mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-26 16:18:31 +00:00
92deafc3a3
Some hardware supports AES acceleration but not SHA1, e.g., AES-NI extensions. It is useful to have accelerated AES even if SHA1 must be software. Suggested by: asomers Reviewed by: asomers, dfr Sponsored by: EMC / Isilon Storage Division Differential Revision: https://reviews.freebsd.org/D5146
391 lines
10 KiB
C
391 lines
10 KiB
C
/*-
|
|
* Copyright (c) 2008 Isilon Inc http://www.isilon.com/
|
|
* Authors: Doug Rabson <dfr@rabson.org>
|
|
* Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kobj.h>
|
|
#include <sys/mbuf.h>
|
|
#include <opencrypto/cryptodev.h>
|
|
|
|
#include <kgssapi/gssapi.h>
|
|
#include <kgssapi/gssapi_impl.h>
|
|
|
|
#include "kcrypto.h"
|
|
|
|
struct aes_state {
|
|
struct mtx as_lock;
|
|
uint64_t as_session_aes;
|
|
uint64_t as_session_sha1;
|
|
};
|
|
|
|
static void
|
|
aes_init(struct krb5_key_state *ks)
|
|
{
|
|
struct aes_state *as;
|
|
|
|
as = malloc(sizeof(struct aes_state), M_GSSAPI, M_WAITOK|M_ZERO);
|
|
mtx_init(&as->as_lock, "gss aes lock", NULL, MTX_DEF);
|
|
ks->ks_priv = as;
|
|
}
|
|
|
|
static void
|
|
aes_destroy(struct krb5_key_state *ks)
|
|
{
|
|
struct aes_state *as = ks->ks_priv;
|
|
|
|
if (as->as_session_aes != 0)
|
|
crypto_freesession(as->as_session_aes);
|
|
if (as->as_session_sha1 != 0)
|
|
crypto_freesession(as->as_session_sha1);
|
|
mtx_destroy(&as->as_lock);
|
|
free(ks->ks_priv, M_GSSAPI);
|
|
}
|
|
|
|
static void
|
|
aes_set_key(struct krb5_key_state *ks, const void *in)
|
|
{
|
|
void *kp = ks->ks_key;
|
|
struct aes_state *as = ks->ks_priv;
|
|
struct cryptoini cri;
|
|
|
|
if (kp != in)
|
|
bcopy(in, kp, ks->ks_class->ec_keylen);
|
|
|
|
if (as->as_session_aes != 0)
|
|
crypto_freesession(as->as_session_aes);
|
|
if (as->as_session_sha1 != 0)
|
|
crypto_freesession(as->as_session_sha1);
|
|
|
|
/*
|
|
* We only want the first 96 bits of the HMAC.
|
|
*/
|
|
bzero(&cri, sizeof(cri));
|
|
cri.cri_alg = CRYPTO_SHA1_HMAC;
|
|
cri.cri_klen = ks->ks_class->ec_keybits;
|
|
cri.cri_mlen = 12;
|
|
cri.cri_key = ks->ks_key;
|
|
cri.cri_next = NULL;
|
|
crypto_newsession(&as->as_session_sha1, &cri,
|
|
CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE);
|
|
|
|
bzero(&cri, sizeof(cri));
|
|
cri.cri_alg = CRYPTO_AES_CBC;
|
|
cri.cri_klen = ks->ks_class->ec_keybits;
|
|
cri.cri_mlen = 0;
|
|
cri.cri_key = ks->ks_key;
|
|
cri.cri_next = NULL;
|
|
crypto_newsession(&as->as_session_aes, &cri,
|
|
CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE);
|
|
}
|
|
|
|
static void
|
|
aes_random_to_key(struct krb5_key_state *ks, const void *in)
|
|
{
|
|
|
|
aes_set_key(ks, in);
|
|
}
|
|
|
|
static int
|
|
aes_crypto_cb(struct cryptop *crp)
|
|
{
|
|
int error;
|
|
struct aes_state *as = (struct aes_state *) crp->crp_opaque;
|
|
|
|
if (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC)
|
|
return (0);
|
|
|
|
error = crp->crp_etype;
|
|
if (error == EAGAIN)
|
|
error = crypto_dispatch(crp);
|
|
mtx_lock(&as->as_lock);
|
|
if (error || (crp->crp_flags & CRYPTO_F_DONE))
|
|
wakeup(crp);
|
|
mtx_unlock(&as->as_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
aes_encrypt_1(const struct krb5_key_state *ks, int buftype, void *buf,
|
|
size_t skip, size_t len, void *ivec, int encdec)
|
|
{
|
|
struct aes_state *as = ks->ks_priv;
|
|
struct cryptop *crp;
|
|
struct cryptodesc *crd;
|
|
int error;
|
|
|
|
crp = crypto_getreq(1);
|
|
crd = crp->crp_desc;
|
|
|
|
crd->crd_skip = skip;
|
|
crd->crd_len = len;
|
|
crd->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT | encdec;
|
|
if (ivec) {
|
|
bcopy(ivec, crd->crd_iv, 16);
|
|
} else {
|
|
bzero(crd->crd_iv, 16);
|
|
}
|
|
crd->crd_next = NULL;
|
|
crd->crd_alg = CRYPTO_AES_CBC;
|
|
|
|
crp->crp_sid = as->as_session_aes;
|
|
crp->crp_flags = buftype | CRYPTO_F_CBIFSYNC;
|
|
crp->crp_buf = buf;
|
|
crp->crp_opaque = (void *) as;
|
|
crp->crp_callback = aes_crypto_cb;
|
|
|
|
error = crypto_dispatch(crp);
|
|
|
|
if ((CRYPTO_SESID2CAPS(as->as_session_aes) & CRYPTOCAP_F_SYNC) == 0) {
|
|
mtx_lock(&as->as_lock);
|
|
if (!error && !(crp->crp_flags & CRYPTO_F_DONE))
|
|
error = msleep(crp, &as->as_lock, 0, "gssaes", 0);
|
|
mtx_unlock(&as->as_lock);
|
|
}
|
|
|
|
crypto_freereq(crp);
|
|
}
|
|
|
|
static void
|
|
aes_encrypt(const struct krb5_key_state *ks, struct mbuf *inout,
|
|
size_t skip, size_t len, void *ivec, size_t ivlen)
|
|
{
|
|
size_t blocklen = 16, plen;
|
|
struct {
|
|
uint8_t cn_1[16], cn[16];
|
|
} last2;
|
|
int i, off;
|
|
|
|
/*
|
|
* AES encryption with cyphertext stealing:
|
|
*
|
|
* CTSencrypt(P[0], ..., P[n], IV, K):
|
|
* len = length(P[n])
|
|
* (C[0], ..., C[n-2], E[n-1]) =
|
|
* CBCencrypt(P[0], ..., P[n-1], IV, K)
|
|
* P = pad(P[n], 0, blocksize)
|
|
* E[n] = CBCencrypt(P, E[n-1], K);
|
|
* C[n-1] = E[n]
|
|
* C[n] = E[n-1]{0..len-1}
|
|
*/
|
|
plen = len % blocklen;
|
|
if (len == blocklen) {
|
|
/*
|
|
* Note: caller will ensure len >= blocklen.
|
|
*/
|
|
aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len, ivec,
|
|
CRD_F_ENCRYPT);
|
|
} else if (plen == 0) {
|
|
/*
|
|
* This is equivalent to CBC mode followed by swapping
|
|
* the last two blocks. We assume that neither of the
|
|
* last two blocks cross iov boundaries.
|
|
*/
|
|
aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len, ivec,
|
|
CRD_F_ENCRYPT);
|
|
off = skip + len - 2 * blocklen;
|
|
m_copydata(inout, off, 2 * blocklen, (void*) &last2);
|
|
m_copyback(inout, off, blocklen, last2.cn);
|
|
m_copyback(inout, off + blocklen, blocklen, last2.cn_1);
|
|
} else {
|
|
/*
|
|
* This is the difficult case. We encrypt all but the
|
|
* last partial block first. We then create a padded
|
|
* copy of the last block and encrypt that using the
|
|
* second to last encrypted block as IV. Once we have
|
|
* the encrypted versions of the last two blocks, we
|
|
* reshuffle to create the final result.
|
|
*/
|
|
aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len - plen,
|
|
ivec, CRD_F_ENCRYPT);
|
|
|
|
/*
|
|
* Copy out the last two blocks, pad the last block
|
|
* and encrypt it. Rearrange to get the final
|
|
* result. The cyphertext for cn_1 is in cn. The
|
|
* cyphertext for cn is the first plen bytes of what
|
|
* is in cn_1 now.
|
|
*/
|
|
off = skip + len - blocklen - plen;
|
|
m_copydata(inout, off, blocklen + plen, (void*) &last2);
|
|
for (i = plen; i < blocklen; i++)
|
|
last2.cn[i] = 0;
|
|
aes_encrypt_1(ks, 0, last2.cn, 0, blocklen, last2.cn_1,
|
|
CRD_F_ENCRYPT);
|
|
m_copyback(inout, off, blocklen, last2.cn);
|
|
m_copyback(inout, off + blocklen, plen, last2.cn_1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
aes_decrypt(const struct krb5_key_state *ks, struct mbuf *inout,
|
|
size_t skip, size_t len, void *ivec, size_t ivlen)
|
|
{
|
|
size_t blocklen = 16, plen;
|
|
struct {
|
|
uint8_t cn_1[16], cn[16];
|
|
} last2;
|
|
int i, off, t;
|
|
|
|
/*
|
|
* AES decryption with cyphertext stealing:
|
|
*
|
|
* CTSencrypt(C[0], ..., C[n], IV, K):
|
|
* len = length(C[n])
|
|
* E[n] = C[n-1]
|
|
* X = decrypt(E[n], K)
|
|
* P[n] = (X ^ C[n]){0..len-1}
|
|
* E[n-1] = {C[n,0],...,C[n,len-1],X[len],...,X[blocksize-1]}
|
|
* (P[0],...,P[n-1]) = CBCdecrypt(C[0],...,C[n-2],E[n-1], IV, K)
|
|
*/
|
|
plen = len % blocklen;
|
|
if (len == blocklen) {
|
|
/*
|
|
* Note: caller will ensure len >= blocklen.
|
|
*/
|
|
aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len, ivec, 0);
|
|
} else if (plen == 0) {
|
|
/*
|
|
* This is equivalent to CBC mode followed by swapping
|
|
* the last two blocks.
|
|
*/
|
|
off = skip + len - 2 * blocklen;
|
|
m_copydata(inout, off, 2 * blocklen, (void*) &last2);
|
|
m_copyback(inout, off, blocklen, last2.cn);
|
|
m_copyback(inout, off + blocklen, blocklen, last2.cn_1);
|
|
aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len, ivec, 0);
|
|
} else {
|
|
/*
|
|
* This is the difficult case. We first decrypt the
|
|
* second to last block with a zero IV to make X. The
|
|
* plaintext for the last block is the XOR of X and
|
|
* the last cyphertext block.
|
|
*
|
|
* We derive a new cypher text for the second to last
|
|
* block by mixing the unused bytes of X with the last
|
|
* cyphertext block. The result of that can be
|
|
* decrypted with the rest in CBC mode.
|
|
*/
|
|
off = skip + len - plen - blocklen;
|
|
aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, off, blocklen,
|
|
NULL, 0);
|
|
m_copydata(inout, off, blocklen + plen, (void*) &last2);
|
|
|
|
for (i = 0; i < plen; i++) {
|
|
t = last2.cn[i];
|
|
last2.cn[i] ^= last2.cn_1[i];
|
|
last2.cn_1[i] = t;
|
|
}
|
|
|
|
m_copyback(inout, off, blocklen + plen, (void*) &last2);
|
|
aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len - plen,
|
|
ivec, 0);
|
|
}
|
|
|
|
}
|
|
|
|
static void
|
|
aes_checksum(const struct krb5_key_state *ks, int usage,
|
|
struct mbuf *inout, size_t skip, size_t inlen, size_t outlen)
|
|
{
|
|
struct aes_state *as = ks->ks_priv;
|
|
struct cryptop *crp;
|
|
struct cryptodesc *crd;
|
|
int error;
|
|
|
|
crp = crypto_getreq(1);
|
|
crd = crp->crp_desc;
|
|
|
|
crd->crd_skip = skip;
|
|
crd->crd_len = inlen;
|
|
crd->crd_inject = skip + inlen;
|
|
crd->crd_flags = 0;
|
|
crd->crd_next = NULL;
|
|
crd->crd_alg = CRYPTO_SHA1_HMAC;
|
|
|
|
crp->crp_sid = as->as_session_sha1;
|
|
crp->crp_ilen = inlen;
|
|
crp->crp_olen = 12;
|
|
crp->crp_etype = 0;
|
|
crp->crp_flags = CRYPTO_F_IMBUF | CRYPTO_F_CBIFSYNC;
|
|
crp->crp_buf = (void *) inout;
|
|
crp->crp_opaque = (void *) as;
|
|
crp->crp_callback = aes_crypto_cb;
|
|
|
|
error = crypto_dispatch(crp);
|
|
|
|
if ((CRYPTO_SESID2CAPS(as->as_session_sha1) & CRYPTOCAP_F_SYNC) == 0) {
|
|
mtx_lock(&as->as_lock);
|
|
if (!error && !(crp->crp_flags & CRYPTO_F_DONE))
|
|
error = msleep(crp, &as->as_lock, 0, "gssaes", 0);
|
|
mtx_unlock(&as->as_lock);
|
|
}
|
|
|
|
crypto_freereq(crp);
|
|
}
|
|
|
|
struct krb5_encryption_class krb5_aes128_encryption_class = {
|
|
"aes128-cts-hmac-sha1-96", /* name */
|
|
ETYPE_AES128_CTS_HMAC_SHA1_96, /* etype */
|
|
EC_DERIVED_KEYS, /* flags */
|
|
16, /* blocklen */
|
|
1, /* msgblocklen */
|
|
12, /* checksumlen */
|
|
128, /* keybits */
|
|
16, /* keylen */
|
|
aes_init,
|
|
aes_destroy,
|
|
aes_set_key,
|
|
aes_random_to_key,
|
|
aes_encrypt,
|
|
aes_decrypt,
|
|
aes_checksum
|
|
};
|
|
|
|
struct krb5_encryption_class krb5_aes256_encryption_class = {
|
|
"aes256-cts-hmac-sha1-96", /* name */
|
|
ETYPE_AES256_CTS_HMAC_SHA1_96, /* etype */
|
|
EC_DERIVED_KEYS, /* flags */
|
|
16, /* blocklen */
|
|
1, /* msgblocklen */
|
|
12, /* checksumlen */
|
|
256, /* keybits */
|
|
32, /* keylen */
|
|
aes_init,
|
|
aes_destroy,
|
|
aes_set_key,
|
|
aes_random_to_key,
|
|
aes_encrypt,
|
|
aes_decrypt,
|
|
aes_checksum
|
|
};
|