mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-25 11:37:56 +00:00
c044afa986
Fix syntax errors inside #ifdef FORCE_AUTONEG_TFOUR.
2773 lines
71 KiB
C
2773 lines
71 KiB
C
/*
|
|
* Copyright (c) 1997, 1998
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $Id: if_xl.c,v 1.58 1998/10/22 16:37:55 wpaul Exp $
|
|
*/
|
|
|
|
/*
|
|
* 3Com 3c90x Etherlink XL PCI NIC driver
|
|
*
|
|
* Supports the 3Com "boomerang" and "cyclone" PCI
|
|
* bus-master chips (3c90x cards and embedded controllers) including
|
|
* the following:
|
|
*
|
|
* 3Com 3c900-TPO 10Mbps/RJ-45
|
|
* 3Com 3c900-COMBO 10Mbps/RJ-45,AUI,BNC
|
|
* 3Com 3c905-TX 10/100Mbps/RJ-45
|
|
* 3Com 3c905-T4 10/100Mbps/RJ-45
|
|
* 3Com 3c900B-TPO 10Mbps/RJ-45
|
|
* 3Com 3c900B-COMBO 10Mbps/RJ-45,AUI,BNC
|
|
* 3Com 3c905B-TX 10/100Mbps/RJ-45
|
|
* 3Com 3c905B-FL/FX 10/100Mbps/Fiber-optic
|
|
* 3Com 3c980-TX 10/100Mbps server adapter
|
|
* Dell Optiplex GX1 on-board 3c918 10/100Mbps/RJ-45
|
|
* Dell Precision on-board 3c905B 10/100Mbps/RJ-45
|
|
* Dell Latitude laptop docking station embedded 3c905-TX
|
|
*
|
|
* Written by Bill Paul <wpaul@ctr.columbia.edu>
|
|
* Electrical Engineering Department
|
|
* Columbia University, New York City
|
|
*/
|
|
|
|
/*
|
|
* The 3c90x series chips use a bus-master DMA interface for transfering
|
|
* packets to and from the controller chip. Some of the "vortex" cards
|
|
* (3c59x) also supported a bus master mode, however for those chips
|
|
* you could only DMA packets to/from a contiguous memory buffer. For
|
|
* transmission this would mean copying the contents of the queued mbuf
|
|
* chain into a an mbuf cluster and then DMAing the cluster. This extra
|
|
* copy would sort of defeat the purpose of the bus master support for
|
|
* any packet that doesn't fit into a single mbuf.
|
|
*
|
|
* By contrast, the 3c90x cards support a fragment-based bus master
|
|
* mode where mbuf chains can be encapsulated using TX descriptors.
|
|
* This is similar to other PCI chips such as the Texas Instruments
|
|
* ThunderLAN and the Intel 82557/82558.
|
|
*
|
|
* The "vortex" driver (if_vx.c) happens to work for the "boomerang"
|
|
* bus master chips because they maintain the old PIO interface for
|
|
* backwards compatibility, but starting with the 3c905B and the
|
|
* "cyclone" chips, the compatibility interface has been dropped.
|
|
* Since using bus master DMA is a big win, we use this driver to
|
|
* support the PCI "boomerang" chips even though they work with the
|
|
* "vortex" driver in order to obtain better performance.
|
|
*
|
|
* This driver is in the /sys/pci directory because it only supports
|
|
* PCI-based NICs.
|
|
*/
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <vm/vm.h> /* for vtophys */
|
|
#include <vm/pmap.h> /* for vtophys */
|
|
#include <machine/clock.h> /* for DELAY */
|
|
|
|
#include <pci/pcireg.h>
|
|
#include <pci/pcivar.h>
|
|
|
|
/*
|
|
* The following #define causes the code to use PIO to access the
|
|
* chip's registers instead of memory mapped mode. The reason PIO mode
|
|
* is on by default is that the Etherlink XL manual seems to indicate
|
|
* that only the newer revision chips (3c905B) support both PIO and
|
|
* memory mapped access. Since we want to be compatible with the older
|
|
* bus master chips, we use PIO here. If you comment this out, the
|
|
* driver will use memory mapped I/O, which may be faster but which
|
|
* might not work on some devices.
|
|
*/
|
|
#define XL_USEIOSPACE
|
|
|
|
/*
|
|
* This #define controls the behavior of autonegotiation during the
|
|
* bootstrap phase. It's possible to have the driver initiate an
|
|
* autonegotiation session and then set a timeout which will cause the
|
|
* autoneg results to be polled later, usually once the kernel has
|
|
* finished booting. This is clever and all, but it can have bad side
|
|
* effects in some cases, particularly where NFS is involved. For
|
|
* example, if we're booting diskless with an NFS rootfs, the network
|
|
* interface has to be up and running before we hit the mountroot()
|
|
* code, otherwise mounting the rootfs will fail and we'll probably
|
|
* panic.
|
|
*
|
|
* Consequently, the 'backgrounded' autoneg behavior is turned off
|
|
* by default and we actually sit and wait 5 seconds for autonegotiation
|
|
* to complete before proceeding with the other device probes. If you
|
|
* choose to use the other behavior, you can uncomment this #define and
|
|
* recompile.
|
|
*/
|
|
/* #define XL_BACKGROUND_AUTONEG */
|
|
|
|
#include <pci/if_xlreg.h>
|
|
|
|
#ifndef lint
|
|
static char rcsid[] =
|
|
"$Id: if_xl.c,v 1.58 1998/10/22 16:37:55 wpaul Exp $";
|
|
#endif
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names.
|
|
*/
|
|
static struct xl_type xl_devs[] = {
|
|
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT,
|
|
"3Com 3c900 Etherlink XL 10BaseT" },
|
|
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT_COMBO,
|
|
"3Com 3c900 Etherlink XL 10BaseT Combo" },
|
|
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10_100BT,
|
|
"3Com 3c905 Fast Etherlink XL 10/100BaseTX" },
|
|
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_100BT4,
|
|
"3Com 3c905 Fast Etherlink XL 10/100BaseT4" },
|
|
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10BT,
|
|
"3Com 3c900B Etherlink XL 10BaseT" },
|
|
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10BT_COMBO,
|
|
"3Com 3c900B Etherlink XL 10BaseT Combo" },
|
|
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100BT,
|
|
"3Com 3c905B Fast Etherlink XL 10/100BaseTX" },
|
|
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100BT4,
|
|
"3Com 3c905B Fast Etherlink XL 10/100BaseT4" },
|
|
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100FX,
|
|
"3Com 3c905B Fast Etherlink XL 10/100BaseFX/SC" },
|
|
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100BT_SERV,
|
|
"3Com 3c980 Fast Etherlink XL 10/100BaseTX" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
/*
|
|
* Various supported PHY vendors/types and their names. Note that
|
|
* this driver will work with pretty much any MII-compliant PHY,
|
|
* so failure to positively identify the chip is not a fatal error.
|
|
*/
|
|
|
|
static struct xl_type xl_phys[] = {
|
|
{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
|
|
{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
|
|
{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
|
|
{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
|
|
{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
|
|
{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
|
|
{ 0, 0, "<MII-compliant physical interface>" }
|
|
};
|
|
|
|
static unsigned long xl_count = 0;
|
|
static char *xl_probe __P((pcici_t, pcidi_t));
|
|
static void xl_attach __P((pcici_t, int));
|
|
|
|
static int xl_newbuf __P((struct xl_softc *,
|
|
struct xl_chain_onefrag *));
|
|
static void xl_stats_update __P((void *));
|
|
static int xl_encap __P((struct xl_softc *, struct xl_chain *,
|
|
struct mbuf * ));
|
|
|
|
static void xl_rxeof __P((struct xl_softc *));
|
|
static void xl_txeof __P((struct xl_softc *));
|
|
static void xl_txeoc __P((struct xl_softc *));
|
|
static void xl_intr __P((void *));
|
|
static void xl_start __P((struct ifnet *));
|
|
static int xl_ioctl __P((struct ifnet *, u_long, caddr_t));
|
|
static void xl_init __P((void *));
|
|
static void xl_stop __P((struct xl_softc *));
|
|
static void xl_watchdog __P((struct ifnet *));
|
|
static void xl_shutdown __P((int, void *));
|
|
static int xl_ifmedia_upd __P((struct ifnet *));
|
|
static void xl_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
|
|
|
|
static int xl_eeprom_wait __P((struct xl_softc *));
|
|
static int xl_read_eeprom __P((struct xl_softc *, caddr_t, int,
|
|
int, int));
|
|
static void xl_mii_sync __P((struct xl_softc *));
|
|
static void xl_mii_send __P((struct xl_softc *, u_int32_t, int));
|
|
static int xl_mii_readreg __P((struct xl_softc *, struct xl_mii_frame *));
|
|
static int xl_mii_writereg __P((struct xl_softc *, struct xl_mii_frame *));
|
|
static u_int16_t xl_phy_readreg __P((struct xl_softc *, int));
|
|
static void xl_phy_writereg __P((struct xl_softc *, u_int16_t, u_int16_t));
|
|
|
|
static void xl_autoneg_xmit __P((struct xl_softc *));
|
|
static void xl_autoneg_mii __P((struct xl_softc *, int, int));
|
|
static void xl_setmode_mii __P((struct xl_softc *, int));
|
|
static void xl_getmode_mii __P((struct xl_softc *));
|
|
static void xl_setmode __P((struct xl_softc *, int));
|
|
static u_int8_t xl_calchash __P((u_int8_t *));
|
|
static void xl_setmulti __P((struct xl_softc *));
|
|
static void xl_setmulti_hash __P((struct xl_softc *));
|
|
static void xl_reset __P((struct xl_softc *));
|
|
static int xl_list_rx_init __P((struct xl_softc *));
|
|
static int xl_list_tx_init __P((struct xl_softc *));
|
|
static void xl_wait __P((struct xl_softc *));
|
|
static void xl_mediacheck __P((struct xl_softc *));
|
|
#ifdef notdef
|
|
static void xl_testpacket __P((struct xl_softc *));
|
|
#endif
|
|
|
|
/*
|
|
* Murphy's law says that it's possible the chip can wedge and
|
|
* the 'command in progress' bit may never clear. Hence, we wait
|
|
* only a finite amount of time to avoid getting caught in an
|
|
* infinite loop. Normally this delay routine would be a macro,
|
|
* but it isn't called during normal operation so we can afford
|
|
* to make it a function.
|
|
*/
|
|
static void xl_wait(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
register int i;
|
|
|
|
for (i = 0; i < XL_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
if (!(CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY))
|
|
break;
|
|
}
|
|
if (i == XL_TIMEOUT)
|
|
printf("xl%d: command never completed!\n", sc->xl_unit);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* MII access routines are provided for adapters with external
|
|
* PHYs (3c905-TX, 3c905-T4, 3c905B-T4) and those with built-in
|
|
* autoneg logic that's faked up to look like a PHY (3c905B-TX).
|
|
* Note: if you don't perform the MDIO operations just right,
|
|
* it's possible to end up with code that works correctly with
|
|
* some chips/CPUs/processor speeds/bus speeds/etc but not
|
|
* with others.
|
|
*/
|
|
#define MII_SET(x) \
|
|
CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \
|
|
CSR_READ_2(sc, XL_W4_PHY_MGMT) | x)
|
|
|
|
#define MII_CLR(x) \
|
|
CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \
|
|
CSR_READ_2(sc, XL_W4_PHY_MGMT) & ~x)
|
|
|
|
/*
|
|
* Sync the PHYs by setting data bit and strobing the clock 32 times.
|
|
*/
|
|
static void xl_mii_sync(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
register int i;
|
|
|
|
XL_SEL_WIN(4);
|
|
MII_SET(XL_MII_DIR|XL_MII_DATA);
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
MII_SET(XL_MII_CLK);
|
|
DELAY(1);
|
|
MII_CLR(XL_MII_CLK);
|
|
DELAY(1);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Clock a series of bits through the MII.
|
|
*/
|
|
static void xl_mii_send(sc, bits, cnt)
|
|
struct xl_softc *sc;
|
|
u_int32_t bits;
|
|
int cnt;
|
|
{
|
|
int i;
|
|
|
|
XL_SEL_WIN(4);
|
|
MII_CLR(XL_MII_CLK);
|
|
|
|
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
|
|
if (bits & i) {
|
|
MII_SET(XL_MII_DATA);
|
|
} else {
|
|
MII_CLR(XL_MII_DATA);
|
|
}
|
|
DELAY(1);
|
|
MII_CLR(XL_MII_CLK);
|
|
DELAY(1);
|
|
MII_SET(XL_MII_CLK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read an PHY register through the MII.
|
|
*/
|
|
static int xl_mii_readreg(sc, frame)
|
|
struct xl_softc *sc;
|
|
struct xl_mii_frame *frame;
|
|
|
|
{
|
|
int i, ack, s;
|
|
|
|
s = splimp();
|
|
|
|
/*
|
|
* Set up frame for RX.
|
|
*/
|
|
frame->mii_stdelim = XL_MII_STARTDELIM;
|
|
frame->mii_opcode = XL_MII_READOP;
|
|
frame->mii_turnaround = 0;
|
|
frame->mii_data = 0;
|
|
|
|
/*
|
|
* Select register window 4.
|
|
*/
|
|
|
|
XL_SEL_WIN(4);
|
|
|
|
CSR_WRITE_2(sc, XL_W4_PHY_MGMT, 0);
|
|
/*
|
|
* Turn on data xmit.
|
|
*/
|
|
MII_SET(XL_MII_DIR);
|
|
|
|
xl_mii_sync(sc);
|
|
|
|
/*
|
|
* Send command/address info.
|
|
*/
|
|
xl_mii_send(sc, frame->mii_stdelim, 2);
|
|
xl_mii_send(sc, frame->mii_opcode, 2);
|
|
xl_mii_send(sc, frame->mii_phyaddr, 5);
|
|
xl_mii_send(sc, frame->mii_regaddr, 5);
|
|
|
|
/* Idle bit */
|
|
MII_CLR((XL_MII_CLK|XL_MII_DATA));
|
|
DELAY(1);
|
|
MII_SET(XL_MII_CLK);
|
|
DELAY(1);
|
|
|
|
/* Turn off xmit. */
|
|
MII_CLR(XL_MII_DIR);
|
|
|
|
/* Check for ack */
|
|
MII_CLR(XL_MII_CLK);
|
|
DELAY(1);
|
|
MII_SET(XL_MII_CLK);
|
|
DELAY(1);
|
|
ack = CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA;
|
|
|
|
/*
|
|
* Now try reading data bits. If the ack failed, we still
|
|
* need to clock through 16 cycles to keep the PHY(s) in sync.
|
|
*/
|
|
if (ack) {
|
|
for(i = 0; i < 16; i++) {
|
|
MII_CLR(XL_MII_CLK);
|
|
DELAY(1);
|
|
MII_SET(XL_MII_CLK);
|
|
DELAY(1);
|
|
}
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
MII_CLR(XL_MII_CLK);
|
|
DELAY(1);
|
|
if (!ack) {
|
|
if (CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA)
|
|
frame->mii_data |= i;
|
|
DELAY(1);
|
|
}
|
|
MII_SET(XL_MII_CLK);
|
|
DELAY(1);
|
|
}
|
|
|
|
fail:
|
|
|
|
MII_CLR(XL_MII_CLK);
|
|
DELAY(1);
|
|
MII_SET(XL_MII_CLK);
|
|
DELAY(1);
|
|
|
|
splx(s);
|
|
|
|
if (ack)
|
|
return(1);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Write to a PHY register through the MII.
|
|
*/
|
|
static int xl_mii_writereg(sc, frame)
|
|
struct xl_softc *sc;
|
|
struct xl_mii_frame *frame;
|
|
|
|
{
|
|
int s;
|
|
|
|
|
|
|
|
s = splimp();
|
|
/*
|
|
* Set up frame for TX.
|
|
*/
|
|
|
|
frame->mii_stdelim = XL_MII_STARTDELIM;
|
|
frame->mii_opcode = XL_MII_WRITEOP;
|
|
frame->mii_turnaround = XL_MII_TURNAROUND;
|
|
|
|
/*
|
|
* Select the window 4.
|
|
*/
|
|
XL_SEL_WIN(4);
|
|
|
|
/*
|
|
* Turn on data output.
|
|
*/
|
|
MII_SET(XL_MII_DIR);
|
|
|
|
xl_mii_sync(sc);
|
|
|
|
xl_mii_send(sc, frame->mii_stdelim, 2);
|
|
xl_mii_send(sc, frame->mii_opcode, 2);
|
|
xl_mii_send(sc, frame->mii_phyaddr, 5);
|
|
xl_mii_send(sc, frame->mii_regaddr, 5);
|
|
xl_mii_send(sc, frame->mii_turnaround, 2);
|
|
xl_mii_send(sc, frame->mii_data, 16);
|
|
|
|
/* Idle bit. */
|
|
MII_SET(XL_MII_CLK);
|
|
DELAY(1);
|
|
MII_CLR(XL_MII_CLK);
|
|
DELAY(1);
|
|
|
|
/*
|
|
* Turn off xmit.
|
|
*/
|
|
MII_CLR(XL_MII_DIR);
|
|
|
|
splx(s);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static u_int16_t xl_phy_readreg(sc, reg)
|
|
struct xl_softc *sc;
|
|
int reg;
|
|
{
|
|
struct xl_mii_frame frame;
|
|
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
frame.mii_phyaddr = sc->xl_phy_addr;
|
|
frame.mii_regaddr = reg;
|
|
xl_mii_readreg(sc, &frame);
|
|
|
|
return(frame.mii_data);
|
|
}
|
|
|
|
static void xl_phy_writereg(sc, reg, data)
|
|
struct xl_softc *sc;
|
|
u_int16_t reg;
|
|
u_int16_t data;
|
|
{
|
|
struct xl_mii_frame frame;
|
|
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
frame.mii_phyaddr = sc->xl_phy_addr;
|
|
frame.mii_regaddr = reg;
|
|
frame.mii_data = data;
|
|
|
|
xl_mii_writereg(sc, &frame);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The EEPROM is slow: give it time to come ready after issuing
|
|
* it a command.
|
|
*/
|
|
static int xl_eeprom_wait(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
if (CSR_READ_2(sc, XL_W0_EE_CMD) & XL_EE_BUSY)
|
|
DELAY(162);
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (i == 100) {
|
|
printf("xl%d: eeprom failed to come ready\n", sc->xl_unit);
|
|
return(1);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of words from the EEPROM. Note that ethernet address
|
|
* data is stored in the EEPROM in network byte order.
|
|
*/
|
|
static int xl_read_eeprom(sc, dest, off, cnt, swap)
|
|
struct xl_softc *sc;
|
|
caddr_t dest;
|
|
int off;
|
|
int cnt;
|
|
int swap;
|
|
{
|
|
int err = 0, i;
|
|
u_int16_t word = 0, *ptr;
|
|
|
|
XL_SEL_WIN(0);
|
|
|
|
if (xl_eeprom_wait(sc))
|
|
return(1);
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
CSR_WRITE_2(sc, XL_W0_EE_CMD, XL_EE_READ | (off + i));
|
|
err = xl_eeprom_wait(sc);
|
|
if (err)
|
|
break;
|
|
word = CSR_READ_2(sc, XL_W0_EE_DATA);
|
|
ptr = (u_int16_t *)(dest + (i * 2));
|
|
if (swap)
|
|
*ptr = ntohs(word);
|
|
else
|
|
*ptr = word;
|
|
}
|
|
|
|
return(err ? 1 : 0);
|
|
}
|
|
|
|
/*
|
|
* This routine is taken from the 3Com Etherlink XL manual,
|
|
* page 10-7. It calculates a CRC of the supplied multicast
|
|
* group address and returns the lower 8 bits, which are used
|
|
* as the multicast filter position.
|
|
* Note: the 3c905B currently only supports a 64-bit hash table,
|
|
* which means we really only need 6 bits, but the manual indicates
|
|
* that future chip revisions will have a 256-bit hash table,
|
|
* hence the routine is set up to calculate 8 bits of position
|
|
* info in case we need it some day.
|
|
* Note II, The Sequel: _CURRENT_ versions of the 3c905B have a
|
|
* 256 bit hash table. This means we have to use all 8 bits regardless.
|
|
* On older cards, the upper 2 bits will be ignored. Grrrr....
|
|
*/
|
|
static u_int8_t xl_calchash(addr)
|
|
u_int8_t *addr;
|
|
{
|
|
u_int32_t crc, carry;
|
|
int i, j;
|
|
u_int8_t c;
|
|
|
|
/* Compute CRC for the address value. */
|
|
crc = 0xFFFFFFFF; /* initial value */
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
c = *(addr + i);
|
|
for (j = 0; j < 8; j++) {
|
|
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
|
|
crc <<= 1;
|
|
c >>= 1;
|
|
if (carry)
|
|
crc = (crc ^ 0x04c11db6) | carry;
|
|
}
|
|
}
|
|
|
|
/* return the filter bit position */
|
|
return(crc & 0x000000FF);
|
|
}
|
|
|
|
/*
|
|
* NICs older than the 3c905B have only one multicast option, which
|
|
* is to enable reception of all multicast frames.
|
|
*/
|
|
static void xl_setmulti(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
u_int8_t rxfilt;
|
|
int mcnt = 0;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
XL_SEL_WIN(5);
|
|
rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI) {
|
|
rxfilt |= XL_RXFILTER_ALLMULTI;
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
|
|
return;
|
|
}
|
|
|
|
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
|
|
ifma = ifma->ifma_link.le_next)
|
|
mcnt++;
|
|
|
|
if (mcnt)
|
|
rxfilt |= XL_RXFILTER_ALLMULTI;
|
|
else
|
|
rxfilt &= ~XL_RXFILTER_ALLMULTI;
|
|
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* 3c905B adapters have a hash filter that we can program.
|
|
*/
|
|
static void xl_setmulti_hash(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
int h = 0, i;
|
|
struct ifmultiaddr *ifma;
|
|
u_int8_t rxfilt;
|
|
int mcnt = 0;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
XL_SEL_WIN(5);
|
|
rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI) {
|
|
rxfilt |= XL_RXFILTER_ALLMULTI;
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
|
|
return;
|
|
} else
|
|
rxfilt &= ~XL_RXFILTER_ALLMULTI;
|
|
|
|
|
|
/* first, zot all the existing hash bits */
|
|
for (i = 0; i < XL_HASHFILT_SIZE; i++)
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|i);
|
|
|
|
/* now program new ones */
|
|
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
|
|
ifma = ifma->ifma_link.le_next) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = xl_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|XL_HASH_SET|h);
|
|
mcnt++;
|
|
}
|
|
|
|
if (mcnt)
|
|
rxfilt |= XL_RXFILTER_MULTIHASH;
|
|
else
|
|
rxfilt &= ~XL_RXFILTER_MULTIHASH;
|
|
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
|
|
|
|
return;
|
|
}
|
|
|
|
#ifdef notdef
|
|
static void xl_testpacket(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
|
|
if (m == NULL)
|
|
return;
|
|
|
|
bcopy(&sc->arpcom.ac_enaddr,
|
|
mtod(m, struct ether_header *)->ether_dhost, ETHER_ADDR_LEN);
|
|
bcopy(&sc->arpcom.ac_enaddr,
|
|
mtod(m, struct ether_header *)->ether_shost, ETHER_ADDR_LEN);
|
|
mtod(m, struct ether_header *)->ether_type = htons(3);
|
|
mtod(m, unsigned char *)[14] = 0;
|
|
mtod(m, unsigned char *)[15] = 0;
|
|
mtod(m, unsigned char *)[16] = 0xE3;
|
|
m->m_len = m->m_pkthdr.len = sizeof(struct ether_header) + 3;
|
|
IF_ENQUEUE(&ifp->if_snd, m);
|
|
xl_start(ifp);
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Initiate an autonegotiation session.
|
|
*/
|
|
static void xl_autoneg_xmit(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
u_int16_t phy_sts;
|
|
|
|
xl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
|
|
DELAY(500);
|
|
while(xl_phy_readreg(sc, XL_PHY_GENCTL)
|
|
& PHY_BMCR_RESET);
|
|
|
|
phy_sts = xl_phy_readreg(sc, PHY_BMCR);
|
|
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
|
|
xl_phy_writereg(sc, PHY_BMCR, phy_sts);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Invoke autonegotiation on a PHY. Also used with the 3Com internal
|
|
* autoneg logic which is mapped onto the MII.
|
|
*/
|
|
static void xl_autoneg_mii(sc, flag, verbose)
|
|
struct xl_softc *sc;
|
|
int flag;
|
|
int verbose;
|
|
{
|
|
u_int16_t phy_sts = 0, media, advert, ability;
|
|
struct ifnet *ifp;
|
|
struct ifmedia *ifm;
|
|
|
|
ifm = &sc->ifmedia;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
ifm->ifm_media = IFM_ETHER | IFM_AUTO;
|
|
|
|
/*
|
|
* The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported'
|
|
* bit cleared in the status register, but has the 'autoneg enabled'
|
|
* bit set in the control register. This is a contradiction, and
|
|
* I'm not sure how to handle it. If you want to force an attempt
|
|
* to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
|
|
* and see what happens.
|
|
*/
|
|
#ifndef FORCE_AUTONEG_TFOUR
|
|
/*
|
|
* First, see if autoneg is supported. If not, there's
|
|
* no point in continuing.
|
|
*/
|
|
phy_sts = xl_phy_readreg(sc, PHY_BMSR);
|
|
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
|
|
if (verbose)
|
|
printf("xl%d: autonegotiation not supported\n",
|
|
sc->xl_unit);
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
media = xl_phy_readreg(sc, PHY_BMCR);
|
|
media &= ~PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
xl_phy_writereg(sc, PHY_BMCR, media);
|
|
CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
|
|
(CSR_READ_1(sc, XL_W3_MAC_CTRL) &
|
|
~XL_MACCTRL_DUPLEX));
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
switch (flag) {
|
|
case XL_FLAG_FORCEDELAY:
|
|
/*
|
|
* XXX Never use this option anywhere but in the probe
|
|
* routine: making the kernel stop dead in its tracks
|
|
* for three whole seconds after we've gone multi-user
|
|
* is really bad manners.
|
|
*/
|
|
xl_autoneg_xmit(sc);
|
|
DELAY(5000000);
|
|
break;
|
|
case XL_FLAG_SCHEDDELAY:
|
|
/*
|
|
* Wait for the transmitter to go idle before starting
|
|
* an autoneg session, otherwise xl_start() may clobber
|
|
* our timeout, and we don't want to allow transmission
|
|
* during an autoneg session since that can screw it up.
|
|
*/
|
|
if (sc->xl_cdata.xl_tx_head != NULL) {
|
|
sc->xl_want_auto = 1;
|
|
return;
|
|
}
|
|
xl_autoneg_xmit(sc);
|
|
ifp->if_timer = 5;
|
|
sc->xl_autoneg = 1;
|
|
sc->xl_want_auto = 0;
|
|
return;
|
|
break;
|
|
case XL_FLAG_DELAYTIMEO:
|
|
ifp->if_timer = 0;
|
|
sc->xl_autoneg = 0;
|
|
break;
|
|
default:
|
|
printf("xl%d: invalid autoneg flag: %d\n", sc->xl_unit, flag);
|
|
return;
|
|
}
|
|
|
|
if (xl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
|
|
if (verbose)
|
|
printf("xl%d: autoneg complete, ", sc->xl_unit);
|
|
phy_sts = xl_phy_readreg(sc, PHY_BMSR);
|
|
} else {
|
|
if (verbose)
|
|
printf("xl%d: autoneg not complete, ", sc->xl_unit);
|
|
}
|
|
|
|
media = xl_phy_readreg(sc, PHY_BMCR);
|
|
|
|
/* Link is good. Report modes and set duplex mode. */
|
|
if (xl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
|
|
if (verbose)
|
|
printf("link status good ");
|
|
advert = xl_phy_readreg(sc, XL_PHY_ANAR);
|
|
ability = xl_phy_readreg(sc, XL_PHY_LPAR);
|
|
|
|
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_T4;
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
printf("(100baseT4)\n");
|
|
} else if (advert & PHY_ANAR_100BTXFULL &&
|
|
ability & PHY_ANAR_100BTXFULL) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
media |= PHY_BMCR_DUPLEX;
|
|
printf("(full-duplex, 100Mbps)\n");
|
|
} else if (advert & PHY_ANAR_100BTXHALF &&
|
|
ability & PHY_ANAR_100BTXHALF) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
printf("(half-duplex, 100Mbps)\n");
|
|
} else if (advert & PHY_ANAR_10BTFULL &&
|
|
ability & PHY_ANAR_10BTFULL) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
media &= ~PHY_BMCR_SPEEDSEL;
|
|
media |= PHY_BMCR_DUPLEX;
|
|
printf("(full-duplex, 10Mbps)\n");
|
|
} else if (advert & PHY_ANAR_10BTHALF &&
|
|
ability & PHY_ANAR_10BTHALF) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
media &= ~PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
printf("(half-duplex, 10Mbps)\n");
|
|
}
|
|
|
|
/* Set ASIC's duplex mode to match the PHY. */
|
|
XL_SEL_WIN(3);
|
|
if (media & PHY_BMCR_DUPLEX)
|
|
CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX);
|
|
else
|
|
CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
|
|
(CSR_READ_1(sc, XL_W3_MAC_CTRL) &
|
|
~XL_MACCTRL_DUPLEX));
|
|
xl_phy_writereg(sc, PHY_BMCR, media);
|
|
} else {
|
|
if (verbose)
|
|
printf("no carrier (forcing half-duplex, 10Mbps)\n");
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
media &= ~PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
xl_phy_writereg(sc, PHY_BMCR, media);
|
|
CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
|
|
(CSR_READ_1(sc, XL_W3_MAC_CTRL) &
|
|
~XL_MACCTRL_DUPLEX));
|
|
}
|
|
|
|
xl_init(sc);
|
|
|
|
if (sc->xl_tx_pend) {
|
|
sc->xl_autoneg = 0;
|
|
sc->xl_tx_pend = 0;
|
|
xl_start(ifp);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void xl_getmode_mii(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
u_int16_t bmsr;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
bmsr = xl_phy_readreg(sc, PHY_BMSR);
|
|
if (bootverbose)
|
|
printf("xl%d: PHY status word: %x\n", sc->xl_unit, bmsr);
|
|
|
|
/* fallback */
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
|
|
if (bmsr & PHY_BMSR_10BTHALF) {
|
|
if (bootverbose)
|
|
printf("xl%d: 10Mbps half-duplex mode supported\n",
|
|
sc->xl_unit);
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_10BTFULL) {
|
|
if (bootverbose)
|
|
printf("xl%d: 10Mbps full-duplex mode supported\n",
|
|
sc->xl_unit);
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_100BTXHALF) {
|
|
if (bootverbose)
|
|
printf("xl%d: 100Mbps half-duplex mode supported\n",
|
|
sc->xl_unit);
|
|
ifp->if_baudrate = 100000000;
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_100BTXFULL) {
|
|
if (bootverbose)
|
|
printf("xl%d: 100Mbps full-duplex mode supported\n",
|
|
sc->xl_unit);
|
|
ifp->if_baudrate = 100000000;
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
}
|
|
|
|
/* Some also support 100BaseT4. */
|
|
if (bmsr & PHY_BMSR_100BT4) {
|
|
if (bootverbose)
|
|
printf("xl%d: 100baseT4 mode supported\n", sc->xl_unit);
|
|
ifp->if_baudrate = 100000000;
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
|
|
#ifdef FORCE_AUTONEG_TFOUR
|
|
if (bootverbose)
|
|
printf("xl%d: forcing on autoneg support for BT4\n",
|
|
sc->xl_unit);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
|
|
#endif
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_CANAUTONEG) {
|
|
if (bootverbose)
|
|
printf("xl%d: autoneg supported\n", sc->xl_unit);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set speed and duplex mode.
|
|
*/
|
|
static void xl_setmode_mii(sc, media)
|
|
struct xl_softc *sc;
|
|
int media;
|
|
{
|
|
u_int16_t bmcr;
|
|
u_int32_t icfg;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/*
|
|
* If an autoneg session is in progress, stop it.
|
|
*/
|
|
if (sc->xl_autoneg) {
|
|
printf("xl%d: canceling autoneg session\n", sc->xl_unit);
|
|
ifp->if_timer = sc->xl_autoneg = sc->xl_want_auto = 0;
|
|
bmcr = xl_phy_readreg(sc, PHY_BMCR);
|
|
bmcr &= ~PHY_BMCR_AUTONEGENBL;
|
|
xl_phy_writereg(sc, PHY_BMCR, bmcr);
|
|
}
|
|
|
|
printf("xl%d: selecting MII, ", sc->xl_unit);
|
|
|
|
XL_SEL_WIN(3);
|
|
icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG);
|
|
icfg &= ~XL_ICFG_CONNECTOR_MASK;
|
|
if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BT4)
|
|
icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS);
|
|
if (sc->xl_media & XL_MEDIAOPT_BTX) {
|
|
if (sc->xl_type == XL_TYPE_905B)
|
|
icfg |= (XL_XCVR_AUTO << XL_ICFG_CONNECTOR_BITS);
|
|
else
|
|
icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS);
|
|
}
|
|
CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_100_FX) {
|
|
icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS);
|
|
CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
|
|
return;
|
|
}
|
|
|
|
bmcr = xl_phy_readreg(sc, PHY_BMCR);
|
|
|
|
bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
|
|
PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_100_T4) {
|
|
printf("100Mbps/T4, half-duplex\n");
|
|
bmcr |= PHY_BMCR_SPEEDSEL;
|
|
bmcr &= ~PHY_BMCR_DUPLEX;
|
|
}
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_100_TX) {
|
|
printf("100Mbps, ");
|
|
bmcr |= PHY_BMCR_SPEEDSEL;
|
|
}
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_10_T) {
|
|
printf("10Mbps, ");
|
|
bmcr &= ~PHY_BMCR_SPEEDSEL;
|
|
}
|
|
|
|
if ((media & IFM_GMASK) == IFM_FDX) {
|
|
printf("full duplex\n");
|
|
bmcr |= PHY_BMCR_DUPLEX;
|
|
XL_SEL_WIN(3);
|
|
CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX);
|
|
} else {
|
|
printf("half duplex\n");
|
|
bmcr &= ~PHY_BMCR_DUPLEX;
|
|
XL_SEL_WIN(3);
|
|
CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
|
|
(CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX));
|
|
}
|
|
|
|
xl_phy_writereg(sc, PHY_BMCR, bmcr);
|
|
|
|
return;
|
|
}
|
|
|
|
static void xl_setmode(sc, media)
|
|
struct xl_softc *sc;
|
|
int media;
|
|
{
|
|
u_int32_t icfg;
|
|
u_int16_t mediastat;
|
|
|
|
printf("xl%d: selecting ", sc->xl_unit);
|
|
|
|
XL_SEL_WIN(4);
|
|
mediastat = CSR_READ_2(sc, XL_W4_MEDIA_STATUS);
|
|
XL_SEL_WIN(3);
|
|
icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG);
|
|
|
|
if (sc->xl_media & XL_MEDIAOPT_BT) {
|
|
if (IFM_SUBTYPE(media) == IFM_10_T) {
|
|
printf("10baseT transceiver, ");
|
|
sc->xl_xcvr = XL_XCVR_10BT;
|
|
icfg &= ~XL_ICFG_CONNECTOR_MASK;
|
|
icfg |= (XL_XCVR_10BT << XL_ICFG_CONNECTOR_BITS);
|
|
mediastat |= XL_MEDIASTAT_LINKBEAT|
|
|
XL_MEDIASTAT_JABGUARD;
|
|
mediastat &= ~XL_MEDIASTAT_SQEENB;
|
|
}
|
|
}
|
|
|
|
if (sc->xl_media & XL_MEDIAOPT_BFX) {
|
|
if (IFM_SUBTYPE(media) == IFM_100_FX) {
|
|
printf("100baseFX port, ");
|
|
sc->xl_xcvr = XL_XCVR_100BFX;
|
|
icfg &= ~XL_ICFG_CONNECTOR_MASK;
|
|
icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS);
|
|
mediastat |= XL_MEDIASTAT_LINKBEAT;
|
|
mediastat &= ~XL_MEDIASTAT_SQEENB;
|
|
}
|
|
}
|
|
|
|
if (sc->xl_media & XL_MEDIAOPT_AUI) {
|
|
if (IFM_SUBTYPE(media) == IFM_10_5) {
|
|
printf("AUI port, ");
|
|
sc->xl_xcvr = XL_XCVR_AUI;
|
|
icfg &= ~XL_ICFG_CONNECTOR_MASK;
|
|
icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS);
|
|
mediastat &= ~(XL_MEDIASTAT_LINKBEAT|
|
|
XL_MEDIASTAT_JABGUARD);
|
|
mediastat |= ~XL_MEDIASTAT_SQEENB;
|
|
}
|
|
}
|
|
|
|
if (sc->xl_media & XL_MEDIAOPT_BNC) {
|
|
if (IFM_SUBTYPE(media) == IFM_10_2) {
|
|
printf("BNC port, ");
|
|
sc->xl_xcvr = XL_XCVR_COAX;
|
|
icfg &= ~XL_ICFG_CONNECTOR_MASK;
|
|
icfg |= (XL_XCVR_COAX << XL_ICFG_CONNECTOR_BITS);
|
|
mediastat &= ~(XL_MEDIASTAT_LINKBEAT|
|
|
XL_MEDIASTAT_JABGUARD|
|
|
XL_MEDIASTAT_SQEENB);
|
|
}
|
|
}
|
|
|
|
if ((media & IFM_GMASK) == IFM_FDX ||
|
|
IFM_SUBTYPE(media) == IFM_100_FX) {
|
|
printf("full duplex\n");
|
|
XL_SEL_WIN(3);
|
|
CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX);
|
|
} else {
|
|
printf("half duplex\n");
|
|
XL_SEL_WIN(3);
|
|
CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
|
|
(CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX));
|
|
}
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_10_2)
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START);
|
|
else
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
|
|
CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
|
|
XL_SEL_WIN(4);
|
|
CSR_WRITE_2(sc, XL_W4_MEDIA_STATUS, mediastat);
|
|
DELAY(800);
|
|
XL_SEL_WIN(7);
|
|
|
|
return;
|
|
}
|
|
|
|
static void xl_reset(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
XL_SEL_WIN(0);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RESET);
|
|
xl_wait(sc);
|
|
|
|
/* Wait a little while for the chip to get its brains in order. */
|
|
DELAY(1000);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Probe for a 3Com Etherlink XL chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
*/
|
|
static char *
|
|
xl_probe(config_id, device_id)
|
|
pcici_t config_id;
|
|
pcidi_t device_id;
|
|
{
|
|
struct xl_type *t;
|
|
|
|
t = xl_devs;
|
|
|
|
while(t->xl_name != NULL) {
|
|
if ((device_id & 0xFFFF) == t->xl_vid &&
|
|
((device_id >> 16) & 0xFFFF) == t->xl_did) {
|
|
return(t->xl_name);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* This routine is a kludge to work around possible hardware faults
|
|
* or manufacturing defects that can cause the media options register
|
|
* (or reset options register, as it's called for the first generation
|
|
* 3cx90x adapters) to return an incorrect result. I have encountered
|
|
* one Dell Latitude laptop docking station with an integrated 3c905-TX
|
|
* which doesn't have any of the 'mediaopt' bits set. This screws up
|
|
* the attach routine pretty badly because it doesn't know what media
|
|
* to look for. If we find ourselves in this predicament, this routine
|
|
* will try to guess the media options values and warn the user of a
|
|
* possible manufacturing defect with his adapter/system/whatever.
|
|
*/
|
|
static void xl_mediacheck(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
u_int16_t devid;
|
|
|
|
/*
|
|
* If some of the media options bits are set, assume they are
|
|
* correct. If not, try to figure it out down below.
|
|
* XXX I should check for 10baseFL, but I don't have an adapter
|
|
* to test with.
|
|
*/
|
|
if (sc->xl_media & (XL_MEDIAOPT_MASK & ~XL_MEDIAOPT_VCO)) {
|
|
/*
|
|
* Check the XCVR value. If it's not in the normal range
|
|
* of values, we need to fake it up here.
|
|
*/
|
|
if (sc->xl_xcvr <= XL_XCVR_AUTO)
|
|
return;
|
|
else {
|
|
printf("xl%d: bogus xcvr value "
|
|
"in EEPROM (%x)\n", sc->xl_unit, sc->xl_xcvr);
|
|
printf("xl%d: choosing new default based "
|
|
"on card type\n", sc->xl_unit);
|
|
}
|
|
} else {
|
|
printf("xl%d: WARNING: no media options bits set in "
|
|
"the media options register!!\n", sc->xl_unit);
|
|
printf("xl%d: this could be a manufacturing defect in "
|
|
"your adapter or system\n", sc->xl_unit);
|
|
printf("xl%d: attempting to guess media type; you "
|
|
"should probably consult your vendor\n", sc->xl_unit);
|
|
}
|
|
|
|
|
|
/*
|
|
* Read the device ID from the EEPROM.
|
|
* This is what's loaded into the PCI device ID register, so it has
|
|
* to be correct otherwise we wouldn't have gotten this far.
|
|
*/
|
|
xl_read_eeprom(sc, (caddr_t)&devid, XL_EE_PRODID, 1, 0);
|
|
|
|
switch(devid) {
|
|
case TC_DEVICEID_BOOMERANG_10BT: /* 3c900-TP */
|
|
case TC_DEVICEID_CYCLONE_10BT: /* 3c900B-TP */
|
|
sc->xl_media = XL_MEDIAOPT_BT;
|
|
sc->xl_xcvr = XL_XCVR_10BT;
|
|
printf("xl%d: guessing 10BaseT transceiver\n", sc->xl_unit);
|
|
break;
|
|
case TC_DEVICEID_BOOMERANG_10BT_COMBO: /* 3c900-COMBO */
|
|
case TC_DEVICEID_CYCLONE_10BT_COMBO: /* 3c900B-COMBO */
|
|
sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI;
|
|
sc->xl_xcvr = XL_XCVR_10BT;
|
|
printf("xl%d: guessing COMBO (AUI/BNC/TP)\n", sc->xl_unit);
|
|
break;
|
|
case TC_DEVICEID_BOOMERANG_10_100BT: /* 3c905-TX */
|
|
sc->xl_media = XL_MEDIAOPT_MII;
|
|
sc->xl_xcvr = XL_XCVR_MII;
|
|
printf("xl%d: guessing MII\n", sc->xl_unit);
|
|
break;
|
|
case TC_DEVICEID_BOOMERANG_100BT4: /* 3c905-T4 */
|
|
case TC_DEVICEID_CYCLONE_10_100BT4: /* 3c905B-T4 */
|
|
sc->xl_media = XL_MEDIAOPT_BT4;
|
|
sc->xl_xcvr = XL_XCVR_MII;
|
|
printf("xl%d: guessing 100BaseT4/MII\n", sc->xl_unit);
|
|
break;
|
|
case TC_DEVICEID_CYCLONE_10_100BT: /* 3c905B-TX */
|
|
case TC_DEVICEID_CYCLONE_10_100BT_SERV: /* 3c980-TX */
|
|
sc->xl_media = XL_MEDIAOPT_BTX;
|
|
sc->xl_xcvr = XL_XCVR_AUTO;
|
|
printf("xl%d: guessing 10/100 internal\n", sc->xl_unit);
|
|
break;
|
|
default:
|
|
printf("xl%d: unknown device ID: %x -- "
|
|
"defaulting to 10baseT\n", sc->xl_unit, devid);
|
|
sc->xl_media = XL_MEDIAOPT_BT;
|
|
break;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static void
|
|
xl_attach(config_id, unit)
|
|
pcici_t config_id;
|
|
int unit;
|
|
{
|
|
int s, i;
|
|
#ifndef XL_USEIOSPACE
|
|
vm_offset_t pbase, vbase;
|
|
#endif
|
|
u_char eaddr[ETHER_ADDR_LEN];
|
|
u_int32_t command;
|
|
struct xl_softc *sc;
|
|
struct ifnet *ifp;
|
|
int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
unsigned int round;
|
|
caddr_t roundptr;
|
|
struct xl_type *p;
|
|
u_int16_t phy_vid, phy_did, phy_sts;
|
|
|
|
s = splimp();
|
|
|
|
sc = malloc(sizeof(struct xl_softc), M_DEVBUF, M_NOWAIT);
|
|
if (sc == NULL) {
|
|
printf("xl%d: no memory for softc struct!\n", unit);
|
|
return;
|
|
}
|
|
bzero(sc, sizeof(struct xl_softc));
|
|
|
|
/*
|
|
* If this is a 3c905B, we have to check one extra thing.
|
|
* The 905B supports power management and may be placed in
|
|
* a low-power mode (D3 mode), typically by certain operating
|
|
* systems which shall not be named. The PCI BIOS is supposed
|
|
* to reset the NIC and bring it out of low-power mode, but
|
|
* some do not. Consequently, we have to see if this chip
|
|
* supports power management, and if so, make sure it's not
|
|
* in low-power mode. If power management is available, the
|
|
* capid byte will be 0x01.
|
|
*
|
|
* I _think_ that what actually happens is that the chip
|
|
* loses its PCI configuration during the transition from
|
|
* D3 back to D0; this means that it should be possible for
|
|
* us to save the PCI iobase, membase and IRQ, put the chip
|
|
* back in the D0 state, then restore the PCI config ourselves.
|
|
*/
|
|
|
|
command = pci_conf_read(config_id, XL_PCI_CAPID) & 0x000000FF;
|
|
if (command == 0x01) {
|
|
|
|
command = pci_conf_read(config_id, XL_PCI_PWRMGMTCTRL);
|
|
if (command & XL_PSTATE_MASK) {
|
|
u_int32_t iobase, membase, irq;
|
|
|
|
/* Save important PCI config data. */
|
|
iobase = pci_conf_read(config_id, XL_PCI_LOIO);
|
|
membase = pci_conf_read(config_id, XL_PCI_LOMEM);
|
|
irq = pci_conf_read(config_id, XL_PCI_INTLINE);
|
|
|
|
/* Reset the power state. */
|
|
printf("xl%d: chip is in D%d power mode "
|
|
"-- setting to D0\n", unit, command & XL_PSTATE_MASK);
|
|
command &= 0xFFFFFFFC;
|
|
pci_conf_write(config_id, XL_PCI_PWRMGMTCTRL, command);
|
|
|
|
/* Restore PCI config data. */
|
|
pci_conf_write(config_id, XL_PCI_LOIO, iobase);
|
|
pci_conf_write(config_id, XL_PCI_LOMEM, membase);
|
|
pci_conf_write(config_id, XL_PCI_INTLINE, irq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
|
|
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
|
|
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command);
|
|
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
|
|
|
|
#ifdef XL_USEIOSPACE
|
|
if (!(command & PCIM_CMD_PORTEN)) {
|
|
printf("xl%d: failed to enable I/O ports!\n", unit);
|
|
free(sc, M_DEVBUF);
|
|
goto fail;
|
|
}
|
|
|
|
sc->iobase = pci_conf_read(config_id, XL_PCI_LOIO) & 0xFFFFFFE0;
|
|
#else
|
|
if (!(command & PCIM_CMD_MEMEN)) {
|
|
printf("xl%d: failed to enable memory mapping!\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
if (!pci_map_mem(config_id, XL_PCI_LOMEM, &vbase, &pbase)) {
|
|
printf ("xl%d: couldn't map memory\n", unit);
|
|
goto fail;
|
|
}
|
|
sc->csr = (volatile caddr_t)vbase;
|
|
#endif
|
|
|
|
/* Allocate interrupt */
|
|
if (!pci_map_int(config_id, xl_intr, sc, &net_imask)) {
|
|
printf("xl%d: couldn't map interrupt\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
/* Reset the adapter. */
|
|
xl_reset(sc);
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
if (xl_read_eeprom(sc, (caddr_t)&eaddr, XL_EE_OEM_ADR0, 3, 1)) {
|
|
printf("xl%d: failed to read station address\n", sc->xl_unit);
|
|
free(sc, M_DEVBUF);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* A 3Com chip was detected. Inform the world.
|
|
*/
|
|
printf("xl%d: Ethernet address: %6D\n", unit, eaddr, ":");
|
|
|
|
sc->xl_unit = unit;
|
|
callout_handle_init(&sc->xl_stat_ch);
|
|
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
|
|
|
|
sc->xl_ldata_ptr = malloc(sizeof(struct xl_list_data) + 8,
|
|
M_DEVBUF, M_NOWAIT);
|
|
if (sc->xl_ldata_ptr == NULL) {
|
|
free(sc, M_DEVBUF);
|
|
printf("xl%d: no memory for list buffers!\n", unit);
|
|
return;
|
|
}
|
|
|
|
sc->xl_ldata = (struct xl_list_data *)sc->xl_ldata_ptr;
|
|
round = (unsigned int)sc->xl_ldata_ptr & 0xF;
|
|
roundptr = sc->xl_ldata_ptr;
|
|
for (i = 0; i < 8; i++) {
|
|
if (round % 8) {
|
|
round++;
|
|
roundptr++;
|
|
}
|
|
break;
|
|
}
|
|
sc->xl_ldata = (struct xl_list_data *)roundptr;
|
|
bzero(sc->xl_ldata, sizeof(struct xl_list_data));
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
ifp->if_softc = sc;
|
|
ifp->if_unit = unit;
|
|
ifp->if_name = "xl";
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = xl_ioctl;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_start = xl_start;
|
|
ifp->if_watchdog = xl_watchdog;
|
|
ifp->if_init = xl_init;
|
|
ifp->if_baudrate = 10000000;
|
|
|
|
/*
|
|
* Figure out the card type. 3c905B adapters have the
|
|
* 'supportsNoTxLength' bit set in the capabilities
|
|
* word in the EEPROM.
|
|
*/
|
|
xl_read_eeprom(sc, (caddr_t)&sc->xl_caps, XL_EE_CAPS, 1, 0);
|
|
if (sc->xl_caps & XL_CAPS_NO_TXLENGTH)
|
|
sc->xl_type = XL_TYPE_905B;
|
|
else
|
|
sc->xl_type = XL_TYPE_90X;
|
|
|
|
/*
|
|
* Now we have to see what sort of media we have.
|
|
* This includes probing for an MII interace and a
|
|
* possible PHY.
|
|
*/
|
|
XL_SEL_WIN(3);
|
|
sc->xl_media = CSR_READ_2(sc, XL_W3_MEDIA_OPT);
|
|
if (bootverbose)
|
|
printf("xl%d: media options word: %x\n", sc->xl_unit,
|
|
sc->xl_media);
|
|
|
|
xl_read_eeprom(sc, (char *)&sc->xl_xcvr, XL_EE_ICFG_0, 2, 0);
|
|
sc->xl_xcvr &= XL_ICFG_CONNECTOR_MASK;
|
|
sc->xl_xcvr >>= XL_ICFG_CONNECTOR_BITS;
|
|
|
|
xl_mediacheck(sc);
|
|
|
|
if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX
|
|
|| sc->xl_media & XL_MEDIAOPT_BT4) {
|
|
/*
|
|
* In theory I shouldn't need this, but... if this
|
|
* card supports an MII, either an external one or
|
|
* an internal fake one, select it in the internal
|
|
* config register before trying to probe it.
|
|
*/
|
|
u_int32_t icfg;
|
|
|
|
XL_SEL_WIN(3);
|
|
icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG);
|
|
icfg &= ~XL_ICFG_CONNECTOR_MASK;
|
|
if (sc->xl_media & XL_MEDIAOPT_MII ||
|
|
sc->xl_media & XL_MEDIAOPT_BT4)
|
|
icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS);
|
|
if (sc->xl_media & XL_MEDIAOPT_BTX)
|
|
icfg |= (XL_XCVR_AUTO << XL_ICFG_CONNECTOR_BITS);
|
|
if (sc->xl_media & XL_MEDIAOPT_BFX)
|
|
icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS);
|
|
CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
|
|
|
|
if (bootverbose)
|
|
printf("xl%d: probing for a PHY\n", sc->xl_unit);
|
|
for (i = XL_PHYADDR_MIN; i < XL_PHYADDR_MAX + 1; i++) {
|
|
if (bootverbose)
|
|
printf("xl%d: checking address: %d\n",
|
|
sc->xl_unit, i);
|
|
sc->xl_phy_addr = i;
|
|
xl_phy_writereg(sc, XL_PHY_GENCTL, PHY_BMCR_RESET);
|
|
DELAY(500);
|
|
while(xl_phy_readreg(sc, XL_PHY_GENCTL)
|
|
& PHY_BMCR_RESET);
|
|
if ((phy_sts = xl_phy_readreg(sc, XL_PHY_GENSTS)))
|
|
break;
|
|
}
|
|
if (phy_sts) {
|
|
phy_vid = xl_phy_readreg(sc, XL_PHY_VENID);
|
|
phy_did = xl_phy_readreg(sc, XL_PHY_DEVID);
|
|
if (bootverbose)
|
|
printf("xl%d: found PHY at address %d, ",
|
|
sc->xl_unit, sc->xl_phy_addr);
|
|
if (bootverbose)
|
|
printf("vendor id: %x device id: %x\n",
|
|
phy_vid, phy_did);
|
|
p = xl_phys;
|
|
while(p->xl_vid) {
|
|
if (phy_vid == p->xl_vid &&
|
|
(phy_did | 0x000F) == p->xl_did) {
|
|
sc->xl_pinfo = p;
|
|
break;
|
|
}
|
|
p++;
|
|
}
|
|
if (sc->xl_pinfo == NULL)
|
|
sc->xl_pinfo = &xl_phys[PHY_UNKNOWN];
|
|
if (bootverbose)
|
|
printf("xl%d: PHY type: %s\n",
|
|
sc->xl_unit, sc->xl_pinfo->xl_name);
|
|
} else {
|
|
printf("xl%d: MII without any phy!\n", sc->xl_unit);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do ifmedia setup.
|
|
*/
|
|
ifmedia_init(&sc->ifmedia, 0, xl_ifmedia_upd, xl_ifmedia_sts);
|
|
|
|
if (sc->xl_media & XL_MEDIAOPT_BT) {
|
|
if (bootverbose)
|
|
printf("xl%d: found 10baseT\n", sc->xl_unit);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
|
|
if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
|
|
}
|
|
|
|
if (sc->xl_media & XL_MEDIAOPT_AUI) {
|
|
if (bootverbose)
|
|
printf("xl%d: found AUI\n", sc->xl_unit);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
|
|
}
|
|
|
|
if (sc->xl_media & XL_MEDIAOPT_BNC) {
|
|
if (bootverbose)
|
|
printf("xl%d: found BNC\n", sc->xl_unit);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_2, 0, NULL);
|
|
}
|
|
|
|
/*
|
|
* Technically we could use xl_getmode_mii() to scan the
|
|
* modes, but the built-in BTX mode on the 3c905B implies
|
|
* 10/100 full/half duplex support anyway, so why not just
|
|
* do it and get it over with.
|
|
*/
|
|
if (sc->xl_media & XL_MEDIAOPT_BTX) {
|
|
if (bootverbose)
|
|
printf("xl%d: found 100baseTX\n", sc->xl_unit);
|
|
ifp->if_baudrate = 100000000;
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
|
|
if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
|
|
if (sc->xl_pinfo != NULL)
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
|
|
}
|
|
|
|
if (sc->xl_media & XL_MEDIAOPT_BFX) {
|
|
if (bootverbose)
|
|
printf("xl%d: found 100baseFX\n", sc->xl_unit);
|
|
ifp->if_baudrate = 100000000;
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
|
|
}
|
|
|
|
/*
|
|
* If there's an MII, we have to probe its modes
|
|
* separately.
|
|
*/
|
|
if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BT4) {
|
|
if (bootverbose)
|
|
printf("xl%d: found MII\n", sc->xl_unit);
|
|
xl_getmode_mii(sc);
|
|
}
|
|
|
|
/* Choose a default media. */
|
|
switch(sc->xl_xcvr) {
|
|
case XL_XCVR_10BT:
|
|
media = IFM_ETHER|IFM_10_T;
|
|
xl_setmode(sc, media);
|
|
break;
|
|
case XL_XCVR_AUI:
|
|
media = IFM_ETHER|IFM_10_5;
|
|
xl_setmode(sc, media);
|
|
break;
|
|
case XL_XCVR_COAX:
|
|
media = IFM_ETHER|IFM_10_2;
|
|
xl_setmode(sc, media);
|
|
break;
|
|
case XL_XCVR_AUTO:
|
|
#ifdef XL_BACKGROUND_AUTONEG
|
|
xl_autoneg_mii(sc, XL_FLAG_SCHEDDELAY, 1);
|
|
#else
|
|
xl_autoneg_mii(sc, XL_FLAG_FORCEDELAY, 1);
|
|
#endif
|
|
media = sc->ifmedia.ifm_media;
|
|
break;
|
|
case XL_XCVR_100BTX:
|
|
case XL_XCVR_MII:
|
|
#ifdef XL_BACKGROUND_AUTONEG
|
|
xl_autoneg_mii(sc, XL_FLAG_SCHEDDELAY, 1);
|
|
#else
|
|
xl_autoneg_mii(sc, XL_FLAG_FORCEDELAY, 1);
|
|
#endif
|
|
media = sc->ifmedia.ifm_media;
|
|
break;
|
|
case XL_XCVR_100BFX:
|
|
media = IFM_ETHER|IFM_100_FX;
|
|
break;
|
|
default:
|
|
printf("xl%d: unknown XCVR type: %d\n", sc->xl_unit,
|
|
sc->xl_xcvr);
|
|
/*
|
|
* This will probably be wrong, but it prevents
|
|
* the ifmedia code from panicking.
|
|
*/
|
|
media = IFM_ETHER|IFM_10_T;
|
|
break;
|
|
}
|
|
|
|
ifmedia_set(&sc->ifmedia, media);
|
|
|
|
/*
|
|
* Call MI attach routines.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp);
|
|
|
|
#if NBPFILTER > 0
|
|
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
#endif
|
|
at_shutdown(xl_shutdown, sc, SHUTDOWN_POST_SYNC);
|
|
|
|
fail:
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
static int xl_list_tx_init(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
struct xl_chain_data *cd;
|
|
struct xl_list_data *ld;
|
|
int i;
|
|
|
|
cd = &sc->xl_cdata;
|
|
ld = sc->xl_ldata;
|
|
for (i = 0; i < XL_TX_LIST_CNT; i++) {
|
|
cd->xl_tx_chain[i].xl_ptr = &ld->xl_tx_list[i];
|
|
if (i == (XL_TX_LIST_CNT - 1))
|
|
cd->xl_tx_chain[i].xl_next = NULL;
|
|
else
|
|
cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1];
|
|
}
|
|
|
|
cd->xl_tx_free = &cd->xl_tx_chain[0];
|
|
cd->xl_tx_tail = cd->xl_tx_head = NULL;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Initialize the RX descriptors and allocate mbufs for them. Note that
|
|
* we arrange the descriptors in a closed ring, so that the last descriptor
|
|
* points back to the first.
|
|
*/
|
|
static int xl_list_rx_init(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
struct xl_chain_data *cd;
|
|
struct xl_list_data *ld;
|
|
int i;
|
|
|
|
cd = &sc->xl_cdata;
|
|
ld = sc->xl_ldata;
|
|
|
|
for (i = 0; i < XL_RX_LIST_CNT; i++) {
|
|
cd->xl_rx_chain[i].xl_ptr =
|
|
(struct xl_list_onefrag *)&ld->xl_rx_list[i];
|
|
if (xl_newbuf(sc, &cd->xl_rx_chain[i]) == ENOBUFS)
|
|
return(ENOBUFS);
|
|
if (i == (XL_RX_LIST_CNT - 1)) {
|
|
cd->xl_rx_chain[i].xl_next = &cd->xl_rx_chain[0];
|
|
ld->xl_rx_list[i].xl_next =
|
|
vtophys(&ld->xl_rx_list[0]);
|
|
} else {
|
|
cd->xl_rx_chain[i].xl_next = &cd->xl_rx_chain[i + 1];
|
|
ld->xl_rx_list[i].xl_next =
|
|
vtophys(&ld->xl_rx_list[i + 1]);
|
|
}
|
|
}
|
|
|
|
cd->xl_rx_head = &cd->xl_rx_chain[0];
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Initialize an RX descriptor and attach an MBUF cluster.
|
|
*/
|
|
static int xl_newbuf(sc, c)
|
|
struct xl_softc *sc;
|
|
struct xl_chain_onefrag *c;
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
printf("xl%d: no memory for rx list -- packet dropped!\n",
|
|
sc->xl_unit);
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
printf("xl%d: no memory for rx list -- packet dropped!\n",
|
|
sc->xl_unit);
|
|
m_freem(m_new);
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
c->xl_mbuf = m_new;
|
|
c->xl_ptr->xl_status = 0;
|
|
c->xl_ptr->xl_frag.xl_addr = vtophys(mtod(m_new, caddr_t));
|
|
c->xl_ptr->xl_frag.xl_len = MCLBYTES | XL_LAST_FRAG;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* A frame has been uploaded: pass the resulting mbuf chain up to
|
|
* the higher level protocols.
|
|
*/
|
|
static void xl_rxeof(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct xl_chain_onefrag *cur_rx;
|
|
int total_len = 0;
|
|
u_int16_t rxstat;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
again:
|
|
|
|
while((rxstat = sc->xl_cdata.xl_rx_head->xl_ptr->xl_status)) {
|
|
cur_rx = sc->xl_cdata.xl_rx_head;
|
|
sc->xl_cdata.xl_rx_head = cur_rx->xl_next;
|
|
|
|
/*
|
|
* If an error occurs, update stats, clear the
|
|
* status word and leave the mbuf cluster in place:
|
|
* it should simply get re-used next time this descriptor
|
|
* comes up in the ring.
|
|
*/
|
|
if (rxstat & XL_RXSTAT_UP_ERROR) {
|
|
ifp->if_ierrors++;
|
|
cur_rx->xl_ptr->xl_status = 0;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If there error bit was not set, the upload complete
|
|
* bit should be set which means we have a valid packet.
|
|
* If not, something truly strange has happened.
|
|
*/
|
|
if (!(rxstat & XL_RXSTAT_UP_CMPLT)) {
|
|
printf("xl%d: bad receive status -- packet dropped",
|
|
sc->xl_unit);
|
|
ifp->if_ierrors++;
|
|
cur_rx->xl_ptr->xl_status = 0;
|
|
continue;
|
|
}
|
|
|
|
/* No errors; receive the packet. */
|
|
m = cur_rx->xl_mbuf;
|
|
total_len = cur_rx->xl_ptr->xl_status & XL_RXSTAT_LENMASK;
|
|
|
|
/*
|
|
* Try to conjure up a new mbuf cluster. If that
|
|
* fails, it means we have an out of memory condition and
|
|
* should leave the buffer in place and continue. This will
|
|
* result in a lost packet, but there's little else we
|
|
* can do in this situation.
|
|
*/
|
|
if (xl_newbuf(sc, cur_rx) == ENOBUFS) {
|
|
ifp->if_ierrors++;
|
|
cur_rx->xl_ptr->xl_status = 0;
|
|
continue;
|
|
}
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
m->m_pkthdr.rcvif = ifp;
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Handle BPF listeners. Let the BPF user see the packet, but
|
|
* don't pass it up to the ether_input() layer unless it's
|
|
* a broadcast packet, multicast packet, matches our ethernet
|
|
* address or the interface is in promiscuous mode.
|
|
*/
|
|
if (ifp->if_bpf) {
|
|
m->m_pkthdr.len = m->m_len = total_len;
|
|
bpf_mtap(ifp, m);
|
|
if (ifp->if_flags & IFF_PROMISC &&
|
|
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
|
|
ETHER_ADDR_LEN) &&
|
|
(eh->ether_dhost[0] & 1) == 0)) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
/* Remove header from mbuf and pass it on. */
|
|
m->m_pkthdr.len = m->m_len =
|
|
total_len - sizeof(struct ether_header);
|
|
m->m_data += sizeof(struct ether_header);
|
|
ether_input(ifp, eh, m);
|
|
}
|
|
|
|
/*
|
|
* Handle the 'end of channel' condition. When the upload
|
|
* engine hits the end of the RX ring, it will stall. This
|
|
* is our cue to flush the RX ring, reload the uplist pointer
|
|
* register and unstall the engine.
|
|
* XXX This is actually a little goofy. With the ThunderLAN
|
|
* chip, you get an interrupt when the receiver hits the end
|
|
* of the receive ring, which tells you exactly when you
|
|
* you need to reload the ring pointer. Here we have to
|
|
* fake it. I'm mad at myself for not being clever enough
|
|
* to avoid the use of a goto here.
|
|
*/
|
|
if (CSR_READ_4(sc, XL_UPLIST_PTR) == 0 ||
|
|
CSR_READ_4(sc, XL_UPLIST_STATUS) & XL_PKTSTAT_UP_STALLED) {
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL);
|
|
xl_wait(sc);
|
|
CSR_WRITE_4(sc, XL_UPLIST_PTR,
|
|
vtophys(&sc->xl_ldata->xl_rx_list[0]));
|
|
sc->xl_cdata.xl_rx_head = &sc->xl_cdata.xl_rx_chain[0];
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL);
|
|
goto again;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* A frame was downloaded to the chip. It's safe for us to clean up
|
|
* the list buffers.
|
|
*/
|
|
static void xl_txeof(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
struct xl_chain *cur_tx;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Clear the timeout timer. */
|
|
ifp->if_timer = 0;
|
|
|
|
/*
|
|
* Go through our tx list and free mbufs for those
|
|
* frames that have been uploaded. Note: the 3c905B
|
|
* sets a special bit in the status word to let us
|
|
* know that a frame has been downloaded, but the
|
|
* original 3c900/3c905 adapters don't do that.
|
|
* Consequently, we have to use a different test if
|
|
* xl_type != XL_TYPE_905B.
|
|
*/
|
|
while(sc->xl_cdata.xl_tx_head != NULL) {
|
|
cur_tx = sc->xl_cdata.xl_tx_head;
|
|
if ((sc->xl_type == XL_TYPE_905B &&
|
|
!(cur_tx->xl_ptr->xl_status & XL_TXSTAT_DL_COMPLETE)) ||
|
|
CSR_READ_4(sc, XL_DOWNLIST_PTR)) {
|
|
break;
|
|
}
|
|
sc->xl_cdata.xl_tx_head = cur_tx->xl_next;
|
|
|
|
m_freem(cur_tx->xl_mbuf);
|
|
cur_tx->xl_mbuf = NULL;
|
|
|
|
cur_tx->xl_next = sc->xl_cdata.xl_tx_free;
|
|
sc->xl_cdata.xl_tx_free = cur_tx;
|
|
if (!cur_tx->xl_ptr->xl_next);
|
|
break;
|
|
}
|
|
|
|
if (sc->xl_cdata.xl_tx_head == NULL) {
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
sc->xl_cdata.xl_tx_tail = NULL;
|
|
if (sc->xl_want_auto)
|
|
xl_autoneg_mii(sc, XL_FLAG_SCHEDDELAY, 1);
|
|
} else {
|
|
if (CSR_READ_4(sc, XL_DMACTL) & XL_DMACTL_DOWN_STALLED ||
|
|
!CSR_READ_4(sc, XL_DOWNLIST_PTR)) {
|
|
CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
|
|
vtophys(sc->xl_cdata.xl_tx_head->xl_ptr));
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* TX 'end of channel' interrupt handler. Actually, we should
|
|
* only get a 'TX complete' interrupt if there's a transmit error,
|
|
* so this is really TX error handler.
|
|
*/
|
|
static void xl_txeoc(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
u_int8_t txstat;
|
|
|
|
while((txstat = CSR_READ_1(sc, XL_TX_STATUS))) {
|
|
if (txstat & XL_TXSTATUS_UNDERRUN ||
|
|
txstat & XL_TXSTATUS_JABBER ||
|
|
txstat & XL_TXSTATUS_RECLAIM) {
|
|
printf("xl%d: transmission error: %x\n",
|
|
sc->xl_unit, txstat);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
|
|
xl_wait(sc);
|
|
if (sc->xl_cdata.xl_tx_head != NULL)
|
|
CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
|
|
vtophys(sc->xl_cdata.xl_tx_head->xl_ptr));
|
|
/*
|
|
* Remember to set this for the
|
|
* first generation 3c90X chips.
|
|
*/
|
|
CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8);
|
|
if (sc->xl_type == XL_TYPE_905B) {
|
|
CSR_WRITE_2(sc, XL_COMMAND,
|
|
XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4));
|
|
}
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
|
|
} else {
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
|
|
}
|
|
/*
|
|
* Write an arbitrary byte to the TX_STATUS register
|
|
* to clear this interrupt/error and advance to the next.
|
|
*/
|
|
CSR_WRITE_1(sc, XL_TX_STATUS, 0x01);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void xl_intr(arg)
|
|
void *arg;
|
|
{
|
|
struct xl_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int16_t status;
|
|
|
|
sc = arg;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB);
|
|
|
|
for (;;) {
|
|
|
|
status = CSR_READ_2(sc, XL_STATUS);
|
|
|
|
if ((status & XL_INTRS) == 0)
|
|
break;
|
|
|
|
if (status & XL_STAT_UP_COMPLETE) {
|
|
xl_rxeof(sc);
|
|
CSR_WRITE_2(sc, XL_COMMAND,
|
|
XL_CMD_INTR_ACK|XL_STAT_UP_COMPLETE);
|
|
}
|
|
|
|
if (status & XL_STAT_DOWN_COMPLETE) {
|
|
xl_txeof(sc);
|
|
CSR_WRITE_2(sc, XL_COMMAND,
|
|
XL_CMD_INTR_ACK|XL_STAT_DOWN_COMPLETE);
|
|
}
|
|
|
|
if (status & XL_STAT_TX_COMPLETE) {
|
|
ifp->if_oerrors++;
|
|
xl_txeoc(sc);
|
|
CSR_WRITE_2(sc, XL_COMMAND,
|
|
XL_CMD_INTR_ACK|XL_STAT_TX_COMPLETE);
|
|
}
|
|
|
|
if (status & XL_STAT_ADFAIL) {
|
|
xl_reset(sc);
|
|
xl_init(sc);
|
|
CSR_WRITE_2(sc, XL_COMMAND,
|
|
XL_CMD_INTR_ACK|XL_STAT_ADFAIL);
|
|
}
|
|
|
|
if (status & XL_STAT_STATSOFLOW) {
|
|
sc->xl_stats_no_timeout = 1;
|
|
xl_stats_update(sc);
|
|
sc->xl_stats_no_timeout = 0;
|
|
}
|
|
|
|
CSR_WRITE_2(sc, XL_STATUS, XL_CMD_INTR_ACK|XL_STAT_INTREQ|
|
|
XL_STAT_INTLATCH);
|
|
}
|
|
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|XL_INTRS);
|
|
|
|
XL_SEL_WIN(7);
|
|
|
|
if (ifp->if_snd.ifq_head != NULL) {
|
|
xl_start(ifp);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void xl_stats_update(xsc)
|
|
void *xsc;
|
|
{
|
|
struct xl_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct xl_stats xl_stats;
|
|
u_int8_t *p;
|
|
int i;
|
|
|
|
bzero((char *)&xl_stats, sizeof(struct xl_stats));
|
|
|
|
sc = xsc;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
p = (u_int8_t *)&xl_stats;
|
|
|
|
/* Read all the stats registers. */
|
|
XL_SEL_WIN(6);
|
|
|
|
for (i = 0; i < 16; i++)
|
|
*p++ = CSR_READ_1(sc, XL_W6_CARRIER_LOST + i);
|
|
|
|
ifp->if_ipackets += xl_rx_goodframes(xl_stats);
|
|
ifp->if_opackets += xl_tx_goodframes(xl_stats);
|
|
|
|
ifp->if_ierrors += xl_stats.xl_rx_overrun;
|
|
|
|
ifp->if_collisions += xl_stats.xl_tx_multi_collision +
|
|
xl_stats.xl_tx_single_collision +
|
|
xl_stats.xl_tx_late_collision;
|
|
|
|
/*
|
|
* Boomerang and cyclone chips have an extra stats counter
|
|
* in window 4 (BadSSD). We have to read this too in order
|
|
* to clear out all the stats registers and avoid a statsoflow
|
|
* interrupt.
|
|
*/
|
|
XL_SEL_WIN(4);
|
|
CSR_READ_1(sc, XL_W4_BADSSD);
|
|
|
|
XL_SEL_WIN(7);
|
|
|
|
if (!sc->xl_stats_no_timeout)
|
|
sc->xl_stat_ch = timeout(xl_stats_update, sc, hz);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
|
|
* pointers to the fragment pointers.
|
|
*/
|
|
static int xl_encap(sc, c, m_head)
|
|
struct xl_softc *sc;
|
|
struct xl_chain *c;
|
|
struct mbuf *m_head;
|
|
{
|
|
int frag = 0;
|
|
struct xl_frag *f = NULL;
|
|
int total_len;
|
|
struct mbuf *m;
|
|
|
|
/*
|
|
* Start packing the mbufs in this chain into
|
|
* the fragment pointers. Stop when we run out
|
|
* of fragments or hit the end of the mbuf chain.
|
|
*/
|
|
m = m_head;
|
|
total_len = 0;
|
|
|
|
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
|
|
if (m->m_len != 0) {
|
|
if (frag == XL_MAXFRAGS)
|
|
break;
|
|
total_len+= m->m_len;
|
|
c->xl_ptr->xl_frag[frag].xl_addr =
|
|
vtophys(mtod(m, vm_offset_t));
|
|
c->xl_ptr->xl_frag[frag].xl_len = m->m_len;
|
|
frag++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle special case: we used up all 63 fragments,
|
|
* but we have more mbufs left in the chain. Copy the
|
|
* data into an mbuf cluster. Note that we don't
|
|
* bother clearing the values in the other fragment
|
|
* pointers/counters; it wouldn't gain us anything,
|
|
* and would waste cycles.
|
|
*/
|
|
if (m != NULL) {
|
|
struct mbuf *m_new = NULL;
|
|
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
printf("xl%d: no memory for tx list", sc->xl_unit);
|
|
return(1);
|
|
}
|
|
if (m_head->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
m_freem(m_new);
|
|
printf("xl%d: no memory for tx list",
|
|
sc->xl_unit);
|
|
return(1);
|
|
}
|
|
}
|
|
m_copydata(m_head, 0, m_head->m_pkthdr.len,
|
|
mtod(m_new, caddr_t));
|
|
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
|
|
m_freem(m_head);
|
|
m_head = m_new;
|
|
f = &c->xl_ptr->xl_frag[0];
|
|
f->xl_addr = vtophys(mtod(m_new, caddr_t));
|
|
f->xl_len = total_len = m_new->m_len;
|
|
frag = 1;
|
|
}
|
|
|
|
c->xl_mbuf = m_head;
|
|
c->xl_ptr->xl_frag[frag - 1].xl_len |= XL_LAST_FRAG;
|
|
c->xl_ptr->xl_status = total_len;
|
|
c->xl_ptr->xl_next = 0;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
|
|
* to the mbuf data regions directly in the transmit lists. We also save a
|
|
* copy of the pointers since the transmit list fragment pointers are
|
|
* physical addresses.
|
|
*/
|
|
|
|
static void xl_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct xl_softc *sc;
|
|
struct mbuf *m_head = NULL;
|
|
struct xl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if (sc->xl_autoneg) {
|
|
sc->xl_tx_pend = 1;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Check for an available queue slot. If there are none,
|
|
* punt.
|
|
*/
|
|
if (sc->xl_cdata.xl_tx_free == NULL) {
|
|
xl_txeoc(sc);
|
|
xl_txeof(sc);
|
|
if (sc->xl_cdata.xl_tx_free == NULL) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
return;
|
|
}
|
|
}
|
|
|
|
start_tx = sc->xl_cdata.xl_tx_free;
|
|
|
|
while(sc->xl_cdata.xl_tx_free != NULL) {
|
|
IF_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
/* Pick a descriptor off the free list. */
|
|
cur_tx = sc->xl_cdata.xl_tx_free;
|
|
sc->xl_cdata.xl_tx_free = cur_tx->xl_next;
|
|
|
|
cur_tx->xl_next = NULL;
|
|
|
|
/* Pack the data into the descriptor. */
|
|
xl_encap(sc, cur_tx, m_head);
|
|
|
|
/* Chain it together. */
|
|
if (prev != NULL) {
|
|
prev->xl_next = cur_tx;
|
|
prev->xl_ptr->xl_next = vtophys(cur_tx->xl_ptr);
|
|
}
|
|
prev = cur_tx;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp, cur_tx->xl_mbuf);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Place the request for the upload interrupt
|
|
* in the last descriptor in the chain. This way, if
|
|
* we're chaining several packets at once, we'll only
|
|
* get an interupt once for the whole chain rather than
|
|
* once for each packet.
|
|
*/
|
|
cur_tx->xl_ptr->xl_status |= XL_TXSTAT_DL_INTR;
|
|
|
|
/*
|
|
* Queue the packets. If the TX channel is clear, update
|
|
* the downlist pointer register.
|
|
*/
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL);
|
|
xl_wait(sc);
|
|
|
|
if (CSR_READ_4(sc, XL_DOWNLIST_PTR)) {
|
|
sc->xl_cdata.xl_tx_tail->xl_next = start_tx;
|
|
sc->xl_cdata.xl_tx_tail->xl_ptr->xl_next =
|
|
vtophys(start_tx->xl_ptr);
|
|
sc->xl_cdata.xl_tx_tail->xl_ptr->xl_status &=
|
|
~XL_TXSTAT_DL_INTR;
|
|
} else {
|
|
sc->xl_cdata.xl_tx_head = start_tx;
|
|
sc->xl_cdata.xl_tx_tail = cur_tx;
|
|
CSR_WRITE_4(sc, XL_DOWNLIST_PTR, vtophys(start_tx->xl_ptr));
|
|
}
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
|
|
|
|
XL_SEL_WIN(7);
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
ifp->if_timer = 5;
|
|
|
|
/*
|
|
* XXX Under certain conditions, usually on slower machines
|
|
* where interrupts may be dropped, it's possible for the
|
|
* adapter to chew up all the buffers in the receive ring
|
|
* and stall, without us being able to do anything about it.
|
|
* To guard against this, we need to make a pass over the
|
|
* RX queue to make sure there aren't any packets pending.
|
|
* Doing it here means we can flush the receive ring at the
|
|
* same time the chip is DMAing the transmit descriptors we
|
|
* just gave it.
|
|
*
|
|
* 3Com goes to some lengths to emphasize the Parallel Tasking (tm)
|
|
* nature of their chips in all their marketing literature;
|
|
* we may as well take advantage of it. :)
|
|
*/
|
|
xl_rxeof(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static void xl_init(xsc)
|
|
void *xsc;
|
|
{
|
|
struct xl_softc *sc = xsc;
|
|
struct ifnet *ifp = &sc->arpcom.ac_if;
|
|
int s, i;
|
|
u_int16_t rxfilt = 0;
|
|
u_int16_t phy_bmcr = 0;
|
|
|
|
if (sc->xl_autoneg)
|
|
return;
|
|
|
|
s = splimp();
|
|
|
|
/*
|
|
* XXX Hack for the 3c905B: the built-in autoneg logic's state
|
|
* gets reset by xl_init() when we don't want it to. Try
|
|
* to preserve it. (For 3c905 cards with real external PHYs,
|
|
* the BMCR register doesn't change, but this doesn't hurt.)
|
|
*/
|
|
if (sc->xl_pinfo != NULL)
|
|
phy_bmcr = xl_phy_readreg(sc, PHY_BMCR);
|
|
|
|
/*
|
|
* Cancel pending I/O and free all RX/TX buffers.
|
|
*/
|
|
xl_stop(sc);
|
|
|
|
xl_wait(sc);
|
|
|
|
/* Init our MAC address */
|
|
XL_SEL_WIN(2);
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
CSR_WRITE_1(sc, XL_W2_STATION_ADDR_LO + i,
|
|
sc->arpcom.ac_enaddr[i]);
|
|
}
|
|
|
|
/* Clear the station mask. */
|
|
for (i = 0; i < 3; i++)
|
|
CSR_WRITE_2(sc, XL_W2_STATION_MASK_LO + (i * 2), 0);
|
|
|
|
/* Reset TX and RX. */
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
|
|
xl_wait(sc);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
|
|
xl_wait(sc);
|
|
|
|
/* Init circular RX list. */
|
|
if (xl_list_rx_init(sc) == ENOBUFS) {
|
|
printf("xl%d: initialization failed: no "
|
|
"memory for rx buffers\n", sc->xl_unit);
|
|
xl_stop(sc);
|
|
return;
|
|
}
|
|
|
|
/* Init TX descriptors. */
|
|
xl_list_tx_init(sc);
|
|
|
|
/*
|
|
* Set the TX freethresh value.
|
|
* Note that this has no effect on 3c905B "cyclone"
|
|
* cards but is required for 3c900/3c905 "boomerang"
|
|
* cards in order to enable the download engine.
|
|
*/
|
|
CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8);
|
|
|
|
/*
|
|
* If this is a 3c905B, also set the tx reclaim threshold.
|
|
* This helps cut down on the number of tx reclaim errors
|
|
* that could happen on a busy network. The chip multiplies
|
|
* the register value by 16 to obtain the actual threshold
|
|
* in bytes, so we divide by 16 when setting the value here.
|
|
* The existing threshold value can be examined by reading
|
|
* the register at offset 9 in window 5.
|
|
*/
|
|
if (sc->xl_type == XL_TYPE_905B) {
|
|
CSR_WRITE_2(sc, XL_COMMAND,
|
|
XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4));
|
|
}
|
|
|
|
/* Set RX filter bits. */
|
|
XL_SEL_WIN(5);
|
|
rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
|
|
|
|
/* Set the individual bit to receive frames for this host only. */
|
|
rxfilt |= XL_RXFILTER_INDIVIDUAL;
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
rxfilt |= XL_RXFILTER_ALLFRAMES;
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
|
|
} else {
|
|
rxfilt &= ~XL_RXFILTER_ALLFRAMES;
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
|
|
}
|
|
|
|
/*
|
|
* Set capture broadcast bit to capture broadcast frames.
|
|
*/
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
rxfilt |= XL_RXFILTER_BROADCAST;
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
|
|
} else {
|
|
rxfilt &= ~XL_RXFILTER_BROADCAST;
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
|
|
}
|
|
|
|
/*
|
|
* Program the multicast filter, if necessary.
|
|
*/
|
|
if (sc->xl_type == XL_TYPE_905B)
|
|
xl_setmulti_hash(sc);
|
|
else
|
|
xl_setmulti(sc);
|
|
|
|
/*
|
|
* Load the address of the RX list. We have to
|
|
* stall the upload engine before we can manipulate
|
|
* the uplist pointer register, then unstall it when
|
|
* we're finished. We also have to wait for the
|
|
* stall command to complete before proceeding.
|
|
* Note that we have to do this after any RX resets
|
|
* have completed since the uplist register is cleared
|
|
* by a reset.
|
|
*/
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL);
|
|
xl_wait(sc);
|
|
CSR_WRITE_4(sc, XL_UPLIST_PTR, vtophys(&sc->xl_ldata->xl_rx_list[0]));
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL);
|
|
|
|
/*
|
|
* If the coax transceiver is on, make sure to enable
|
|
* the DC-DC converter.
|
|
*/
|
|
XL_SEL_WIN(3);
|
|
if (sc->xl_xcvr == XL_XCVR_COAX)
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START);
|
|
else
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
|
|
|
|
/* Clear out the stats counters. */
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE);
|
|
sc->xl_stats_no_timeout = 1;
|
|
xl_stats_update(sc);
|
|
sc->xl_stats_no_timeout = 0;
|
|
XL_SEL_WIN(4);
|
|
CSR_WRITE_2(sc, XL_W4_NET_DIAG, XL_NETDIAG_UPPER_BYTES_ENABLE);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_ENABLE);
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|0xFF);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB|XL_INTRS);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|XL_INTRS);
|
|
|
|
/* Set the RX early threshold */
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_THRESH|(XL_PACKET_SIZE >>2));
|
|
CSR_WRITE_2(sc, XL_DMACTL, XL_DMACTL_UP_RX_EARLY);
|
|
|
|
/* Enable receiver and transmitter. */
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_ENABLE);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
|
|
|
|
/* Restore state of BMCR */
|
|
if (sc->xl_pinfo != NULL)
|
|
xl_phy_writereg(sc, PHY_BMCR, phy_bmcr);
|
|
|
|
/* Select window 7 for normal operations. */
|
|
XL_SEL_WIN(7);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
(void)splx(s);
|
|
|
|
sc->xl_stat_ch = timeout(xl_stats_update, sc, hz);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int xl_ifmedia_upd(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct xl_softc *sc;
|
|
struct ifmedia *ifm;
|
|
|
|
sc = ifp->if_softc;
|
|
ifm = &sc->ifmedia;
|
|
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return(EINVAL);
|
|
|
|
if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX
|
|
|| sc->xl_media & XL_MEDIAOPT_BT4) {
|
|
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
|
|
xl_autoneg_mii(sc, XL_FLAG_SCHEDDELAY, 1);
|
|
else
|
|
xl_setmode_mii(sc, ifm->ifm_media);
|
|
} else {
|
|
xl_setmode(sc, ifm->ifm_media);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void xl_ifmedia_sts(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct xl_softc *sc;
|
|
u_int16_t advert = 0, ability = 0;
|
|
u_int32_t icfg;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
XL_SEL_WIN(3);
|
|
icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG) & XL_ICFG_CONNECTOR_MASK;
|
|
icfg >>= XL_ICFG_CONNECTOR_BITS;
|
|
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
switch(icfg) {
|
|
case XL_XCVR_10BT:
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
|
|
if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX)
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
break;
|
|
case XL_XCVR_AUI:
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_5;
|
|
break;
|
|
case XL_XCVR_COAX:
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_2;
|
|
break;
|
|
/*
|
|
* XXX MII and BTX/AUTO should be separate cases.
|
|
*/
|
|
|
|
case XL_XCVR_100BTX:
|
|
case XL_XCVR_AUTO:
|
|
case XL_XCVR_MII:
|
|
if (!(xl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
|
|
if (xl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
|
|
else
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
|
|
XL_SEL_WIN(3);
|
|
if (CSR_READ_2(sc, XL_W3_MAC_CTRL) &
|
|
XL_MACCTRL_DUPLEX)
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
break;
|
|
}
|
|
ability = xl_phy_readreg(sc, XL_PHY_LPAR);
|
|
advert = xl_phy_readreg(sc, XL_PHY_ANAR);
|
|
if (advert & PHY_ANAR_100BT4 &&
|
|
ability & PHY_ANAR_100BT4) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
|
|
} else if (advert & PHY_ANAR_100BTXFULL &&
|
|
ability & PHY_ANAR_100BTXFULL) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
} else if (advert & PHY_ANAR_100BTXHALF &&
|
|
ability & PHY_ANAR_100BTXHALF) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
} else if (advert & PHY_ANAR_10BTFULL &&
|
|
ability & PHY_ANAR_10BTFULL) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
} else if (advert & PHY_ANAR_10BTHALF &&
|
|
ability & PHY_ANAR_10BTHALF) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
}
|
|
break;
|
|
case XL_XCVR_100BFX:
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_FX;
|
|
break;
|
|
default:
|
|
printf("xl%d: unknown XCVR type: %d\n", sc->xl_unit, icfg);
|
|
break;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int xl_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct xl_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int s, error = 0;
|
|
|
|
s = splimp();
|
|
|
|
switch(command) {
|
|
case SIOCSIFADDR:
|
|
case SIOCGIFADDR:
|
|
case SIOCSIFMTU:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
xl_init(sc);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
xl_stop(sc);
|
|
}
|
|
error = 0;
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
if (sc->xl_type == XL_TYPE_905B)
|
|
xl_setmulti_hash(sc);
|
|
else
|
|
xl_setmulti(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
(void)splx(s);
|
|
|
|
return(error);
|
|
}
|
|
|
|
static void xl_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct xl_softc *sc;
|
|
u_int16_t status = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if (sc->xl_autoneg) {
|
|
xl_autoneg_mii(sc, XL_FLAG_DELAYTIMEO, 1);
|
|
return;
|
|
}
|
|
|
|
ifp->if_oerrors++;
|
|
XL_SEL_WIN(4);
|
|
status = CSR_READ_2(sc, XL_W4_MEDIA_STATUS);
|
|
printf("xl%d: watchdog timeout\n", sc->xl_unit);
|
|
|
|
if (status & XL_MEDIASTAT_CARRIER)
|
|
printf("xl%d: no carrier - transceiver cable problem?\n",
|
|
sc->xl_unit);
|
|
xl_txeoc(sc);
|
|
xl_txeof(sc);
|
|
xl_rxeof(sc);
|
|
xl_init(sc);
|
|
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
xl_start(ifp);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void xl_stop(sc)
|
|
struct xl_softc *sc;
|
|
{
|
|
register int i;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
ifp->if_timer = 0;
|
|
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISABLE);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISCARD);
|
|
xl_wait(sc);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_DISABLE);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
|
|
DELAY(800);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
|
|
xl_wait(sc);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
|
|
xl_wait(sc);
|
|
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|XL_STAT_INTLATCH);
|
|
|
|
/* Stop the stats updater. */
|
|
untimeout(xl_stats_update, sc, sc->xl_stat_ch);
|
|
|
|
/*
|
|
* Free data in the RX lists.
|
|
*/
|
|
for (i = 0; i < XL_RX_LIST_CNT; i++) {
|
|
if (sc->xl_cdata.xl_rx_chain[i].xl_mbuf != NULL) {
|
|
m_freem(sc->xl_cdata.xl_rx_chain[i].xl_mbuf);
|
|
sc->xl_cdata.xl_rx_chain[i].xl_mbuf = NULL;
|
|
}
|
|
}
|
|
bzero((char *)&sc->xl_ldata->xl_rx_list,
|
|
sizeof(sc->xl_ldata->xl_rx_list));
|
|
/*
|
|
* Free the TX list buffers.
|
|
*/
|
|
for (i = 0; i < XL_TX_LIST_CNT; i++) {
|
|
if (sc->xl_cdata.xl_tx_chain[i].xl_mbuf != NULL) {
|
|
m_freem(sc->xl_cdata.xl_tx_chain[i].xl_mbuf);
|
|
sc->xl_cdata.xl_tx_chain[i].xl_mbuf = NULL;
|
|
}
|
|
}
|
|
bzero((char *)&sc->xl_ldata->xl_tx_list,
|
|
sizeof(sc->xl_ldata->xl_tx_list));
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static void xl_shutdown(howto, arg)
|
|
int howto;
|
|
void *arg;
|
|
{
|
|
struct xl_softc *sc = (struct xl_softc *)arg;
|
|
|
|
xl_stop(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
static struct pci_device xl_device = {
|
|
"xl",
|
|
xl_probe,
|
|
xl_attach,
|
|
&xl_count,
|
|
NULL
|
|
};
|
|
DATA_SET(pcidevice_set, xl_device);
|