked;
/* Reading the ISR register clears all interrupts. */
status = CSR_READ_4(sc, NGE_ISR);
if (status == 0xffffffff || (status & NGE_INTRS) == 0)
goto done_locked;
#ifdef DEVICE_POLLING
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
goto done_locked;
#endif
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
goto done_locked;
/* Disable interrupts. */
CSR_WRITE_4(sc, NGE_IER, 0);
/* Data LED on for TBI mode */
if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
CSR_WRITE_4(sc, NGE_GPIO,
CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
for (; (status & NGE_INTRS) != 0;) {
if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
nge_txeof(sc);
if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
nge_rxeof(sc);
if ((status & NGE_ISR_RX_IDLE) != 0)
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
if ((status & NGE_ISR_SYSERR) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
nge_init_locked(sc);
}
/* Reading the ISR register clears all interrupts. */
status = CSR_READ_4(sc, NGE_ISR);
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, NGE_IER, 1);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
nge_start_locked(ifp);
/* Data LED off for TBI mode */
if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
CSR_WRITE_4(sc, NGE_GPIO,
CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
done_locked:
NGE_UNLOCK(sc);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
nge_encap(struct nge_softc *sc, struct mbuf **m_head)
{
struct nge_txdesc *txd, *txd_last;
struct nge_desc *desc;
struct mbuf *m;
bus_dmamap_t map;
bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
int error, i, nsegs, prod, si;
NGE_LOCK_ASSERT(sc);
m = *m_head;
prod = sc->nge_cdata.nge_tx_prod;
txd = &sc->nge_cdata.nge_txdesc[prod];
txd_last = txd;
map = txd->tx_dmamap;
error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
*m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, NGE_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check number of available descriptors. */
if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
return (ENOBUFS);
}
bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
si = prod;
for (i = 0; i < nsegs; i++) {
desc = &sc->nge_rdata.nge_tx_ring[prod];
desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
if (i == 0)
desc->nge_cmdsts = htole32(txsegs[i].ds_len |
NGE_CMDSTS_MORE);
else
desc->nge_cmdsts = htole32(txsegs[i].ds_len |
NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
desc->nge_extsts = 0;
sc->nge_cdata.nge_tx_cnt++;
NGE_INC(prod, NGE_TX_RING_CNT);
}
/* Update producer index. */
sc->nge_cdata.nge_tx_prod = prod;
prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
desc = &sc->nge_rdata.nge_tx_ring[prod];
/* Check if we have a VLAN tag to insert. */
if ((m->m_flags & M_VLANTAG) != 0)
desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
bswap16(m->m_pkthdr.ether_vtag));
/* Set EOP on the last desciptor. */
desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
/* Set checksum offload in the first descriptor. */
desc = &sc->nge_rdata.nge_tx_ring[si];
if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
}
/* Lastly, turn the first descriptor ownership to hardware. */
desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
txd = &sc->nge_cdata.nge_txdesc[prod];
map = txd_last->tx_dmamap;
txd_last->tx_dmamap = txd->tx_dmamap;
txd->tx_dmamap = map;
txd->tx_m = m;
return (0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void
nge_start(struct ifnet *ifp)
{
struct nge_softc *sc;
sc = ifp->if_softc;
NGE_LOCK(sc);
nge_start_locked(ifp);
NGE_UNLOCK(sc);
}
static void
nge_start_locked(struct ifnet *ifp)
{
struct nge_softc *sc;
struct mbuf *m_head;
int enq;
sc = ifp->if_softc;
NGE_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
return;
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (nge_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
sc->nge_cdata.nge_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Transmit */
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
/* Set a timeout in case the chip goes out to lunch. */
sc->nge_watchdog_timer = 5;
}
}
static void
nge_init(void *xsc)
{
struct nge_softc *sc = xsc;
NGE_LOCK(sc);
nge_init_locked(sc);
NGE_UNLOCK(sc);
}
static void
nge_init_locked(struct nge_softc *sc)
{
struct ifnet *ifp = sc->nge_ifp;
struct mii_data *mii;
uint8_t *eaddr;
uint32_t reg;
NGE_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
nge_stop(sc);
/* Reset the adapter. */
nge_reset(sc);
/* Disable Rx filter prior to programming Rx filter. */
CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
mii = device_get_softc(sc->nge_miibus);
/* Set MAC address. */
eaddr = IF_LLADDR(sc->nge_ifp);
CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
/* Init circular RX list. */
if (nge_list_rx_init(sc) == ENOBUFS) {
device_printf(sc->nge_dev, "initialization failed: no "
"memory for rx buffers\n");
nge_stop(sc);
return;
}
/*
* Init tx descriptors.
*/
nge_list_tx_init(sc);
/* Set Rx filter. */
nge_rxfilter(sc);
/* Disable PRIQ ctl. */
CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
/*
* Set pause frames paramters.
* Rx stat FIFO hi-threshold : 2 or more packets
* Rx stat FIFO lo-threshold : less than 2 packets
* Rx data FIFO hi-threshold : 2K or more bytes
* Rx data FIFO lo-threshold : less than 2K bytes
* pause time : (512ns * 0xffff) -> 33.55ms
*/
CSR_WRITE_4(sc, NGE_PAUSECSR,
NGE_PAUSECSR_PAUSE_ON_MCAST |
NGE_PAUSECSR_PAUSE_ON_DA |
((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
NGE_PAUSECSR_CNT);
/*
* Load the address of the RX and TX lists.
*/
CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
/* Set RX configuration. */
CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
/*
* Enable hardware checksum validation for all IPv4
* packets, do not reject packets with bad checksums.
*/
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
/*
* Tell the chip to detect and strip VLAN tag info from
* received frames. The tag will be provided in the extsts
* field in the RX descriptors.
*/
NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
/* Set TX configuration. */
CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
/*
* Enable TX IPv4 checksumming on a per-packet basis.
*/
CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
/*
* Tell the chip to insert VLAN tags on a per-packet basis as
* dictated by the code in the frame encapsulation routine.
*/
NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
/*
* Enable the delivery of PHY interrupts based on
* link/speed/duplex status changes. Also enable the
* extsts field in the DMA descriptors (needed for
* TCP/IP checksum offload on transmit).
*/
NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
/*
* Configure interrupt holdoff (moderation). We can
* have the chip delay interrupt delivery for a certain
* period. Units are in 100us, and the max setting
* is 25500us (0xFF x 100us). Default is a 100us holdoff.
*/
CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
/*
* Enable MAC statistics counters and clear.
*/
reg = CSR_READ_4(sc, NGE_MIBCTL);
reg &= ~NGE_MIBCTL_FREEZE_CNT;
reg |= NGE_MIBCTL_CLEAR_CNT;
CSR_WRITE_4(sc, NGE_MIBCTL, reg);
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
#ifdef DEVICE_POLLING
/*
* ... only enable interrupts if we are not polling, make sure
* they are off otherwise.
*/
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
CSR_WRITE_4(sc, NGE_IER, 0);
else
#endif
CSR_WRITE_4(sc, NGE_IER, 1);
sc->nge_flags &= ~NGE_FLAG_LINK;
mii_mediachg(mii);
sc->nge_watchdog_timer = 0;
callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
/*
* Set media options.
*/
static int
nge_mediachange(struct ifnet *ifp)
{
struct nge_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
NGE_LOCK(sc);
mii = device_get_softc(sc->nge_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
NGE_UNLOCK(sc);
return (error);
}
/*
* Report current media status.
*/
static void
nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct nge_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
NGE_LOCK(sc);
mii = device_get_softc(sc->nge_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
NGE_UNLOCK(sc);
}
static int
nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct nge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0, mask;
switch (command) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
error = EINVAL;
else {
NGE_LOCK(sc);
ifp->if_mtu = ifr->ifr_mtu;
/*
* Workaround: if the MTU is larger than
* 8152 (TX FIFO size minus 64 minus 18), turn off
* TX checksum offloading.
*/
if (ifr->ifr_mtu >= 8152) {
ifp->if_capenable &= ~IFCAP_TXCSUM;
ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
} else {
ifp->if_capenable |= IFCAP_TXCSUM;
ifp->if_hwassist |= NGE_CSUM_FEATURES;
}
NGE_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
}
break;
case SIOCSIFFLAGS:
NGE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if ((ifp->if_flags ^ sc->nge_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI))
nge_rxfilter(sc);
} else {
if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
nge_init_locked(sc);
}
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
nge_stop(sc);
}
sc->nge_if_flags = ifp->if_flags;
NGE_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
NGE_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
nge_rxfilter(sc);
NGE_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->nge_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
NGE_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if ((mask & IFCAP_POLLING) != 0 &&
(IFCAP_POLLING & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_POLLING;
if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
error = ether_poll_register(nge_poll, ifp);
if (error != 0) {
NGE_UNLOCK(sc);
break;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, NGE_IER, 0);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
CSR_WRITE_4(sc, NGE_IER, 1);
}
}
#endif /* DEVICE_POLLING */
if ((mask & IFCAP_TXCSUM) != 0 &&
(IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
ifp->if_hwassist |= NGE_CSUM_FEATURES;
else
ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(IFCAP_RXCSUM & ifp->if_capabilities) != 0)
ifp->if_capenable ^= IFCAP_RXCSUM;
if ((mask & IFCAP_WOL) != 0 &&
(ifp->if_capabilities & IFCAP_WOL) != 0) {
if ((mask & IFCAP_WOL_UCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_UCAST;
if ((mask & IFCAP_WOL_MCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_MCAST;
if ((mask & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
}
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if ((ifp->if_capenable &
IFCAP_VLAN_HWTAGGING) != 0)
NGE_SETBIT(sc,
NGE_VLAN_IP_RXCTL,
NGE_VIPRXCTL_TAG_STRIP_ENB);
else
NGE_CLRBIT(sc,
NGE_VLAN_IP_RXCTL,
NGE_VIPRXCTL_TAG_STRIP_ENB);
}
}
/*
* Both VLAN hardware tagging and checksum offload is
* required to do checksum offload on VLAN interface.
*/
if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
NGE_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
nge_watchdog(struct nge_softc *sc)
{
struct ifnet *ifp;
NGE_LOCK_ASSERT(sc);
if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
return;
ifp = sc->nge_ifp;
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
if_printf(ifp, "watchdog timeout\n");
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
nge_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
nge_start_locked(ifp);
}
static int
nge_stop_mac(struct nge_softc *sc)
{
uint32_t reg;
int i;
NGE_LOCK_ASSERT(sc);
reg = CSR_READ_4(sc, NGE_CSR);
if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
CSR_WRITE_4(sc, NGE_CSR, reg);
for (i = 0; i < NGE_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_4(sc, NGE_CSR) &
(NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
break;
}
if (i == NGE_TIMEOUT)
return (ETIMEDOUT);
}
return (0);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
nge_stop(struct nge_softc *sc)
{
struct nge_txdesc *txd;
struct nge_rxdesc *rxd;
int i;
struct ifnet *ifp;
NGE_LOCK_ASSERT(sc);
ifp = sc->nge_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->nge_flags &= ~NGE_FLAG_LINK;
callout_stop(&sc->nge_stat_ch);
sc->nge_watchdog_timer = 0;
CSR_WRITE_4(sc, NGE_IER, 0);
CSR_WRITE_4(sc, NGE_IMR, 0);
if (nge_stop_mac(sc) == ETIMEDOUT)
device_printf(sc->nge_dev,
"%s: unable to stop Tx/Rx MAC\n", __func__);
CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
nge_stats_update(sc);
if (sc->nge_head != NULL) {
m_freem(sc->nge_head);
sc->nge_head = sc->nge_tail = NULL;
}
/*
* Free RX and TX mbufs still in the queues.
*/
for (i = 0; i < NGE_RX_RING_CNT; i++) {
rxd = &sc->nge_cdata.nge_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < NGE_TX_RING_CNT; i++) {
txd = &sc->nge_cdata.nge_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
}
/*
* Before setting WOL bits, caller should have stopped Receiver.
*/
static void
nge_wol(struct nge_softc *sc)
{
struct ifnet *ifp;
uint32_t reg;
uint16_t pmstat;
int pmc;
NGE_LOCK_ASSERT(sc);
if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
return;
ifp = sc->nge_ifp;
if ((ifp->if_capenable & IFCAP_WOL) == 0) {
/* Disable WOL & disconnect CLKRUN to save power. */
CSR_WRITE_4(sc, NGE_WOLCSR, 0);
CSR_WRITE_4(sc, NGE_CLKRUN, 0);
} else {
if (nge_stop_mac(sc) == ETIMEDOUT)
device_printf(sc->nge_dev,
"%s: unable to stop Tx/Rx MAC\n", __func__);
/*
* Make sure wake frames will be buffered in the Rx FIFO.
* (i.e. Silent Rx mode.)
*/
CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE);
CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE);
/* Enable Rx again. */
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE);
/* Configure WOL events. */
reg = 0;
if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
CSR_WRITE_4(sc, NGE_WOLCSR, reg);
/* Activate CLKRUN. */
reg = CSR_READ_4(sc, NGE_CLKRUN);
reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
CSR_WRITE_4(sc, NGE_CLKRUN, reg);
}
/* Request PME. */
pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
nge_shutdown(device_t dev)
{
return (nge_suspend(dev));
}
static int
nge_suspend(device_t dev)
{
struct nge_softc *sc;
sc = device_get_softc(dev);
NGE_LOCK(sc);
nge_stop(sc);
nge_wol(sc);
sc->nge_flags |= NGE_FLAG_SUSPENDED;
NGE_UNLOCK(sc);
return (0);
}
static int
nge_resume(device_t dev)
{
struct nge_softc *sc;
struct ifnet *ifp;
uint16_t pmstat;
int pmc;
sc = device_get_softc(dev);
NGE_LOCK(sc);
ifp = sc->nge_ifp;
if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
/* Disable PME and clear PME status. */
pmstat = pci_read_config(sc->nge_dev,
pmc + PCIR_POWER_STATUS, 2);
if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
pmstat &= ~PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->nge_dev,
pmc + PCIR_POWER_STATUS, pmstat, 2);
}
}
if (ifp->if_flags & IFF_UP) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
nge_init_locked(sc);
}
sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
NGE_UNLOCK(sc);
return (0);
}
#define NGE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
static void
nge_sysctl_node(struct nge_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child, *parent;
struct sysctl_oid *tree;
struct nge_stats *stats;
int error;
ctx = device_get_sysctl_ctx(sc->nge_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
CTLTYPE_INT | CTLFLAG_RW, &sc->nge_int_holdoff, 0,
sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
/* Pull in device tunables. */
sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
error = resource_int_value(device_get_name(sc->nge_dev),
device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
if (error == 0) {
if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
device_printf(sc->nge_dev,
"int_holdoff value out of range; "
"using default: %d(%d us)\n",
NGE_INT_HOLDOFF_DEFAULT,
NGE_INT_HOLDOFF_DEFAULT * 100);
sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
}
}
stats = &sc->nge_stats;
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "NGE statistics");
parent = SYSCTL_CHILDREN(tree);
/* Rx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "Rx MAC statistics");
child = SYSCTL_CHILDREN(tree);
NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
&stats->rx_pkts_errs,
"Packet errors including both wire errors and FIFO overruns");
NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
&stats->rx_crc_errs, "CRC errors");
NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
&stats->rx_fifo_oflows, "FIFO overflows");
NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
&stats->rx_align_errs, "Frame alignment errors");
NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
&stats->rx_sym_errs, "One or more symbol errors");
NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
&stats->rx_pkts_jumbos,
"Packets received with length greater than 1518 bytes");
NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
&stats->rx_len_errs, "In Range Length errors");
NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
&stats->rx_unctl_frames, "Control frames with unsupported opcode");
NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
&stats->rx_pause, "Pause frames");
/* Tx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "Tx MAC statistics");
child = SYSCTL_CHILDREN(tree);
NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
&stats->tx_pause, "Pause frames");
NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
&stats->tx_seq_errs,
"Loss of collision heartbeat during transmission");
}
#undef NGE_SYSCTL_STAT_ADD32
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (arg1 == NULL)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
NGE_INT_HOLDOFF_MAX));
}