1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-25 16:13:17 +00:00
freebsd/sys/netinet/sctp_usrreq.c
Randall Stewart 62c1ff9c48 - window update sacks sent incorrectly after
shutdown which caused extra abort from peer.
- RTT time calculation was not being done in
  express sack handling since it refered to an unused
  variable (rto_pending). Removed variable.
- socket buffer high water access macro-ized.
2007-03-20 10:23:11 +00:00

3908 lines
102 KiB
C

/*-
* Copyright (c) 2001-2007, Cisco Systems, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* a) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* b) Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
*
* c) Neither the name of Cisco Systems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/* $KAME: sctp_usrreq.c,v 1.48 2005/03/07 23:26:08 itojun Exp $ */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <netinet/sctp_os.h>
#include <sys/proc.h>
#include <netinet/sctp_pcb.h>
#include <netinet/sctp_header.h>
#include <netinet/sctp_var.h>
#if defined(INET6)
#include <netinet6/sctp6_var.h>
#endif
#include <netinet/sctp_sysctl.h>
#include <netinet/sctp_output.h>
#include <netinet/sctp_bsd_addr.h>
#include <netinet/sctp_uio.h>
#include <netinet/sctp_asconf.h>
#include <netinet/sctputil.h>
#include <netinet/sctp_indata.h>
#include <netinet/sctp_timer.h>
#include <netinet/sctp_auth.h>
void
sctp_init(void)
{
/* Init the SCTP pcb in sctp_pcb.c */
u_long sb_max_adj;
sctp_pcb_init();
if ((nmbclusters / 8) > SCTP_ASOC_MAX_CHUNKS_ON_QUEUE)
sctp_max_chunks_on_queue = (nmbclusters / 8);
/*
* Allow a user to take no more than 1/2 the number of clusters or
* the SB_MAX whichever is smaller for the send window.
*/
sb_max_adj = (u_long)((u_quad_t) (SB_MAX) * MCLBYTES / (MSIZE + MCLBYTES));
sctp_sendspace = min((min(SB_MAX, sb_max_adj)),
((nmbclusters / 2) * SCTP_DEFAULT_MAXSEGMENT));
/*
* Now for the recv window, should we take the same amount? or
* should I do 1/2 the SB_MAX instead in the SB_MAX min above. For
* now I will just copy.
*/
sctp_recvspace = sctp_sendspace;
}
/*
* cleanup of the sctppcbinfo structure.
* Assumes that the sctppcbinfo lock is held.
*/
void
sctp_pcbinfo_cleanup(void)
{
/* free the hash tables */
if (sctppcbinfo.sctp_asochash != NULL)
SCTP_HASH_FREE(sctppcbinfo.sctp_asochash, sctppcbinfo.hashasocmark);
if (sctppcbinfo.sctp_ephash != NULL)
SCTP_HASH_FREE(sctppcbinfo.sctp_ephash, sctppcbinfo.hashmark);
if (sctppcbinfo.sctp_tcpephash != NULL)
SCTP_HASH_FREE(sctppcbinfo.sctp_tcpephash, sctppcbinfo.hashtcpmark);
if (sctppcbinfo.sctp_restarthash != NULL)
SCTP_HASH_FREE(sctppcbinfo.sctp_restarthash, sctppcbinfo.hashrestartmark);
}
static void
sctp_pathmtu_adjustment(struct sctp_inpcb *inp,
struct sctp_tcb *stcb,
struct sctp_nets *net,
uint16_t nxtsz)
{
struct sctp_tmit_chunk *chk;
/* Adjust that too */
stcb->asoc.smallest_mtu = nxtsz;
/* now off to subtract IP_DF flag if needed */
TAILQ_FOREACH(chk, &stcb->asoc.send_queue, sctp_next) {
if ((chk->send_size + IP_HDR_SIZE) > nxtsz) {
chk->flags |= CHUNK_FLAGS_FRAGMENT_OK;
}
}
TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) {
if ((chk->send_size + IP_HDR_SIZE) > nxtsz) {
/*
* For this guy we also mark for immediate resend
* since we sent to big of chunk
*/
chk->flags |= CHUNK_FLAGS_FRAGMENT_OK;
if (chk->sent != SCTP_DATAGRAM_RESEND) {
sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt);
}
chk->sent = SCTP_DATAGRAM_RESEND;
chk->rec.data.doing_fast_retransmit = 0;
/* Clear any time so NO RTT is being done */
chk->do_rtt = 0;
if (stcb->asoc.total_flight >= chk->book_size)
stcb->asoc.total_flight -= chk->book_size;
else
stcb->asoc.total_flight = 0;
if (stcb->asoc.total_flight_count > 0)
stcb->asoc.total_flight_count--;
if (net->flight_size >= chk->book_size)
net->flight_size -= chk->book_size;
else
net->flight_size = 0;
}
}
}
static void
sctp_notify_mbuf(struct sctp_inpcb *inp,
struct sctp_tcb *stcb,
struct sctp_nets *net,
struct ip *ip,
struct sctphdr *sh)
{
struct icmp *icmph;
int totsz, tmr_stopped = 0;
uint16_t nxtsz;
/* protection */
if ((inp == NULL) || (stcb == NULL) || (net == NULL) ||
(ip == NULL) || (sh == NULL)) {
if (stcb != NULL)
SCTP_TCB_UNLOCK(stcb);
return;
}
/* First job is to verify the vtag matches what I would send */
if (ntohl(sh->v_tag) != (stcb->asoc.peer_vtag)) {
SCTP_TCB_UNLOCK(stcb);
return;
}
icmph = (struct icmp *)((caddr_t)ip - (sizeof(struct icmp) -
sizeof(struct ip)));
if (icmph->icmp_type != ICMP_UNREACH) {
/* We only care about unreachable */
SCTP_TCB_UNLOCK(stcb);
return;
}
if (icmph->icmp_code != ICMP_UNREACH_NEEDFRAG) {
/* not a unreachable message due to frag. */
SCTP_TCB_UNLOCK(stcb);
return;
}
totsz = ip->ip_len;
nxtsz = ntohs(icmph->icmp_seq);
if (nxtsz == 0) {
/*
* old type router that does not tell us what the next size
* mtu is. Rats we will have to guess (in a educated fashion
* of course)
*/
nxtsz = find_next_best_mtu(totsz);
}
/* Stop any PMTU timer */
if (SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) {
tmr_stopped = 1;
sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net,
SCTP_FROM_SCTP_USRREQ + SCTP_LOC_1);
}
/* Adjust destination size limit */
if (net->mtu > nxtsz) {
net->mtu = nxtsz;
}
/* now what about the ep? */
if (stcb->asoc.smallest_mtu > nxtsz) {
sctp_pathmtu_adjustment(inp, stcb, net, nxtsz);
}
if (tmr_stopped)
sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net);
SCTP_TCB_UNLOCK(stcb);
}
void
sctp_notify(struct sctp_inpcb *inp,
int error,
struct sctphdr *sh,
struct sockaddr *to,
struct sctp_tcb *stcb,
struct sctp_nets *net)
{
/* protection */
if ((inp == NULL) || (stcb == NULL) || (net == NULL) ||
(sh == NULL) || (to == NULL)) {
return;
}
/* First job is to verify the vtag matches what I would send */
if (ntohl(sh->v_tag) != (stcb->asoc.peer_vtag)) {
return;
}
/* FIX ME FIX ME PROTOPT i.e. no SCTP should ALWAYS be an ABORT */
if ((error == EHOSTUNREACH) || /* Host is not reachable */
(error == EHOSTDOWN) || /* Host is down */
(error == ECONNREFUSED) || /* Host refused the connection, (not
* an abort?) */
(error == ENOPROTOOPT) /* SCTP is not present on host */
) {
/*
* Hmm reachablity problems we must examine closely. If its
* not reachable, we may have lost a network. Or if there is
* NO protocol at the other end named SCTP. well we consider
* it a OOTB abort.
*/
if ((error == EHOSTUNREACH) || (error == EHOSTDOWN)) {
if (net->dest_state & SCTP_ADDR_REACHABLE) {
/* Ok that destination is NOT reachable */
printf("ICMP (thresh %d/%d) takes interface %p down\n",
net->error_count,
net->failure_threshold,
net);
net->dest_state &= ~SCTP_ADDR_REACHABLE;
net->dest_state |= SCTP_ADDR_NOT_REACHABLE;
net->error_count = net->failure_threshold + 1;
sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_DOWN,
stcb, SCTP_FAILED_THRESHOLD,
(void *)net);
}
if (stcb)
SCTP_TCB_UNLOCK(stcb);
} else {
/*
* Here the peer is either playing tricks on us,
* including an address that belongs to someone who
* does not support SCTP OR was a userland
* implementation that shutdown and now is dead. In
* either case treat it like a OOTB abort with no
* TCB
*/
sctp_abort_notification(stcb, SCTP_PEER_FAULTY);
sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_2);
/* no need to unlock here, since the TCB is gone */
}
} else {
/* Send all others to the app */
if (stcb)
SCTP_TCB_UNLOCK(stcb);
if (inp->sctp_socket) {
#ifdef SCTP_LOCK_LOGGING
sctp_log_lock(inp, stcb, SCTP_LOG_LOCK_SOCK);
#endif
SOCK_LOCK(inp->sctp_socket);
inp->sctp_socket->so_error = error;
sctp_sowwakeup(inp, inp->sctp_socket);
SOCK_UNLOCK(inp->sctp_socket);
}
}
}
void
sctp_ctlinput(cmd, sa, vip)
int cmd;
struct sockaddr *sa;
void *vip;
{
struct ip *ip = vip;
struct sctphdr *sh;
uint32_t vrf_id;
vrf_id = SCTP_DEFAULT_VRFID;
if (sa->sa_family != AF_INET ||
((struct sockaddr_in *)sa)->sin_addr.s_addr == INADDR_ANY) {
return;
}
if (PRC_IS_REDIRECT(cmd)) {
ip = 0;
} else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
return;
}
if (ip) {
struct sctp_inpcb *inp = NULL;
struct sctp_tcb *stcb = NULL;
struct sctp_nets *net = NULL;
struct sockaddr_in to, from;
sh = (struct sctphdr *)((caddr_t)ip + (ip->ip_hl << 2));
bzero(&to, sizeof(to));
bzero(&from, sizeof(from));
from.sin_family = to.sin_family = AF_INET;
from.sin_len = to.sin_len = sizeof(to);
from.sin_port = sh->src_port;
from.sin_addr = ip->ip_src;
to.sin_port = sh->dest_port;
to.sin_addr = ip->ip_dst;
/*
* 'to' holds the dest of the packet that failed to be sent.
* 'from' holds our local endpoint address. Thus we reverse
* the to and the from in the lookup.
*/
stcb = sctp_findassociation_addr_sa((struct sockaddr *)&from,
(struct sockaddr *)&to,
&inp, &net, 1, vrf_id);
if (stcb != NULL && inp && (inp->sctp_socket != NULL)) {
if (cmd != PRC_MSGSIZE) {
int cm;
if (cmd == PRC_HOSTDEAD) {
cm = EHOSTUNREACH;
} else {
cm = inetctlerrmap[cmd];
}
sctp_notify(inp, cm, sh,
(struct sockaddr *)&to, stcb,
net);
} else {
/* handle possible ICMP size messages */
sctp_notify_mbuf(inp, stcb, net, ip, sh);
}
} else {
if ((stcb == NULL) && (inp != NULL)) {
/* reduce ref-count */
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
}
}
return;
}
static int
sctp_getcred(SYSCTL_HANDLER_ARGS)
{
struct xucred xuc;
struct sockaddr_in addrs[2];
struct sctp_inpcb *inp;
struct sctp_nets *net;
struct sctp_tcb *stcb;
int error;
uint32_t vrf_id;
vrf_id = SCTP_DEFAULT_VRFID;
/*
* XXXRW: Other instances of getcred use SUSER_ALLOWJAIL, as socket
* visibility is scoped using cr_canseesocket(), which it is not
* here.
*/
error = priv_check_cred(req->td->td_ucred, PRIV_NETINET_GETCRED,
SUSER_ALLOWJAIL);
if (error)
return (error);
error = SYSCTL_IN(req, addrs, sizeof(addrs));
if (error)
return (error);
stcb = sctp_findassociation_addr_sa(sintosa(&addrs[0]),
sintosa(&addrs[1]),
&inp, &net, 1, vrf_id);
if (stcb == NULL || inp == NULL || inp->sctp_socket == NULL) {
if ((inp != NULL) && (stcb == NULL)) {
/* reduce ref-count */
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
goto cred_can_cont;
}
error = ENOENT;
goto out;
}
SCTP_TCB_UNLOCK(stcb);
/*
* We use the write lock here, only since in the error leg we need
* it. If we used RLOCK, then we would have to
* wlock/decr/unlock/rlock. Which in theory could create a hole.
* Better to use higher wlock.
*/
SCTP_INP_WLOCK(inp);
cred_can_cont:
error = cr_canseesocket(req->td->td_ucred, inp->sctp_socket);
if (error) {
SCTP_INP_WUNLOCK(inp);
goto out;
}
cru2x(inp->sctp_socket->so_cred, &xuc);
SCTP_INP_WUNLOCK(inp);
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
out:
return (error);
}
SYSCTL_PROC(_net_inet_sctp, OID_AUTO, getcred, CTLTYPE_OPAQUE | CTLFLAG_RW,
0, 0, sctp_getcred, "S,ucred", "Get the ucred of a SCTP connection");
static void
sctp_abort(struct socket *so)
{
struct sctp_inpcb *inp;
uint32_t flags;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0)
return;
sctp_must_try_again:
flags = inp->sctp_flags;
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 17);
#endif
if (((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) &&
(atomic_cmpset_int(&inp->sctp_flags, flags, (flags | SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_CLOSE_IP)))) {
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 16);
#endif
sctp_inpcb_free(inp, 1, 0);
SOCK_LOCK(so);
SCTP_SB_CLEAR(so->so_snd);
/*
* same for the rcv ones, they are only here for the
* accounting/select.
*/
SCTP_SB_CLEAR(so->so_rcv);
/* Now null out the reference, we are completely detached. */
so->so_pcb = NULL;
SOCK_UNLOCK(so);
} else {
flags = inp->sctp_flags;
if ((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) {
goto sctp_must_try_again;
}
}
return;
}
static int
sctp_attach(struct socket *so, int proto, struct thread *p)
{
struct sctp_inpcb *inp;
struct inpcb *ip_inp;
int error;
#ifdef IPSEC
uint32_t flags;
#endif
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp != 0) {
return EINVAL;
}
error = SCTP_SORESERVE(so, sctp_sendspace, sctp_recvspace);
if (error) {
return error;
}
error = sctp_inpcb_alloc(so);
if (error) {
return error;
}
inp = (struct sctp_inpcb *)so->so_pcb;
SCTP_INP_WLOCK(inp);
inp->sctp_flags &= ~SCTP_PCB_FLAGS_BOUND_V6; /* I'm not v6! */
ip_inp = &inp->ip_inp.inp;
ip_inp->inp_vflag |= INP_IPV4;
ip_inp->inp_ip_ttl = ip_defttl;
#ifdef IPSEC
error = ipsec_init_pcbpolicy(so, &ip_inp->inp_sp);
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 17);
#endif
if (error != 0) {
flags = inp->sctp_flags;
if (((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) &&
(atomic_cmpset_int(&inp->sctp_flags, flags, (flags | SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_CLOSE_IP)))) {
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 15);
#endif
sctp_inpcb_free(inp, 1, 0);
}
return error;
}
#endif /* IPSEC */
SCTP_INP_WUNLOCK(inp);
return 0;
}
static int
sctp_bind(struct socket *so, struct sockaddr *addr, struct thread *p)
{
struct sctp_inpcb *inp;
int error;
#ifdef INET6
if (addr && addr->sa_family != AF_INET)
/* must be a v4 address! */
return EINVAL;
#endif /* INET6 */
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0)
return EINVAL;
error = sctp_inpcb_bind(so, addr, p);
return error;
}
static void
sctp_close(struct socket *so)
{
struct sctp_inpcb *inp;
uint32_t flags;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0)
return;
/*
* Inform all the lower layer assoc that we are done.
*/
sctp_must_try_again:
flags = inp->sctp_flags;
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 17);
#endif
if (((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) &&
(atomic_cmpset_int(&inp->sctp_flags, flags, (flags | SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_CLOSE_IP)))) {
if (((so->so_options & SO_LINGER) && (so->so_linger == 0)) ||
(so->so_rcv.sb_cc > 0)) {
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 13);
#endif
sctp_inpcb_free(inp, 1, 1);
} else {
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 14);
#endif
sctp_inpcb_free(inp, 0, 1);
}
/*
* The socket is now detached, no matter what the state of
* the SCTP association.
*/
SOCK_LOCK(so);
SCTP_SB_CLEAR(so->so_snd);
/*
* same for the rcv ones, they are only here for the
* accounting/select.
*/
SCTP_SB_CLEAR(so->so_rcv);
/* Now null out the reference, we are completely detached. */
so->so_pcb = NULL;
SOCK_UNLOCK(so);
} else {
flags = inp->sctp_flags;
if ((flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) {
goto sctp_must_try_again;
}
}
return;
}
int
sctp_sendm(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct thread *p);
int
sctp_sendm(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct thread *p)
{
struct sctp_inpcb *inp;
int error;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0) {
if (control) {
sctp_m_freem(control);
control = NULL;
}
sctp_m_freem(m);
return EINVAL;
}
/* Got to have an to address if we are NOT a connected socket */
if ((addr == NULL) &&
((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE))
) {
goto connected_type;
} else if (addr == NULL) {
error = EDESTADDRREQ;
sctp_m_freem(m);
if (control) {
sctp_m_freem(control);
control = NULL;
}
return (error);
}
#ifdef INET6
if (addr->sa_family != AF_INET) {
/* must be a v4 address! */
sctp_m_freem(m);
if (control) {
sctp_m_freem(control);
control = NULL;
}
error = EDESTADDRREQ;
return EINVAL;
}
#endif /* INET6 */
connected_type:
/* now what about control */
if (control) {
if (inp->control) {
printf("huh? control set?\n");
sctp_m_freem(inp->control);
inp->control = NULL;
}
inp->control = control;
}
/* Place the data */
if (inp->pkt) {
SCTP_BUF_NEXT(inp->pkt_last) = m;
inp->pkt_last = m;
} else {
inp->pkt_last = inp->pkt = m;
}
if (
/* FreeBSD uses a flag passed */
((flags & PRUS_MORETOCOME) == 0)
) {
/*
* note with the current version this code will only be used
* by OpenBSD-- NetBSD, FreeBSD, and MacOS have methods for
* re-defining sosend to use the sctp_sosend. One can
* optionally switch back to this code (by changing back the
* definitions) but this is not advisable. This code is used
* by FreeBSD when sending a file with sendfile() though.
*/
int ret;
ret = sctp_output(inp, inp->pkt, addr, inp->control, p, flags);
inp->pkt = NULL;
inp->control = NULL;
return (ret);
} else {
return (0);
}
}
static int
sctp_disconnect(struct socket *so)
{
struct sctp_inpcb *inp;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == NULL) {
return (ENOTCONN);
}
SCTP_INP_RLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) {
if (SCTP_LIST_EMPTY(&inp->sctp_asoc_list)) {
/* No connection */
SCTP_INP_RUNLOCK(inp);
return (0);
} else {
struct sctp_association *asoc;
struct sctp_tcb *stcb;
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
SCTP_INP_RUNLOCK(inp);
return (EINVAL);
}
SCTP_TCB_LOCK(stcb);
asoc = &stcb->asoc;
if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) {
/* We are about to be freed, out of here */
SCTP_TCB_UNLOCK(stcb);
SCTP_INP_RUNLOCK(inp);
return (0);
}
if (((so->so_options & SO_LINGER) &&
(so->so_linger == 0)) ||
(so->so_rcv.sb_cc > 0)) {
if (SCTP_GET_STATE(asoc) !=
SCTP_STATE_COOKIE_WAIT) {
/* Left with Data unread */
struct mbuf *err;
err = sctp_get_mbuf_for_msg(sizeof(struct sctp_paramhdr), 0, M_DONTWAIT, 1, MT_DATA);
if (err) {
/*
* Fill in the user
* initiated abort
*/
struct sctp_paramhdr *ph;
ph = mtod(err, struct sctp_paramhdr *);
SCTP_BUF_LEN(err) = sizeof(struct sctp_paramhdr);
ph->param_type = htons(SCTP_CAUSE_USER_INITIATED_ABT);
ph->param_length = htons(SCTP_BUF_LEN(err));
}
sctp_send_abort_tcb(stcb, err);
SCTP_STAT_INCR_COUNTER32(sctps_aborted);
}
SCTP_INP_RUNLOCK(inp);
if ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) ||
(SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) {
SCTP_STAT_DECR_GAUGE32(sctps_currestab);
}
sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_3);
/* No unlock tcb assoc is gone */
return (0);
}
if (TAILQ_EMPTY(&asoc->send_queue) &&
TAILQ_EMPTY(&asoc->sent_queue) &&
(asoc->stream_queue_cnt == 0)) {
/* there is nothing queued to send, so done */
if (asoc->locked_on_sending) {
goto abort_anyway;
}
if ((SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_SENT) &&
(SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_ACK_SENT)) {
/* only send SHUTDOWN 1st time thru */
sctp_stop_timers_for_shutdown(stcb);
sctp_send_shutdown(stcb,
stcb->asoc.primary_destination);
sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_T3);
if ((SCTP_GET_STATE(asoc) == SCTP_STATE_OPEN) ||
(SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) {
SCTP_STAT_DECR_GAUGE32(sctps_currestab);
}
asoc->state = SCTP_STATE_SHUTDOWN_SENT;
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN,
stcb->sctp_ep, stcb,
asoc->primary_destination);
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD,
stcb->sctp_ep, stcb,
asoc->primary_destination);
}
} else {
/*
* we still got (or just got) data to send,
* so set SHUTDOWN_PENDING
*/
/*
* XXX sockets draft says that SCTP_EOF
* should be sent with no data. currently,
* we will allow user data to be sent first
* and move to SHUTDOWN-PENDING
*/
asoc->state |= SCTP_STATE_SHUTDOWN_PENDING;
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb,
asoc->primary_destination);
if (asoc->locked_on_sending) {
/* Locked to send out the data */
struct sctp_stream_queue_pending *sp;
sp = TAILQ_LAST(&asoc->locked_on_sending->outqueue, sctp_streamhead);
if (sp == NULL) {
printf("Error, sp is NULL, locked on sending is non-null strm:%d\n",
asoc->locked_on_sending->stream_no);
} else {
if ((sp->length == 0) && (sp->msg_is_complete == 0))
asoc->state |= SCTP_STATE_PARTIAL_MSG_LEFT;
}
}
if (TAILQ_EMPTY(&asoc->send_queue) &&
TAILQ_EMPTY(&asoc->sent_queue) &&
(asoc->state & SCTP_STATE_PARTIAL_MSG_LEFT)) {
struct mbuf *op_err;
abort_anyway:
op_err = sctp_get_mbuf_for_msg((sizeof(struct sctp_paramhdr) + sizeof(uint32_t)),
0, M_DONTWAIT, 1, MT_DATA);
if (op_err) {
/*
* Fill in the user
* initiated abort
*/
struct sctp_paramhdr *ph;
uint32_t *ippp;
SCTP_BUF_LEN(op_err) =
(sizeof(struct sctp_paramhdr) + sizeof(uint32_t));
ph = mtod(op_err,
struct sctp_paramhdr *);
ph->param_type = htons(
SCTP_CAUSE_USER_INITIATED_ABT);
ph->param_length = htons(SCTP_BUF_LEN(op_err));
ippp = (uint32_t *) (ph + 1);
*ippp = htonl(SCTP_FROM_SCTP_USRREQ + SCTP_LOC_4);
}
stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_USRREQ + SCTP_LOC_4;
sctp_send_abort_tcb(stcb, op_err);
SCTP_STAT_INCR_COUNTER32(sctps_aborted);
if ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) ||
(SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) {
SCTP_STAT_DECR_GAUGE32(sctps_currestab);
}
SCTP_INP_RUNLOCK(inp);
sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_5);
return (0);
}
}
SCTP_TCB_UNLOCK(stcb);
SCTP_INP_RUNLOCK(inp);
return (0);
}
/* not reached */
} else {
/* UDP model does not support this */
SCTP_INP_RUNLOCK(inp);
return EOPNOTSUPP;
}
}
int
sctp_shutdown(struct socket *so)
{
struct sctp_inpcb *inp;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0) {
return EINVAL;
}
SCTP_INP_RLOCK(inp);
/* For UDP model this is a invalid call */
if (inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE) {
/* Restore the flags that the soshutdown took away. */
so->so_rcv.sb_state &= ~SBS_CANTRCVMORE;
/* This proc will wakeup for read and do nothing (I hope) */
SCTP_INP_RUNLOCK(inp);
return (EOPNOTSUPP);
}
/*
* Ok if we reach here its the TCP model and it is either a SHUT_WR
* or SHUT_RDWR. This means we put the shutdown flag against it.
*/
{
struct sctp_tcb *stcb;
struct sctp_association *asoc;
socantsendmore(so);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
/*
* Ok we hit the case that the shutdown call was
* made after an abort or something. Nothing to do
* now.
*/
return (0);
}
SCTP_TCB_LOCK(stcb);
asoc = &stcb->asoc;
if (TAILQ_EMPTY(&asoc->send_queue) &&
TAILQ_EMPTY(&asoc->sent_queue) &&
(asoc->stream_queue_cnt == 0)) {
if (asoc->locked_on_sending) {
goto abort_anyway;
}
/* there is nothing queued to send, so I'm done... */
if (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_SENT) {
/* only send SHUTDOWN the first time through */
sctp_stop_timers_for_shutdown(stcb);
sctp_send_shutdown(stcb,
stcb->asoc.primary_destination);
sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_T3);
if ((SCTP_GET_STATE(asoc) == SCTP_STATE_OPEN) ||
(SCTP_GET_STATE(asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) {
SCTP_STAT_DECR_GAUGE32(sctps_currestab);
}
asoc->state = SCTP_STATE_SHUTDOWN_SENT;
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN,
stcb->sctp_ep, stcb,
asoc->primary_destination);
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD,
stcb->sctp_ep, stcb,
asoc->primary_destination);
}
} else {
/*
* we still got (or just got) data to send, so set
* SHUTDOWN_PENDING
*/
asoc->state |= SCTP_STATE_SHUTDOWN_PENDING;
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb,
asoc->primary_destination);
if (asoc->locked_on_sending) {
/* Locked to send out the data */
struct sctp_stream_queue_pending *sp;
sp = TAILQ_LAST(&asoc->locked_on_sending->outqueue, sctp_streamhead);
if (sp == NULL) {
printf("Error, sp is NULL, locked on sending is non-null strm:%d\n",
asoc->locked_on_sending->stream_no);
} else {
if ((sp->length == 0) && (sp->msg_is_complete == 0)) {
asoc->state |= SCTP_STATE_PARTIAL_MSG_LEFT;
}
}
}
if (TAILQ_EMPTY(&asoc->send_queue) &&
TAILQ_EMPTY(&asoc->sent_queue) &&
(asoc->state & SCTP_STATE_PARTIAL_MSG_LEFT)) {
struct mbuf *op_err;
abort_anyway:
op_err = sctp_get_mbuf_for_msg((sizeof(struct sctp_paramhdr) + sizeof(uint32_t)),
0, M_DONTWAIT, 1, MT_DATA);
if (op_err) {
/* Fill in the user initiated abort */
struct sctp_paramhdr *ph;
uint32_t *ippp;
SCTP_BUF_LEN(op_err) =
sizeof(struct sctp_paramhdr) + sizeof(uint32_t);
ph = mtod(op_err,
struct sctp_paramhdr *);
ph->param_type = htons(
SCTP_CAUSE_USER_INITIATED_ABT);
ph->param_length = htons(SCTP_BUF_LEN(op_err));
ippp = (uint32_t *) (ph + 1);
*ippp = htonl(SCTP_FROM_SCTP_USRREQ + SCTP_LOC_6);
}
stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_USRREQ + SCTP_LOC_6;
sctp_abort_an_association(stcb->sctp_ep, stcb,
SCTP_RESPONSE_TO_USER_REQ,
op_err);
goto skip_unlock;
}
}
SCTP_TCB_UNLOCK(stcb);
}
skip_unlock:
SCTP_INP_RUNLOCK(inp);
return 0;
}
/*
* copies a "user" presentable address and removes embedded scope, etc.
* returns 0 on success, 1 on error
*/
static uint32_t
sctp_fill_user_address(struct sockaddr_storage *ss, struct sockaddr *sa)
{
struct sockaddr_in6 lsa6;
sa = (struct sockaddr *)sctp_recover_scope((struct sockaddr_in6 *)sa,
&lsa6);
memcpy(ss, sa, sa->sa_len);
return (0);
}
static size_t
sctp_fill_up_addresses(struct sctp_inpcb *inp,
struct sctp_tcb *stcb,
size_t limit,
struct sockaddr_storage *sas,
uint32_t vrf_id)
{
struct sctp_ifn *sctp_ifn;
struct sctp_ifa *sctp_ifa;
int loopback_scope, ipv4_local_scope, local_scope, site_scope;
size_t actual;
int ipv4_addr_legal, ipv6_addr_legal;
struct sctp_vrf *vrf;
actual = 0;
if (limit <= 0)
return (actual);
if (stcb) {
/* Turn on all the appropriate scope */
loopback_scope = stcb->asoc.loopback_scope;
ipv4_local_scope = stcb->asoc.ipv4_local_scope;
local_scope = stcb->asoc.local_scope;
site_scope = stcb->asoc.site_scope;
} else {
/* Turn on ALL scope, since we look at the EP */
loopback_scope = ipv4_local_scope = local_scope =
site_scope = 1;
}
ipv4_addr_legal = ipv6_addr_legal = 0;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
ipv6_addr_legal = 1;
if (SCTP_IPV6_V6ONLY(inp) == 0) {
ipv4_addr_legal = 1;
}
} else {
ipv4_addr_legal = 1;
}
vrf = sctp_find_vrf(vrf_id);
if (vrf == NULL) {
return (0);
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
LIST_FOREACH(sctp_ifn, &vrf->ifnlist, next_ifn) {
if ((loopback_scope == 0) &&
SCTP_IFN_IS_IFT_LOOP(sctp_ifn)) {
/* Skip loopback if loopback_scope not set */
continue;
}
LIST_FOREACH(sctp_ifa, &sctp_ifn->ifalist, next_ifa) {
if (stcb) {
/*
* For the BOUND-ALL case, the list
* associated with a TCB is Always
* considered a reverse list.. i.e.
* it lists addresses that are NOT
* part of the association. If this
* is one of those we must skip it.
*/
if (sctp_is_addr_restricted(stcb,
sctp_ifa)) {
continue;
}
}
if ((sctp_ifa->address.sa.sa_family == AF_INET) &&
(ipv4_addr_legal)) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)&sctp_ifa->address.sa;
if (sin->sin_addr.s_addr == 0) {
/*
* we skip unspecifed
* addresses
*/
continue;
}
if ((ipv4_local_scope == 0) &&
(IN4_ISPRIVATE_ADDRESS(&sin->sin_addr))) {
continue;
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) {
in6_sin_2_v4mapsin6(sin, (struct sockaddr_in6 *)sas);
((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport;
sas = (struct sockaddr_storage *)((caddr_t)sas + sizeof(struct sockaddr_in6));
actual += sizeof(sizeof(struct sockaddr_in6));
} else {
memcpy(sas, sin, sizeof(*sin));
((struct sockaddr_in *)sas)->sin_port = inp->sctp_lport;
sas = (struct sockaddr_storage *)((caddr_t)sas + sizeof(*sin));
actual += sizeof(*sin);
}
if (actual >= limit) {
return (actual);
}
} else if ((sctp_ifa->address.sa.sa_family == AF_INET6) &&
(ipv6_addr_legal)) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)&sctp_ifa->address.sa;
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
/*
* we skip unspecifed
* addresses
*/
continue;
}
if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
if (local_scope == 0)
continue;
if (sin6->sin6_scope_id == 0) {
if (sa6_recoverscope(sin6) != 0)
/*
* bad link
* local
* address
*/
continue;
}
}
if ((site_scope == 0) &&
(IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))) {
continue;
}
memcpy(sas, sin6, sizeof(*sin6));
((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport;
sas = (struct sockaddr_storage *)((caddr_t)sas + sizeof(*sin6));
actual += sizeof(*sin6);
if (actual >= limit) {
return (actual);
}
}
}
}
} else {
struct sctp_laddr *laddr;
/* The list is a NEGATIVE list */
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (stcb) {
if (sctp_is_addr_restricted(stcb, laddr->ifa)) {
continue;
}
}
if (sctp_fill_user_address(sas, &laddr->ifa->address.sa))
continue;
((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport;
sas = (struct sockaddr_storage *)((caddr_t)sas +
laddr->ifa->address.sa.sa_len);
actual += laddr->ifa->address.sa.sa_len;
if (actual >= limit) {
return (actual);
}
}
}
return (actual);
}
static int
sctp_count_max_addresses(struct sctp_inpcb *inp, uint32_t vrf_id)
{
int cnt = 0;
struct sctp_vrf *vrf = NULL;
/*
* In both sub-set bound an bound_all cases we return the MAXIMUM
* number of addresses that you COULD get. In reality the sub-set
* bound may have an exclusion list for a given TCB OR in the
* bound-all case a TCB may NOT include the loopback or other
* addresses as well.
*/
vrf = sctp_find_vrf(vrf_id);
if (vrf == NULL) {
return (0);
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
struct sctp_ifn *sctp_ifn;
struct sctp_ifa *sctp_ifa;
LIST_FOREACH(sctp_ifn, &vrf->ifnlist, next_ifn) {
LIST_FOREACH(sctp_ifa, &sctp_ifn->ifalist, next_ifa) {
/* Count them if they are the right type */
if (sctp_ifa->address.sa.sa_family == AF_INET) {
if (inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)
cnt += sizeof(struct sockaddr_in6);
else
cnt += sizeof(struct sockaddr_in);
} else if (sctp_ifa->address.sa.sa_family == AF_INET6)
cnt += sizeof(struct sockaddr_in6);
}
}
} else {
struct sctp_laddr *laddr;
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa->address.sa.sa_family == AF_INET) {
if (inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)
cnt += sizeof(struct sockaddr_in6);
else
cnt += sizeof(struct sockaddr_in);
} else if (laddr->ifa->address.sa.sa_family == AF_INET6)
cnt += sizeof(struct sockaddr_in6);
}
}
return (cnt);
}
static int
sctp_do_connect_x(struct socket *so, struct sctp_inpcb *inp, void *optval,
size_t optsize, void *p, int delay)
{
int error = 0;
int creat_lock_on = 0;
struct sctp_tcb *stcb = NULL;
struct sockaddr *sa;
int num_v6 = 0, num_v4 = 0, *totaddrp, totaddr, i;
size_t incr, at;
uint32_t vrf_id;
sctp_assoc_t *a_id;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Connectx called\n");
}
#endif /* SCTP_DEBUG */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) &&
(inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) {
/* We are already connected AND the TCP model */
return (EADDRINUSE);
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) {
return (EINVAL);
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
SCTP_INP_RUNLOCK(inp);
}
if (stcb) {
return (EALREADY);
}
SCTP_INP_INCR_REF(inp);
SCTP_ASOC_CREATE_LOCK(inp);
creat_lock_on = 1;
if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) {
error = EFAULT;
goto out_now;
}
totaddrp = (int *)optval;
totaddr = *totaddrp;
sa = (struct sockaddr *)(totaddrp + 1);
at = incr = 0;
/* account and validate addresses */
for (i = 0; i < totaddr; i++) {
if (sa->sa_family == AF_INET) {
num_v4++;
incr = sizeof(struct sockaddr_in);
} else if (sa->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)sa;
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
/* Must be non-mapped for connectx */
error = EINVAL;
goto out_now;
}
num_v6++;
incr = sizeof(struct sockaddr_in6);
} else {
totaddr = i;
break;
}
stcb = sctp_findassociation_ep_addr(&inp, sa, NULL, NULL, NULL);
if (stcb != NULL) {
/* Already have or am bring up an association */
SCTP_ASOC_CREATE_UNLOCK(inp);
creat_lock_on = 0;
SCTP_TCB_UNLOCK(stcb);
error = EALREADY;
goto out_now;
}
if ((at + incr) > optsize) {
totaddr = i;
break;
}
sa = (struct sockaddr *)((caddr_t)sa + incr);
}
sa = (struct sockaddr *)(totaddrp + 1);
#ifdef INET6
if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) &&
(num_v6 > 0)) {
error = EINVAL;
goto out_now;
}
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) &&
(num_v4 > 0)) {
struct in6pcb *inp6;
inp6 = (struct in6pcb *)inp;
if (SCTP_IPV6_V6ONLY(inp6)) {
/*
* if IPV6_V6ONLY flag, ignore connections destined
* to a v4 addr or v4-mapped addr
*/
error = EINVAL;
goto out_now;
}
}
#endif /* INET6 */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) ==
SCTP_PCB_FLAGS_UNBOUND) {
/* Bind a ephemeral port */
SCTP_INP_WUNLOCK(inp);
error = sctp_inpcb_bind(so, NULL, p);
if (error) {
goto out_now;
}
} else {
SCTP_INP_WUNLOCK(inp);
}
/* FIX ME: do we want to pass in a vrf on the connect call? */
vrf_id = inp->def_vrf_id;
/* We are GOOD to go */
stcb = sctp_aloc_assoc(inp, sa, 1, &error, 0, vrf_id);
if (stcb == NULL) {
/* Gak! no memory */
goto out_now;
}
/* move to second address */
if (sa->sa_family == AF_INET)
sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in));
else
sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in6));
for (i = 1; i < totaddr; i++) {
if (sa->sa_family == AF_INET) {
incr = sizeof(struct sockaddr_in);
if (sctp_add_remote_addr(stcb, sa, SCTP_DONOT_SETSCOPE, SCTP_ADDR_IS_CONFIRMED)) {
/* assoc gone no un-lock */
sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_7);
error = ENOBUFS;
goto out_now;
}
} else if (sa->sa_family == AF_INET6) {
incr = sizeof(struct sockaddr_in6);
if (sctp_add_remote_addr(stcb, sa, SCTP_DONOT_SETSCOPE, SCTP_ADDR_IS_CONFIRMED)) {
/* assoc gone no un-lock */
sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_8);
error = ENOBUFS;
goto out_now;
}
}
sa = (struct sockaddr *)((caddr_t)sa + incr);
}
stcb->asoc.state = SCTP_STATE_COOKIE_WAIT;
/* Fill in the return id */
a_id = (sctp_assoc_t *) optval;
*a_id = sctp_get_associd(stcb);
/* initialize authentication parameters for the assoc */
sctp_initialize_auth_params(inp, stcb);
if (delay) {
/* doing delayed connection */
stcb->asoc.delayed_connection = 1;
sctp_timer_start(SCTP_TIMER_TYPE_INIT, inp, stcb, stcb->asoc.primary_destination);
} else {
SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered);
sctp_send_initiate(inp, stcb);
}
SCTP_TCB_UNLOCK(stcb);
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) {
stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED;
/* Set the connected flag so we can queue data */
soisconnecting(so);
}
out_now:
if (creat_lock_on)
SCTP_ASOC_CREATE_UNLOCK(inp);
SCTP_INP_DECR_REF(inp);
return error;
}
#define SCTP_FIND_STCB(inp, stcb, assoc_id) \
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { \
SCTP_INP_RLOCK(inp); \
stcb = LIST_FIRST(&inp->sctp_asoc_list); \
if (stcb) \
SCTP_TCB_LOCK(stcb); \
SCTP_INP_RUNLOCK(inp); \
} else if (assoc_id != 0) { \
stcb = sctp_findassociation_ep_asocid(inp, assoc_id, 1); \
if (stcb == NULL) { \
error = ENOENT; \
break; \
} \
} else { \
stcb = NULL; \
}
#define SCTP_CHECK_AND_CAST(destp, srcp, type, size) \
if (size < sizeof(type)) { \
error = EINVAL; \
break; \
} else { \
destp = (type *)srcp; \
}
static int
sctp_getopt(struct socket *so, int optname, void *optval, size_t *optsize,
void *p)
{
struct sctp_inpcb *inp;
int error, val = 0;
uint32_t vrf_id;
struct sctp_tcb *stcb = NULL;
if (optval == NULL) {
return (EINVAL);
}
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0)
return EINVAL;
vrf_id = SCTP_DEFAULT_VRFID;
error = 0;
switch (optname) {
case SCTP_NODELAY:
case SCTP_AUTOCLOSE:
case SCTP_EXPLICIT_EOR:
case SCTP_AUTO_ASCONF:
case SCTP_DISABLE_FRAGMENTS:
case SCTP_I_WANT_MAPPED_V4_ADDR:
case SCTP_USE_EXT_RCVINFO:
SCTP_INP_RLOCK(inp);
switch (optname) {
case SCTP_DISABLE_FRAGMENTS:
val = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NO_FRAGMENT);
break;
case SCTP_I_WANT_MAPPED_V4_ADDR:
val = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4);
break;
case SCTP_AUTO_ASCONF:
val = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_AUTO_ASCONF);
break;
case SCTP_EXPLICIT_EOR:
val = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXPLICIT_EOR);
break;
case SCTP_NODELAY:
val = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NODELAY);
break;
case SCTP_USE_EXT_RCVINFO:
val = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXT_RCVINFO);
break;
case SCTP_AUTOCLOSE:
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_AUTOCLOSE))
val = TICKS_TO_SEC(inp->sctp_ep.auto_close_time);
else
val = 0;
break;
default:
error = ENOPROTOOPT;
} /* end switch (sopt->sopt_name) */
if (optname != SCTP_AUTOCLOSE) {
/* make it an "on/off" value */
val = (val != 0);
}
if (*optsize < sizeof(val)) {
error = EINVAL;
}
SCTP_INP_RUNLOCK(inp);
if (error == 0) {
/* return the option value */
*(int *)optval = val;
*optsize = sizeof(val);
}
break;
case SCTP_PARTIAL_DELIVERY_POINT:
{
uint32_t *value;
SCTP_CHECK_AND_CAST(value, optval, uint32_t, *optsize);
*value = inp->partial_delivery_point;
*optsize = sizeof(uint32_t);
}
break;
case SCTP_FRAGMENT_INTERLEAVE:
{
uint32_t *value;
SCTP_CHECK_AND_CAST(value, optval, uint32_t, *optsize);
*value = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE);
*optsize = sizeof(uint32_t);
}
break;
case SCTP_CMT_ON_OFF:
{
struct sctp_assoc_value *av;
SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize);
if (sctp_cmt_on_off) {
SCTP_FIND_STCB(inp, stcb, av->assoc_id);
if (stcb) {
av->assoc_value = stcb->asoc.sctp_cmt_on_off;
SCTP_TCB_UNLOCK(stcb);
} else {
error = ENOTCONN;
}
} else {
error = ENOPROTOOPT;
}
*optsize = sizeof(*av);
}
break;
case SCTP_GET_ADDR_LEN:
{
struct sctp_assoc_value *av;
SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize);
error = EINVAL;
#ifdef INET
if (av->assoc_value == AF_INET) {
av->assoc_value = sizeof(struct sockaddr_in);
error = 0;
}
#endif
#ifdef INET6
if (av->assoc_value == AF_INET6) {
av->assoc_value = sizeof(struct sockaddr_in6);
error = 0;
}
#endif
*optsize = sizeof(*av);
}
break;
case SCTP_GET_ASOC_ID_LIST:
{
struct sctp_assoc_ids *ids;
int cnt, at;
uint16_t orig;
SCTP_CHECK_AND_CAST(ids, optval, struct sctp_assoc_ids, *optsize);
cnt = 0;
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
none_out_now:
ids->asls_numb_present = 0;
ids->asls_more_to_get = 0;
SCTP_INP_RUNLOCK(inp);
break;
}
orig = ids->asls_assoc_start;
stcb = LIST_FIRST(&inp->sctp_asoc_list);
while (orig) {
stcb = LIST_NEXT(stcb, sctp_tcblist);
orig--;
cnt--;
if (stcb == NULL)
goto none_out_now;
}
if (stcb == NULL)
goto none_out_now;
at = 0;
ids->asls_numb_present = 0;
ids->asls_more_to_get = 1;
while (at < MAX_ASOC_IDS_RET) {
ids->asls_assoc_id[at] = sctp_get_associd(stcb);
at++;
ids->asls_numb_present++;
stcb = LIST_NEXT(stcb, sctp_tcblist);
if (stcb == NULL) {
ids->asls_more_to_get = 0;
break;
}
}
SCTP_INP_RUNLOCK(inp);
}
break;
case SCTP_CONTEXT:
{
struct sctp_assoc_value *av;
SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize);
SCTP_FIND_STCB(inp, stcb, av->assoc_id);
if (stcb) {
av->assoc_value = stcb->asoc.context;
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_RLOCK(inp);
av->assoc_value = inp->sctp_context;
SCTP_INP_RUNLOCK(inp);
}
*optsize = sizeof(*av);
}
break;
case SCTP_VRF_ID:
{
uint32_t *vrf_id;
SCTP_CHECK_AND_CAST(vrf_id, optval, uint32_t, *optsize);
*vrf_id = inp->def_vrf_id;
break;
}
case SCTP_GET_ASOC_VRF:
{
struct sctp_assoc_value *id;
SCTP_CHECK_AND_CAST(id, optval, struct sctp_assoc_value, *optsize);
SCTP_FIND_STCB(inp, stcb, id->assoc_id);
if (stcb == NULL) {
error = EINVAL;
break;
}
id->assoc_value = stcb->asoc.vrf_id;
break;
}
case SCTP_GET_VRF_IDS:
{
error = EOPNOTSUPP;
break;
}
case SCTP_GET_NONCE_VALUES:
{
struct sctp_get_nonce_values *gnv;
SCTP_CHECK_AND_CAST(gnv, optval, struct sctp_get_nonce_values, *optsize);
SCTP_FIND_STCB(inp, stcb, gnv->gn_assoc_id);
if (stcb) {
gnv->gn_peers_tag = stcb->asoc.peer_vtag;
gnv->gn_local_tag = stcb->asoc.my_vtag;
SCTP_TCB_UNLOCK(stcb);
} else {
error = ENOTCONN;
}
*optsize = sizeof(*gnv);
}
break;
case SCTP_DELAYED_ACK_TIME:
{
struct sctp_assoc_value *tm;
SCTP_CHECK_AND_CAST(tm, optval, struct sctp_assoc_value, *optsize);
SCTP_FIND_STCB(inp, stcb, tm->assoc_id);
if (stcb) {
tm->assoc_value = stcb->asoc.delayed_ack;
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_RLOCK(inp);
tm->assoc_value = TICKS_TO_MSEC(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV]);
SCTP_INP_RUNLOCK(inp);
}
*optsize = sizeof(*tm);
}
break;
case SCTP_GET_SNDBUF_USE:
{
struct sctp_sockstat *ss;
SCTP_CHECK_AND_CAST(ss, optval, struct sctp_sockstat, *optsize);
SCTP_FIND_STCB(inp, stcb, ss->ss_assoc_id);
if (stcb) {
ss->ss_total_sndbuf = stcb->asoc.total_output_queue_size;
ss->ss_total_recv_buf = (stcb->asoc.size_on_reasm_queue +
stcb->asoc.size_on_all_streams);
SCTP_TCB_UNLOCK(stcb);
} else {
error = ENOTCONN;
}
*optsize = sizeof(struct sctp_sockstat);
}
break;
case SCTP_MAXBURST:
{
uint8_t *value;
SCTP_CHECK_AND_CAST(value, optval, uint8_t, *optsize);
SCTP_INP_RLOCK(inp);
*value = inp->sctp_ep.max_burst;
SCTP_INP_RUNLOCK(inp);
*optsize = sizeof(uint8_t);
}
break;
case SCTP_MAXSEG:
{
struct sctp_assoc_value *av;
int ovh;
SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, *optsize);
SCTP_FIND_STCB(inp, stcb, av->assoc_id);
if (stcb) {
av->assoc_value = sctp_get_frag_point(stcb, &stcb->asoc);
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_RLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
ovh = SCTP_MED_OVERHEAD;
} else {
ovh = SCTP_MED_V4_OVERHEAD;
}
av->assoc_value = inp->sctp_frag_point - ovh;
SCTP_INP_RUNLOCK(inp);
}
*optsize = sizeof(struct sctp_assoc_value);
}
break;
case SCTP_GET_STAT_LOG:
#ifdef SCTP_STAT_LOGGING
error = sctp_fill_stat_log(optval, optsize);
#else
error = EOPNOTSUPP;
#endif
break;
case SCTP_EVENTS:
{
struct sctp_event_subscribe *events;
SCTP_CHECK_AND_CAST(events, optval, struct sctp_event_subscribe, *optsize);
memset(events, 0, sizeof(*events));
SCTP_INP_RLOCK(inp);
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT))
events->sctp_data_io_event = 1;
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVASSOCEVNT))
events->sctp_association_event = 1;
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVPADDREVNT))
events->sctp_address_event = 1;
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVSENDFAILEVNT))
events->sctp_send_failure_event = 1;
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVPEERERR))
events->sctp_peer_error_event = 1;
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT))
events->sctp_shutdown_event = 1;
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PDAPIEVNT))
events->sctp_partial_delivery_event = 1;
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_ADAPTATIONEVNT))
events->sctp_adaptation_layer_event = 1;
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_AUTHEVNT))
events->sctp_authentication_event = 1;
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_STREAM_RESETEVNT))
events->sctp_stream_reset_events = 1;
SCTP_INP_RUNLOCK(inp);
*optsize = sizeof(struct sctp_event_subscribe);
}
break;
case SCTP_ADAPTATION_LAYER:
{
uint32_t *value;
SCTP_CHECK_AND_CAST(value, optval, uint32_t, *optsize);
SCTP_INP_RLOCK(inp);
*value = inp->sctp_ep.adaptation_layer_indicator;
SCTP_INP_RUNLOCK(inp);
*optsize = sizeof(uint32_t);
}
break;
case SCTP_SET_INITIAL_DBG_SEQ:
{
uint32_t *value;
SCTP_CHECK_AND_CAST(value, optval, uint32_t, *optsize);
SCTP_INP_RLOCK(inp);
*value = inp->sctp_ep.initial_sequence_debug;
SCTP_INP_RUNLOCK(inp);
*optsize = sizeof(uint32_t);
}
break;
case SCTP_GET_LOCAL_ADDR_SIZE:
{
uint32_t *value;
SCTP_CHECK_AND_CAST(value, optval, uint32_t, *optsize);
SCTP_INP_RLOCK(inp);
*value = sctp_count_max_addresses(inp, vrf_id);
SCTP_INP_RUNLOCK(inp);
*optsize = sizeof(uint32_t);
}
break;
case SCTP_GET_REMOTE_ADDR_SIZE:
{
uint32_t *value;
size_t size;
struct sctp_nets *net;
SCTP_CHECK_AND_CAST(value, optval, uint32_t, *optsize);
/* FIXME MT: change to sctp_assoc_value? */
SCTP_FIND_STCB(inp, stcb, (sctp_assoc_t) * value);
if (stcb) {
size = 0;
/* Count the sizes */
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) ||
(((struct sockaddr *)&net->ro._l_addr)->sa_family == AF_INET6)) {
size += sizeof(struct sockaddr_in6);
} else if (((struct sockaddr *)&net->ro._l_addr)->sa_family == AF_INET) {
size += sizeof(struct sockaddr_in);
} else {
/* huh */
break;
}
}
SCTP_TCB_UNLOCK(stcb);
*value = (uint32_t) size;
} else {
error = ENOTCONN;
}
*optsize = sizeof(uint32_t);
}
break;
case SCTP_GET_PEER_ADDRESSES:
/*
* Get the address information, an array is passed in to
* fill up we pack it.
*/
{
size_t cpsz, left;
struct sockaddr_storage *sas;
struct sctp_nets *net;
struct sctp_getaddresses *saddr;
SCTP_CHECK_AND_CAST(saddr, optval, struct sctp_getaddresses, *optsize);
SCTP_FIND_STCB(inp, stcb, saddr->sget_assoc_id);
if (stcb) {
left = (*optsize) - sizeof(struct sctp_getaddresses);
*optsize = sizeof(struct sctp_getaddresses);
sas = (struct sockaddr_storage *)&saddr->addr[0];
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) ||
(((struct sockaddr *)&net->ro._l_addr)->sa_family == AF_INET6)) {
cpsz = sizeof(struct sockaddr_in6);
} else if (((struct sockaddr *)&net->ro._l_addr)->sa_family == AF_INET) {
cpsz = sizeof(struct sockaddr_in);
} else {
/* huh */
break;
}
if (left < cpsz) {
/* not enough room. */
break;
}
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) &&
(((struct sockaddr *)&net->ro._l_addr)->sa_family == AF_INET)) {
/* Must map the address */
in6_sin_2_v4mapsin6((struct sockaddr_in *)&net->ro._l_addr,
(struct sockaddr_in6 *)sas);
} else {
memcpy(sas, &net->ro._l_addr, cpsz);
}
((struct sockaddr_in *)sas)->sin_port = stcb->rport;
sas = (struct sockaddr_storage *)((caddr_t)sas + cpsz);
left -= cpsz;
*optsize += cpsz;
}
SCTP_TCB_UNLOCK(stcb);
} else {
error = ENOENT;
}
}
break;
case SCTP_GET_LOCAL_ADDRESSES:
{
size_t limit, actual;
struct sockaddr_storage *sas;
struct sctp_getaddresses *saddr;
SCTP_CHECK_AND_CAST(saddr, optval, struct sctp_getaddresses, *optsize);
SCTP_FIND_STCB(inp, stcb, saddr->sget_assoc_id);
sas = (struct sockaddr_storage *)&saddr->addr[0];
limit = *optsize - sizeof(sctp_assoc_t);
actual = sctp_fill_up_addresses(inp, stcb, limit, sas, vrf_id);
if (stcb)
SCTP_TCB_UNLOCK(stcb);
*optsize = sizeof(struct sockaddr_storage) + actual;
}
break;
case SCTP_PEER_ADDR_PARAMS:
{
struct sctp_paddrparams *paddrp;
struct sctp_nets *net;
SCTP_CHECK_AND_CAST(paddrp, optval, struct sctp_paddrparams, *optsize);
SCTP_FIND_STCB(inp, stcb, paddrp->spp_assoc_id);
net = NULL;
if (stcb) {
net = sctp_findnet(stcb, (struct sockaddr *)&paddrp->spp_address);
} else {
/*
* We increment here since
* sctp_findassociation_ep_addr() wil do a
* decrement if it finds the stcb as long as
* the locked tcb (last argument) is NOT a
* TCB.. aka NULL.
*/
SCTP_INP_INCR_REF(inp);
stcb = sctp_findassociation_ep_addr(&inp, (struct sockaddr *)&paddrp->spp_address, &net, NULL, NULL);
if (stcb == NULL) {
SCTP_INP_DECR_REF(inp);
}
}
if (stcb) {
/* Applys to the specific association */
paddrp->spp_flags = 0;
if (net) {
paddrp->spp_pathmaxrxt = net->failure_threshold;
paddrp->spp_pathmtu = net->mtu;
/* get flags for HB */
if (net->dest_state & SCTP_ADDR_NOHB)
paddrp->spp_flags |= SPP_HB_DISABLE;
else
paddrp->spp_flags |= SPP_HB_ENABLE;
/* get flags for PMTU */
if (SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) {
paddrp->spp_flags |= SPP_PMTUD_ENABLE;
} else {
paddrp->spp_flags |= SPP_PMTUD_DISABLE;
}
#ifdef INET
if (net->ro._l_addr.sin.sin_family == AF_INET) {
paddrp->spp_ipv4_tos = net->tos_flowlabel & 0x000000fc;
paddrp->spp_flags |= SPP_IPV4_TOS;
}
#endif
#ifdef INET6
if (net->ro._l_addr.sin6.sin6_family == AF_INET6) {
paddrp->spp_ipv6_flowlabel = net->tos_flowlabel;
paddrp->spp_flags |= SPP_IPV6_FLOWLABEL;
}
#endif
} else {
/*
* No destination so return default
* value
*/
paddrp->spp_pathmaxrxt = stcb->asoc.def_net_failure;
paddrp->spp_pathmtu = sctp_get_frag_point(stcb, &stcb->asoc);
#ifdef INET
paddrp->spp_ipv4_tos = stcb->asoc.default_tos & 0x000000fc;
paddrp->spp_flags |= SPP_IPV4_TOS;
#endif
#ifdef INET6
paddrp->spp_ipv6_flowlabel = stcb->asoc.default_flowlabel;
paddrp->spp_flags |= SPP_IPV6_FLOWLABEL;
#endif
/* default settings should be these */
if (sctp_is_hb_timer_running(stcb)) {
paddrp->spp_flags |= SPP_HB_ENABLE;
}
}
paddrp->spp_hbinterval = stcb->asoc.heart_beat_delay;
paddrp->spp_assoc_id = sctp_get_associd(stcb);
SCTP_TCB_UNLOCK(stcb);
} else {
/* Use endpoint defaults */
SCTP_INP_RLOCK(inp);
paddrp->spp_pathmaxrxt = inp->sctp_ep.def_net_failure;
paddrp->spp_hbinterval = TICKS_TO_MSEC(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT]);
paddrp->spp_assoc_id = (sctp_assoc_t) 0;
/* get inp's default */
#ifdef INET
paddrp->spp_ipv4_tos = inp->ip_inp.inp.inp_ip_tos;
paddrp->spp_flags |= SPP_IPV4_TOS;
#endif
#ifdef INET6
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
paddrp->spp_ipv6_flowlabel = ((struct in6pcb *)inp)->in6p_flowinfo;
paddrp->spp_flags |= SPP_IPV6_FLOWLABEL;
}
#endif
/* can't return this */
paddrp->spp_pathmaxrxt = 0;
paddrp->spp_pathmtu = 0;
/* default behavior, no stcb */
paddrp->spp_flags = SPP_HB_ENABLE | SPP_PMTUD_ENABLE;
SCTP_INP_RUNLOCK(inp);
}
*optsize = sizeof(struct sctp_paddrparams);
}
break;
case SCTP_GET_PEER_ADDR_INFO:
{
struct sctp_paddrinfo *paddri;
struct sctp_nets *net;
SCTP_CHECK_AND_CAST(paddri, optval, struct sctp_paddrinfo, *optsize);
SCTP_FIND_STCB(inp, stcb, paddri->spinfo_assoc_id);
net = NULL;
if (stcb) {
net = sctp_findnet(stcb, (struct sockaddr *)&paddri->spinfo_address);
} else {
/*
* We increment here since
* sctp_findassociation_ep_addr() wil do a
* decrement if it finds the stcb as long as
* the locked tcb (last argument) is NOT a
* TCB.. aka NULL.
*/
SCTP_INP_INCR_REF(inp);
stcb = sctp_findassociation_ep_addr(&inp, (struct sockaddr *)&paddri->spinfo_address, &net, NULL, NULL);
if (stcb == NULL) {
SCTP_INP_DECR_REF(inp);
}
}
if ((stcb) && (net)) {
paddri->spinfo_state = net->dest_state & (SCTP_REACHABLE_MASK | SCTP_ADDR_NOHB);
paddri->spinfo_cwnd = net->cwnd;
paddri->spinfo_srtt = ((net->lastsa >> 2) + net->lastsv) >> 1;
paddri->spinfo_rto = net->RTO;
paddri->spinfo_assoc_id = sctp_get_associd(stcb);
SCTP_TCB_UNLOCK(stcb);
} else {
if (stcb) {
SCTP_TCB_UNLOCK(stcb);
}
error = ENOENT;
}
*optsize = sizeof(struct sctp_paddrinfo);
}
break;
case SCTP_PCB_STATUS:
{
struct sctp_pcbinfo *spcb;
SCTP_CHECK_AND_CAST(spcb, optval, struct sctp_pcbinfo, *optsize);
sctp_fill_pcbinfo(spcb);
*optsize = sizeof(struct sctp_pcbinfo);
}
break;
case SCTP_STATUS:
{
struct sctp_nets *net;
struct sctp_status *sstat;
SCTP_CHECK_AND_CAST(sstat, optval, struct sctp_status, *optsize);
SCTP_FIND_STCB(inp, stcb, sstat->sstat_assoc_id);
if (stcb == NULL) {
error = EINVAL;
break;
}
/*
* I think passing the state is fine since
* sctp_constants.h will be available to the user
* land.
*/
sstat->sstat_state = stcb->asoc.state;
sstat->sstat_rwnd = stcb->asoc.peers_rwnd;
sstat->sstat_unackdata = stcb->asoc.sent_queue_cnt;
/*
* We can't include chunks that have been passed to
* the socket layer. Only things in queue.
*/
sstat->sstat_penddata = (stcb->asoc.cnt_on_reasm_queue +
stcb->asoc.cnt_on_all_streams);
sstat->sstat_instrms = stcb->asoc.streamincnt;
sstat->sstat_outstrms = stcb->asoc.streamoutcnt;
sstat->sstat_fragmentation_point = sctp_get_frag_point(stcb, &stcb->asoc);
memcpy(&sstat->sstat_primary.spinfo_address,
&stcb->asoc.primary_destination->ro._l_addr,
((struct sockaddr *)(&stcb->asoc.primary_destination->ro._l_addr))->sa_len);
net = stcb->asoc.primary_destination;
((struct sockaddr_in *)&sstat->sstat_primary.spinfo_address)->sin_port = stcb->rport;
/*
* Again the user can get info from sctp_constants.h
* for what the state of the network is.
*/
sstat->sstat_primary.spinfo_state = net->dest_state & SCTP_REACHABLE_MASK;
sstat->sstat_primary.spinfo_cwnd = net->cwnd;
sstat->sstat_primary.spinfo_srtt = net->lastsa;
sstat->sstat_primary.spinfo_rto = net->RTO;
sstat->sstat_primary.spinfo_mtu = net->mtu;
sstat->sstat_primary.spinfo_assoc_id = sctp_get_associd(stcb);
SCTP_TCB_UNLOCK(stcb);
*optsize = sizeof(*sstat);
}
break;
case SCTP_RTOINFO:
{
struct sctp_rtoinfo *srto;
SCTP_CHECK_AND_CAST(srto, optval, struct sctp_rtoinfo, *optsize);
SCTP_FIND_STCB(inp, stcb, srto->srto_assoc_id);
if (stcb) {
srto->srto_initial = stcb->asoc.initial_rto;
srto->srto_max = stcb->asoc.maxrto;
srto->srto_min = stcb->asoc.minrto;
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_RLOCK(inp);
srto->srto_initial = inp->sctp_ep.initial_rto;
srto->srto_max = inp->sctp_ep.sctp_maxrto;
srto->srto_min = inp->sctp_ep.sctp_minrto;
SCTP_INP_RUNLOCK(inp);
}
*optsize = sizeof(*srto);
}
break;
case SCTP_ASSOCINFO:
{
struct sctp_assocparams *sasoc;
SCTP_CHECK_AND_CAST(sasoc, optval, struct sctp_assocparams, *optsize);
SCTP_FIND_STCB(inp, stcb, sasoc->sasoc_assoc_id);
if (stcb) {
sasoc->sasoc_asocmaxrxt = stcb->asoc.max_send_times;
sasoc->sasoc_number_peer_destinations = stcb->asoc.numnets;
sasoc->sasoc_peer_rwnd = stcb->asoc.peers_rwnd;
sasoc->sasoc_local_rwnd = stcb->asoc.my_rwnd;
sasoc->sasoc_cookie_life = stcb->asoc.cookie_life;
sasoc->sasoc_sack_delay = stcb->asoc.delayed_ack;
sasoc->sasoc_sack_freq = stcb->asoc.sack_freq;
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_RLOCK(inp);
sasoc->sasoc_asocmaxrxt = inp->sctp_ep.max_send_times;
sasoc->sasoc_number_peer_destinations = 0;
sasoc->sasoc_peer_rwnd = 0;
sasoc->sasoc_local_rwnd = sbspace(&inp->sctp_socket->so_rcv);
sasoc->sasoc_cookie_life = inp->sctp_ep.def_cookie_life;
sasoc->sasoc_sack_delay = TICKS_TO_MSEC(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV]);
sasoc->sasoc_sack_freq = inp->sctp_ep.sctp_sack_freq;
SCTP_INP_RUNLOCK(inp);
}
*optsize = sizeof(*sasoc);
}
break;
case SCTP_DEFAULT_SEND_PARAM:
{
struct sctp_sndrcvinfo *s_info;
SCTP_CHECK_AND_CAST(s_info, optval, struct sctp_sndrcvinfo, *optsize);
SCTP_FIND_STCB(inp, stcb, s_info->sinfo_assoc_id);
if (stcb) {
*s_info = stcb->asoc.def_send;
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_RLOCK(inp);
*s_info = inp->def_send;
SCTP_INP_RUNLOCK(inp);
}
*optsize = sizeof(*s_info);
}
break;
case SCTP_INITMSG:
{
struct sctp_initmsg *sinit;
SCTP_CHECK_AND_CAST(sinit, optval, struct sctp_initmsg, *optsize);
SCTP_INP_RLOCK(inp);
sinit->sinit_num_ostreams = inp->sctp_ep.pre_open_stream_count;
sinit->sinit_max_instreams = inp->sctp_ep.max_open_streams_intome;
sinit->sinit_max_attempts = inp->sctp_ep.max_init_times;
sinit->sinit_max_init_timeo = inp->sctp_ep.initial_init_rto_max;
SCTP_INP_RUNLOCK(inp);
*optsize = sizeof(*sinit);
}
break;
case SCTP_PRIMARY_ADDR:
/* we allow a "get" operation on this */
{
struct sctp_setprim *ssp;
SCTP_CHECK_AND_CAST(ssp, optval, struct sctp_setprim, *optsize);
SCTP_FIND_STCB(inp, stcb, ssp->ssp_assoc_id);
if (stcb) {
/* simply copy out the sockaddr_storage... */
memcpy(&ssp->ssp_addr, &stcb->asoc.primary_destination->ro._l_addr,
((struct sockaddr *)&stcb->asoc.primary_destination->ro._l_addr)->sa_len);
SCTP_TCB_UNLOCK(stcb);
} else {
error = EINVAL;
}
*optsize = sizeof(*ssp);
}
break;
case SCTP_HMAC_IDENT:
{
struct sctp_hmacalgo *shmac;
sctp_hmaclist_t *hmaclist;
uint32_t size;
int i;
SCTP_CHECK_AND_CAST(shmac, optval, struct sctp_hmacalgo, *optsize);
SCTP_INP_RLOCK(inp);
hmaclist = inp->sctp_ep.local_hmacs;
if (hmaclist == NULL) {
/* no HMACs to return */
*optsize = sizeof(*shmac);
break;
}
/* is there room for all of the hmac ids? */
size = sizeof(*shmac) + (hmaclist->num_algo *
sizeof(shmac->shmac_idents[0]));
if ((size_t)(*optsize) < size) {
error = EINVAL;
SCTP_INP_RUNLOCK(inp);
break;
}
/* copy in the list */
for (i = 0; i < hmaclist->num_algo; i++)
shmac->shmac_idents[i] = hmaclist->hmac[i];
SCTP_INP_RUNLOCK(inp);
*optsize = size;
break;
}
case SCTP_AUTH_ACTIVE_KEY:
{
struct sctp_authkeyid *scact;
SCTP_CHECK_AND_CAST(scact, optval, struct sctp_authkeyid, *optsize);
SCTP_FIND_STCB(inp, stcb, scact->scact_assoc_id);
if (stcb) {
/* get the active key on the assoc */
scact->scact_keynumber = stcb->asoc.authinfo.assoc_keyid;
SCTP_TCB_UNLOCK(stcb);
} else {
/* get the endpoint active key */
SCTP_INP_RLOCK(inp);
scact->scact_keynumber = inp->sctp_ep.default_keyid;
SCTP_INP_RUNLOCK(inp);
}
*optsize = sizeof(*scact);
break;
}
case SCTP_LOCAL_AUTH_CHUNKS:
{
struct sctp_authchunks *sac;
sctp_auth_chklist_t *chklist = NULL;
size_t size = 0;
SCTP_CHECK_AND_CAST(sac, optval, struct sctp_authchunks, *optsize);
SCTP_FIND_STCB(inp, stcb, sac->gauth_assoc_id);
if (stcb) {
/* get off the assoc */
chklist = stcb->asoc.local_auth_chunks;
/* is there enough space? */
size = sctp_auth_get_chklist_size(chklist);
if (*optsize < (sizeof(struct sctp_authchunks) + size)) {
error = EINVAL;
} else {
/* copy in the chunks */
sctp_serialize_auth_chunks(chklist, sac->gauth_chunks);
}
SCTP_TCB_UNLOCK(stcb);
} else {
/* get off the endpoint */
SCTP_INP_RLOCK(inp);
chklist = inp->sctp_ep.local_auth_chunks;
/* is there enough space? */
size = sctp_auth_get_chklist_size(chklist);
if (*optsize < (sizeof(struct sctp_authchunks) + size)) {
error = EINVAL;
} else {
/* copy in the chunks */
sctp_serialize_auth_chunks(chklist, sac->gauth_chunks);
}
SCTP_INP_RUNLOCK(inp);
}
*optsize = sizeof(struct sctp_authchunks) + size;
break;
}
case SCTP_PEER_AUTH_CHUNKS:
{
struct sctp_authchunks *sac;
sctp_auth_chklist_t *chklist = NULL;
size_t size = 0;
SCTP_CHECK_AND_CAST(sac, optval, struct sctp_authchunks, *optsize);
SCTP_FIND_STCB(inp, stcb, sac->gauth_assoc_id);
if (stcb) {
/* get off the assoc */
chklist = stcb->asoc.peer_auth_chunks;
/* is there enough space? */
size = sctp_auth_get_chklist_size(chklist);
if (*optsize < (sizeof(struct sctp_authchunks) + size)) {
error = EINVAL;
} else {
/* copy in the chunks */
sctp_serialize_auth_chunks(chklist, sac->gauth_chunks);
}
SCTP_TCB_UNLOCK(stcb);
} else {
error = ENOENT;
}
*optsize = sizeof(struct sctp_authchunks) + size;
break;
}
default:
error = ENOPROTOOPT;
*optsize = 0;
break;
} /* end switch (sopt->sopt_name) */
return (error);
}
static int
sctp_setopt(struct socket *so, int optname, void *optval, size_t optsize,
void *p)
{
int error, set_opt;
uint32_t *mopt;
struct sctp_tcb *stcb = NULL;
struct sctp_inpcb *inp;
uint32_t vrf_id;
if (optval == NULL) {
printf("optval is NULL\n");
return (EINVAL);
}
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0) {
printf("inp is NULL?\n");
return EINVAL;
}
vrf_id = SCTP_DEFAULT_VRFID;
error = 0;
switch (optname) {
case SCTP_NODELAY:
case SCTP_AUTOCLOSE:
case SCTP_AUTO_ASCONF:
case SCTP_EXPLICIT_EOR:
case SCTP_DISABLE_FRAGMENTS:
case SCTP_USE_EXT_RCVINFO:
case SCTP_I_WANT_MAPPED_V4_ADDR:
/* copy in the option value */
SCTP_CHECK_AND_CAST(mopt, optval, uint32_t, optsize);
set_opt = 0;
if (error)
break;
switch (optname) {
case SCTP_DISABLE_FRAGMENTS:
set_opt = SCTP_PCB_FLAGS_NO_FRAGMENT;
break;
case SCTP_AUTO_ASCONF:
set_opt = SCTP_PCB_FLAGS_AUTO_ASCONF;
break;
case SCTP_EXPLICIT_EOR:
set_opt = SCTP_PCB_FLAGS_EXPLICIT_EOR;
break;
case SCTP_USE_EXT_RCVINFO:
set_opt = SCTP_PCB_FLAGS_EXT_RCVINFO;
break;
case SCTP_I_WANT_MAPPED_V4_ADDR:
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
set_opt = SCTP_PCB_FLAGS_NEEDS_MAPPED_V4;
} else {
return (EINVAL);
}
break;
case SCTP_NODELAY:
set_opt = SCTP_PCB_FLAGS_NODELAY;
break;
case SCTP_AUTOCLOSE:
set_opt = SCTP_PCB_FLAGS_AUTOCLOSE;
/*
* The value is in ticks. Note this does not effect
* old associations, only new ones.
*/
inp->sctp_ep.auto_close_time = SEC_TO_TICKS(*mopt);
break;
}
SCTP_INP_WLOCK(inp);
if (*mopt != 0) {
sctp_feature_on(inp, set_opt);
} else {
sctp_feature_off(inp, set_opt);
}
SCTP_INP_WUNLOCK(inp);
break;
case SCTP_PARTIAL_DELIVERY_POINT:
{
uint32_t *value;
SCTP_CHECK_AND_CAST(value, optval, uint32_t, optsize);
if (*value > SCTP_SB_LIMIT_RCV(so)) {
error = EINVAL;
break;
}
inp->partial_delivery_point = *value;
}
break;
case SCTP_FRAGMENT_INTERLEAVE:
/* not yet until we re-write sctp_recvmsg() */
{
uint32_t *on_off;
SCTP_CHECK_AND_CAST(on_off, optval, uint32_t, optsize);
if (*on_off) {
sctp_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE);
} else {
sctp_feature_off(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE);
}
}
break;
case SCTP_CMT_ON_OFF:
{
struct sctp_assoc_value *av;
SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize);
if (sctp_cmt_on_off) {
SCTP_FIND_STCB(inp, stcb, av->assoc_id);
if (stcb) {
stcb->asoc.sctp_cmt_on_off = (uint8_t) av->assoc_value;
SCTP_TCB_UNLOCK(stcb);
} else {
error = ENOTCONN;
}
} else {
error = ENOPROTOOPT;
}
}
break;
case SCTP_CLR_STAT_LOG:
#ifdef SCTP_STAT_LOGGING
sctp_clr_stat_log();
#else
error = EOPNOTSUPP;
#endif
break;
case SCTP_CONTEXT:
{
struct sctp_assoc_value *av;
SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize);
SCTP_FIND_STCB(inp, stcb, av->assoc_id);
if (stcb) {
stcb->asoc.context = av->assoc_value;
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_WLOCK(inp);
inp->sctp_context = av->assoc_value;
SCTP_INP_WUNLOCK(inp);
}
}
break;
case SCTP_VRF_ID:
{
uint32_t *vrf_id;
SCTP_CHECK_AND_CAST(vrf_id, optval, uint32_t, optsize);
if (*vrf_id > SCTP_MAX_VRF_ID) {
error = EINVAL;
break;
}
inp->def_vrf_id = *vrf_id;
break;
}
case SCTP_DEL_VRF_ID:
{
error = EOPNOTSUPP;
break;
}
case SCTP_ADD_VRF_ID:
{
error = EOPNOTSUPP;
break;
}
case SCTP_DELAYED_ACK_TIME:
{
struct sctp_assoc_value *tm;
SCTP_CHECK_AND_CAST(tm, optval, struct sctp_assoc_value, optsize);
SCTP_FIND_STCB(inp, stcb, tm->assoc_id);
if (stcb) {
stcb->asoc.delayed_ack = tm->assoc_value;
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_WLOCK(inp);
inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV] = MSEC_TO_TICKS(tm->assoc_value);
SCTP_INP_WUNLOCK(inp);
}
break;
}
case SCTP_AUTH_CHUNK:
{
struct sctp_authchunk *sauth;
SCTP_CHECK_AND_CAST(sauth, optval, struct sctp_authchunk, optsize);
SCTP_INP_WLOCK(inp);
if (sctp_auth_add_chunk(sauth->sauth_chunk, inp->sctp_ep.local_auth_chunks))
error = EINVAL;
SCTP_INP_WUNLOCK(inp);
break;
}
case SCTP_AUTH_KEY:
{
struct sctp_authkey *sca;
struct sctp_keyhead *shared_keys;
sctp_sharedkey_t *shared_key;
sctp_key_t *key = NULL;
size_t size;
SCTP_CHECK_AND_CAST(sca, optval, struct sctp_authkey, optsize);
SCTP_FIND_STCB(inp, stcb, sca->sca_assoc_id)
size = optsize - sizeof(*sca);
if (stcb) {
/* set it on the assoc */
shared_keys = &stcb->asoc.shared_keys;
/* clear the cached keys for this key id */
sctp_clear_cachedkeys(stcb, sca->sca_keynumber);
/*
* create the new shared key and
* insert/replace it
*/
if (size > 0) {
key = sctp_set_key(sca->sca_key, (uint32_t) size);
if (key == NULL) {
error = ENOMEM;
SCTP_TCB_UNLOCK(stcb);
break;
}
}
shared_key = sctp_alloc_sharedkey();
if (shared_key == NULL) {
sctp_free_key(key);
error = ENOMEM;
SCTP_TCB_UNLOCK(stcb);
break;
}
shared_key->key = key;
shared_key->keyid = sca->sca_keynumber;
sctp_insert_sharedkey(shared_keys, shared_key);
SCTP_TCB_UNLOCK(stcb);
} else {
/* set it on the endpoint */
SCTP_INP_WLOCK(inp);
shared_keys = &inp->sctp_ep.shared_keys;
/*
* clear the cached keys on all assocs for
* this key id
*/
sctp_clear_cachedkeys_ep(inp, sca->sca_keynumber);
/*
* create the new shared key and
* insert/replace it
*/
if (size > 0) {
key = sctp_set_key(sca->sca_key, (uint32_t) size);
if (key == NULL) {
error = ENOMEM;
SCTP_INP_WUNLOCK(inp);
break;
}
}
shared_key = sctp_alloc_sharedkey();
if (shared_key == NULL) {
sctp_free_key(key);
error = ENOMEM;
SCTP_INP_WUNLOCK(inp);
break;
}
shared_key->key = key;
shared_key->keyid = sca->sca_keynumber;
sctp_insert_sharedkey(shared_keys, shared_key);
SCTP_INP_WUNLOCK(inp);
}
break;
}
case SCTP_HMAC_IDENT:
{
struct sctp_hmacalgo *shmac;
sctp_hmaclist_t *hmaclist;
uint32_t hmacid;
size_t size, i;
SCTP_CHECK_AND_CAST(shmac, optval, struct sctp_hmacalgo, optsize);
size = (optsize - sizeof(*shmac)) / sizeof(shmac->shmac_idents[0]);
hmaclist = sctp_alloc_hmaclist(size);
if (hmaclist == NULL) {
error = ENOMEM;
break;
}
for (i = 0; i < size; i++) {
hmacid = shmac->shmac_idents[i];
if (sctp_auth_add_hmacid(hmaclist, (uint16_t) hmacid)) {
/* invalid HMACs were found */ ;
error = EINVAL;
sctp_free_hmaclist(hmaclist);
goto sctp_set_hmac_done;
}
}
/* set it on the endpoint */
SCTP_INP_WLOCK(inp);
if (inp->sctp_ep.local_hmacs)
sctp_free_hmaclist(inp->sctp_ep.local_hmacs);
inp->sctp_ep.local_hmacs = hmaclist;
SCTP_INP_WUNLOCK(inp);
sctp_set_hmac_done:
break;
}
case SCTP_AUTH_ACTIVE_KEY:
{
struct sctp_authkeyid *scact;
SCTP_CHECK_AND_CAST(scact, optval, struct sctp_authkeyid, optsize);
SCTP_FIND_STCB(inp, stcb, scact->scact_assoc_id);
/* set the active key on the right place */
if (stcb) {
/* set the active key on the assoc */
if (sctp_auth_setactivekey(stcb, scact->scact_keynumber))
error = EINVAL;
SCTP_TCB_UNLOCK(stcb);
} else {
/* set the active key on the endpoint */
SCTP_INP_WLOCK(inp);
if (sctp_auth_setactivekey_ep(inp, scact->scact_keynumber))
error = EINVAL;
SCTP_INP_WUNLOCK(inp);
}
break;
}
case SCTP_AUTH_DELETE_KEY:
{
struct sctp_authkeyid *scdel;
SCTP_CHECK_AND_CAST(scdel, optval, struct sctp_authkeyid, optsize);
SCTP_FIND_STCB(inp, stcb, scdel->scact_assoc_id);
/* delete the key from the right place */
if (stcb) {
if (sctp_delete_sharedkey(stcb, scdel->scact_keynumber))
error = EINVAL;
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_WLOCK(inp);
if (sctp_delete_sharedkey_ep(inp, scdel->scact_keynumber))
error = EINVAL;
SCTP_INP_WUNLOCK(inp);
}
break;
}
case SCTP_RESET_STREAMS:
{
struct sctp_stream_reset *strrst;
uint8_t send_in = 0, send_tsn = 0, send_out = 0;
int i;
SCTP_CHECK_AND_CAST(strrst, optval, struct sctp_stream_reset, optsize);
SCTP_FIND_STCB(inp, stcb, strrst->strrst_assoc_id);
if (stcb == NULL) {
error = ENOENT;
break;
}
if (stcb->asoc.peer_supports_strreset == 0) {
/*
* Peer does not support it, we return
* protocol not supported since this is true
* for this feature and this peer, not the
* socket request in general.
*/
error = EPROTONOSUPPORT;
SCTP_TCB_UNLOCK(stcb);
break;
}
if (stcb->asoc.stream_reset_outstanding) {
error = EALREADY;
SCTP_TCB_UNLOCK(stcb);
break;
}
if (strrst->strrst_flags == SCTP_RESET_LOCAL_RECV) {
send_in = 1;
} else if (strrst->strrst_flags == SCTP_RESET_LOCAL_SEND) {
send_out = 1;
} else if (strrst->strrst_flags == SCTP_RESET_BOTH) {
send_in = 1;
send_out = 1;
} else if (strrst->strrst_flags == SCTP_RESET_TSN) {
send_tsn = 1;
} else {
error = EINVAL;
SCTP_TCB_UNLOCK(stcb);
break;
}
for (i = 0; i < strrst->strrst_num_streams; i++) {
if ((send_in) &&
(strrst->strrst_list[i] > stcb->asoc.streamincnt)) {
error = EINVAL;
goto get_out;
}
if ((send_out) &&
(strrst->strrst_list[i] > stcb->asoc.streamoutcnt)) {
error = EINVAL;
goto get_out;
}
}
if (error) {
get_out:
SCTP_TCB_UNLOCK(stcb);
break;
}
error = sctp_send_str_reset_req(stcb, strrst->strrst_num_streams,
strrst->strrst_list,
send_out, (stcb->asoc.str_reset_seq_in - 3),
send_in, send_tsn);
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_STRRST_REQ);
SCTP_TCB_UNLOCK(stcb);
}
break;
case SCTP_CONNECT_X:
if (optsize < (sizeof(int) + sizeof(struct sockaddr_in))) {
error = EINVAL;
break;
}
error = sctp_do_connect_x(so, inp, optval, optsize, p, 0);
break;
case SCTP_CONNECT_X_DELAYED:
if (optsize < (sizeof(int) + sizeof(struct sockaddr_in))) {
error = EINVAL;
break;
}
error = sctp_do_connect_x(so, inp, optval, optsize, p, 1);
break;
case SCTP_CONNECT_X_COMPLETE:
{
struct sockaddr *sa;
struct sctp_nets *net;
/* FIXME MT: check correct? */
SCTP_CHECK_AND_CAST(sa, optval, struct sockaddr, optsize);
/* find tcb */
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
net = sctp_findnet(stcb, sa);
}
SCTP_INP_RUNLOCK(inp);
} else {
/*
* We increment here since
* sctp_findassociation_ep_addr() wil do a
* decrement if it finds the stcb as long as
* the locked tcb (last argument) is NOT a
* TCB.. aka NULL.
*/
SCTP_INP_INCR_REF(inp);
stcb = sctp_findassociation_ep_addr(&inp, sa, &net, NULL, NULL);
if (stcb == NULL) {
SCTP_INP_DECR_REF(inp);
}
}
if (stcb == NULL) {
error = ENOENT;
break;
}
if (stcb->asoc.delayed_connection == 1) {
stcb->asoc.delayed_connection = 0;
SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered);
sctp_timer_stop(SCTP_TIMER_TYPE_INIT, inp, stcb,
stcb->asoc.primary_destination,
SCTP_FROM_SCTP_USRREQ + SCTP_LOC_9);
sctp_send_initiate(inp, stcb);
} else {
/*
* already expired or did not use delayed
* connectx
*/
error = EALREADY;
}
SCTP_TCB_UNLOCK(stcb);
}
break;
case SCTP_MAXBURST:
{
uint8_t *burst;
SCTP_CHECK_AND_CAST(burst, optval, uint8_t, optsize);
SCTP_INP_WLOCK(inp);
if (*burst) {
inp->sctp_ep.max_burst = *burst;
}
SCTP_INP_WUNLOCK(inp);
}
break;
case SCTP_MAXSEG:
{
struct sctp_assoc_value *av;
int ovh;
SCTP_CHECK_AND_CAST(av, optval, struct sctp_assoc_value, optsize);
SCTP_FIND_STCB(inp, stcb, av->assoc_id);
if (stcb) {
error = EINVAL;
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_WLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
ovh = SCTP_MED_OVERHEAD;
} else {
ovh = SCTP_MED_V4_OVERHEAD;
}
/*
* FIXME MT: I think this is not in tune
* with the API ID
*/
if (av->assoc_value) {
inp->sctp_frag_point = (av->assoc_value + ovh);
} else {
error = EINVAL;
}
SCTP_INP_WUNLOCK(inp);
}
}
break;
case SCTP_EVENTS:
{
struct sctp_event_subscribe *events;
SCTP_CHECK_AND_CAST(events, optval, struct sctp_event_subscribe, optsize);
SCTP_INP_WLOCK(inp);
if (events->sctp_data_io_event) {
sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT);
} else {
sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT);
}
if (events->sctp_association_event) {
sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVASSOCEVNT);
} else {
sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVASSOCEVNT);
}
if (events->sctp_address_event) {
sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVPADDREVNT);
} else {
sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVPADDREVNT);
}
if (events->sctp_send_failure_event) {
sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVSENDFAILEVNT);
} else {
sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVSENDFAILEVNT);
}
if (events->sctp_peer_error_event) {
sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVPEERERR);
} else {
sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVPEERERR);
}
if (events->sctp_shutdown_event) {
sctp_feature_on(inp, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT);
} else {
sctp_feature_off(inp, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT);
}
if (events->sctp_partial_delivery_event) {
sctp_feature_on(inp, SCTP_PCB_FLAGS_PDAPIEVNT);
} else {
sctp_feature_off(inp, SCTP_PCB_FLAGS_PDAPIEVNT);
}
if (events->sctp_adaptation_layer_event) {
sctp_feature_on(inp, SCTP_PCB_FLAGS_ADAPTATIONEVNT);
} else {
sctp_feature_off(inp, SCTP_PCB_FLAGS_ADAPTATIONEVNT);
}
if (events->sctp_authentication_event) {
sctp_feature_on(inp, SCTP_PCB_FLAGS_AUTHEVNT);
} else {
sctp_feature_off(inp, SCTP_PCB_FLAGS_AUTHEVNT);
}
if (events->sctp_stream_reset_events) {
sctp_feature_on(inp, SCTP_PCB_FLAGS_STREAM_RESETEVNT);
} else {
sctp_feature_off(inp, SCTP_PCB_FLAGS_STREAM_RESETEVNT);
}
SCTP_INP_WUNLOCK(inp);
}
break;
case SCTP_ADAPTATION_LAYER:
{
struct sctp_setadaptation *adap_bits;
SCTP_CHECK_AND_CAST(adap_bits, optval, struct sctp_setadaptation, optsize);
SCTP_INP_WLOCK(inp);
inp->sctp_ep.adaptation_layer_indicator = adap_bits->ssb_adaptation_ind;
SCTP_INP_WUNLOCK(inp);
}
break;
#ifdef SCTP_DEBUG
case SCTP_SET_INITIAL_DBG_SEQ:
{
uint32_t *vvv;
SCTP_CHECK_AND_CAST(vvv, optval, uint32_t, optsize);
SCTP_INP_WLOCK(inp);
inp->sctp_ep.initial_sequence_debug = *vvv;
SCTP_INP_WUNLOCK(inp);
}
break;
#endif
case SCTP_DEFAULT_SEND_PARAM:
{
struct sctp_sndrcvinfo *s_info;
SCTP_CHECK_AND_CAST(s_info, optval, struct sctp_sndrcvinfo, optsize);
SCTP_FIND_STCB(inp, stcb, s_info->sinfo_assoc_id);
if (stcb) {
if (s_info->sinfo_stream <= stcb->asoc.streamoutcnt) {
stcb->asoc.def_send = *s_info;
} else {
error = EINVAL;
}
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_WLOCK(inp);
inp->def_send = *s_info;
SCTP_INP_WUNLOCK(inp);
}
}
break;
case SCTP_PEER_ADDR_PARAMS:
/* Applys to the specific association */
{
struct sctp_paddrparams *paddrp;
struct sctp_nets *net;
SCTP_CHECK_AND_CAST(paddrp, optval, struct sctp_paddrparams, optsize);
SCTP_FIND_STCB(inp, stcb, paddrp->spp_assoc_id);
net = NULL;
if (stcb) {
net = sctp_findnet(stcb, (struct sockaddr *)&paddrp->spp_address);
} else {
/*
* We increment here since
* sctp_findassociation_ep_addr() wil do a
* decrement if it finds the stcb as long as
* the locked tcb (last argument) is NOT a
* TCB.. aka NULL.
*/
SCTP_INP_INCR_REF(inp);
stcb = sctp_findassociation_ep_addr(&inp,
(struct sockaddr *)&paddrp->spp_address,
&net, NULL, NULL);
if (stcb == NULL) {
SCTP_INP_DECR_REF(inp);
}
}
if (stcb) {
/************************TCB SPECIFIC SET ******************/
/*
* do we change the timer for HB, we run
* only one?
*/
if (paddrp->spp_hbinterval)
stcb->asoc.heart_beat_delay = paddrp->spp_hbinterval;
else if (paddrp->spp_flags & SPP_HB_TIME_IS_ZERO)
stcb->asoc.heart_beat_delay = 0;
/* network sets ? */
if (net) {
/************************NET SPECIFIC SET ******************/
if (paddrp->spp_flags & SPP_HB_DEMAND) {
/* on demand HB */
sctp_send_hb(stcb, 1, net);
}
if (paddrp->spp_flags & SPP_HB_DISABLE) {
net->dest_state |= SCTP_ADDR_NOHB;
}
if (paddrp->spp_flags & SPP_HB_ENABLE) {
net->dest_state &= ~SCTP_ADDR_NOHB;
}
if (paddrp->spp_flags & SPP_PMTUD_DISABLE) {
if (SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) {
sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net,
SCTP_FROM_SCTP_USRREQ + SCTP_LOC_10);
}
if (paddrp->spp_pathmtu > SCTP_DEFAULT_MINSEGMENT) {
net->mtu = paddrp->spp_pathmtu;
if (net->mtu < stcb->asoc.smallest_mtu)
sctp_pathmtu_adjustment(inp, stcb, net, net->mtu);
}
}
if (paddrp->spp_flags & SPP_PMTUD_ENABLE) {
if (SCTP_OS_TIMER_PENDING(&net->pmtu_timer.timer)) {
sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net);
}
}
if (paddrp->spp_pathmaxrxt)
net->failure_threshold = paddrp->spp_pathmaxrxt;
#ifdef INET
if (paddrp->spp_flags & SPP_IPV4_TOS) {
if (net->ro._l_addr.sin.sin_family == AF_INET) {
net->tos_flowlabel = paddrp->spp_ipv4_tos & 0x000000fc;
}
}
#endif
#ifdef INET6
if (paddrp->spp_flags & SPP_IPV6_FLOWLABEL) {
if (net->ro._l_addr.sin6.sin6_family == AF_INET6) {
net->tos_flowlabel = paddrp->spp_ipv6_flowlabel;
}
}
#endif
} else {
/************************ASSOC ONLY -- NO NET SPECIFIC SET ******************/
if (paddrp->spp_pathmaxrxt)
stcb->asoc.def_net_failure = paddrp->spp_pathmaxrxt;
if (paddrp->spp_flags & SPP_HB_ENABLE) {
/* Turn back on the timer */
stcb->asoc.hb_is_disabled = 0;
sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net);
}
if (paddrp->spp_flags & SPP_HB_DISABLE) {
int cnt_of_unconf = 0;
struct sctp_nets *lnet;
stcb->asoc.hb_is_disabled = 1;
TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) {
if (lnet->dest_state & SCTP_ADDR_UNCONFIRMED) {
cnt_of_unconf++;
}
}
/*
* stop the timer ONLY if we
* have no unconfirmed
* addresses
*/
if (cnt_of_unconf == 0) {
sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net, SCTP_FROM_SCTP_USRREQ + SCTP_LOC_11);
}
}
if (paddrp->spp_flags & SPP_HB_ENABLE) {
/* start up the timer. */
sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net);
}
#ifdef INET
if (paddrp->spp_flags & SPP_IPV4_TOS)
stcb->asoc.default_tos = paddrp->spp_ipv4_tos & 0x000000fc;
#endif
#ifdef INET6
if (paddrp->spp_flags & SPP_IPV6_FLOWLABEL)
stcb->asoc.default_flowlabel = paddrp->spp_ipv6_flowlabel;
#endif
}
SCTP_TCB_UNLOCK(stcb);
} else {
/************************NO TCB, SET TO default stuff ******************/
SCTP_INP_WLOCK(inp);
/*
* For the TOS/FLOWLABEL stuff you set it
* with the options on the socket
*/
if (paddrp->spp_pathmaxrxt) {
inp->sctp_ep.def_net_failure = paddrp->spp_pathmaxrxt;
}
if (paddrp->spp_flags & SPP_HB_ENABLE) {
inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT] = MSEC_TO_TICKS(paddrp->spp_hbinterval);
sctp_feature_off(inp, SCTP_PCB_FLAGS_DONOT_HEARTBEAT);
} else if (paddrp->spp_flags & SPP_HB_DISABLE) {
sctp_feature_on(inp, SCTP_PCB_FLAGS_DONOT_HEARTBEAT);
}
SCTP_INP_WUNLOCK(inp);
}
}
break;
case SCTP_RTOINFO:
{
struct sctp_rtoinfo *srto;
SCTP_CHECK_AND_CAST(srto, optval, struct sctp_rtoinfo, optsize);
SCTP_FIND_STCB(inp, stcb, srto->srto_assoc_id);
if (stcb) {
/* Set in ms we hope :-) */
if (srto->srto_initial)
stcb->asoc.initial_rto = srto->srto_initial;
if (srto->srto_max)
stcb->asoc.maxrto = srto->srto_max;
if (srto->srto_min)
stcb->asoc.minrto = srto->srto_min;
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_WLOCK(inp);
/*
* If we have a null asoc, its default for
* the endpoint
*/
if (srto->srto_initial)
inp->sctp_ep.initial_rto = srto->srto_initial;
if (srto->srto_max)
inp->sctp_ep.sctp_maxrto = srto->srto_max;
if (srto->srto_min)
inp->sctp_ep.sctp_minrto = srto->srto_min;
SCTP_INP_WUNLOCK(inp);
}
}
break;
case SCTP_ASSOCINFO:
{
struct sctp_assocparams *sasoc;
SCTP_CHECK_AND_CAST(sasoc, optval, struct sctp_assocparams, optsize);
SCTP_FIND_STCB(inp, stcb, sasoc->sasoc_assoc_id);
if (stcb) {
if (sasoc->sasoc_asocmaxrxt)
stcb->asoc.max_send_times = sasoc->sasoc_asocmaxrxt;
sasoc->sasoc_number_peer_destinations = stcb->asoc.numnets;
sasoc->sasoc_peer_rwnd = 0;
sasoc->sasoc_local_rwnd = 0;
if (stcb->asoc.cookie_life)
stcb->asoc.cookie_life = sasoc->sasoc_cookie_life;
stcb->asoc.delayed_ack = sasoc->sasoc_sack_delay;
if (sasoc->sasoc_sack_freq) {
stcb->asoc.sack_freq = sasoc->sasoc_sack_freq;
}
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_WLOCK(inp);
if (sasoc->sasoc_asocmaxrxt)
inp->sctp_ep.max_send_times = sasoc->sasoc_asocmaxrxt;
sasoc->sasoc_number_peer_destinations = 0;
sasoc->sasoc_peer_rwnd = 0;
sasoc->sasoc_local_rwnd = 0;
if (sasoc->sasoc_cookie_life)
inp->sctp_ep.def_cookie_life = sasoc->sasoc_cookie_life;
inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV] = MSEC_TO_TICKS(sasoc->sasoc_sack_delay);
if (sasoc->sasoc_sack_freq) {
inp->sctp_ep.sctp_sack_freq = sasoc->sasoc_sack_freq;
}
SCTP_INP_WUNLOCK(inp);
}
}
break;
case SCTP_INITMSG:
{
struct sctp_initmsg *sinit;
SCTP_CHECK_AND_CAST(sinit, optval, struct sctp_initmsg, optsize);
SCTP_INP_WLOCK(inp);
if (sinit->sinit_num_ostreams)
inp->sctp_ep.pre_open_stream_count = sinit->sinit_num_ostreams;
if (sinit->sinit_max_instreams)
inp->sctp_ep.max_open_streams_intome = sinit->sinit_max_instreams;
if (sinit->sinit_max_attempts)
inp->sctp_ep.max_init_times = sinit->sinit_max_attempts;
if (sinit->sinit_max_init_timeo)
inp->sctp_ep.initial_init_rto_max = sinit->sinit_max_init_timeo;
SCTP_INP_WUNLOCK(inp);
}
break;
case SCTP_PRIMARY_ADDR:
{
struct sctp_setprim *spa;
struct sctp_nets *net, *lnet;
SCTP_CHECK_AND_CAST(spa, optval, struct sctp_setprim, optsize);
SCTP_FIND_STCB(inp, stcb, spa->ssp_assoc_id);
net = NULL;
if (stcb) {
net = sctp_findnet(stcb, (struct sockaddr *)&spa->ssp_addr);
} else {
/*
* We increment here since
* sctp_findassociation_ep_addr() wil do a
* decrement if it finds the stcb as long as
* the locked tcb (last argument) is NOT a
* TCB.. aka NULL.
*/
SCTP_INP_INCR_REF(inp);
stcb = sctp_findassociation_ep_addr(&inp,
(struct sockaddr *)&spa->ssp_addr,
&net, NULL, NULL);
if (stcb == NULL) {
SCTP_INP_DECR_REF(inp);
}
}
if ((stcb) && (net)) {
if ((net != stcb->asoc.primary_destination) &&
(!(net->dest_state & SCTP_ADDR_UNCONFIRMED))) {
/* Ok we need to set it */
lnet = stcb->asoc.primary_destination;
if (sctp_set_primary_addr(stcb, (struct sockaddr *)NULL, net) == 0) {
if (net->dest_state & SCTP_ADDR_SWITCH_PRIMARY) {
net->dest_state |= SCTP_ADDR_DOUBLE_SWITCH;
}
net->dest_state |= SCTP_ADDR_SWITCH_PRIMARY;
}
}
} else {
error = EINVAL;
}
if (stcb) {
SCTP_TCB_UNLOCK(stcb);
}
}
break;
case SCTP_SET_DYNAMIC_PRIMARY:
{
union sctp_sockstore *ss;
error = priv_check_cred(curthread->td_ucred,
PRIV_NETINET_RESERVEDPORT,
SUSER_ALLOWJAIL);
if (error)
break;
SCTP_CHECK_AND_CAST(ss, optval, union sctp_sockstore, optsize);
/* SUPER USER CHECK? */
error = sctp_dynamic_set_primary(&ss->sa, vrf_id);
}
break;
case SCTP_SET_PEER_PRIMARY_ADDR:
{
struct sctp_setpeerprim *sspp;
SCTP_CHECK_AND_CAST(sspp, optval, struct sctp_setpeerprim, optsize);
SCTP_FIND_STCB(inp, stcb, sspp->sspp_assoc_id);
if (stcb) {
if (sctp_set_primary_ip_address_sa(stcb, (struct sockaddr *)&sspp->sspp_addr) != 0) {
error = EINVAL;
}
} else {
error = EINVAL;
}
SCTP_TCB_UNLOCK(stcb);
}
break;
case SCTP_BINDX_ADD_ADDR:
{
struct sctp_getaddresses *addrs;
struct sockaddr *addr_touse;
struct sockaddr_in sin;
SCTP_CHECK_AND_CAST(addrs, optval, struct sctp_getaddresses, optsize);
/* see if we're bound all already! */
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
error = EINVAL;
break;
}
/* Is the VRF one we have */
addr_touse = addrs->addr;
#if defined(INET6)
if (addrs->addr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)addr_touse;
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
in6_sin6_2_sin(&sin, sin6);
addr_touse = (struct sockaddr *)&sin;
}
}
#endif
if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) {
if (p == NULL) {
/* Can't get proc for Net/Open BSD */
error = EINVAL;
break;
}
error = sctp_inpcb_bind(so, addr_touse, p);
break;
}
/*
* No locks required here since bind and mgmt_ep_sa
* all do their own locking. If we do something for
* the FIX: below we may need to lock in that case.
*/
if (addrs->sget_assoc_id == 0) {
/* add the address */
struct sctp_inpcb *lep;
((struct sockaddr_in *)addr_touse)->sin_port = inp->sctp_lport;
lep = sctp_pcb_findep(addr_touse, 1, 0, vrf_id);
if (lep != NULL) {
/*
* We must decrement the refcount
* since we have the ep already and
* are binding. No remove going on
* here.
*/
SCTP_INP_DECR_REF(inp);
}
if (lep == inp) {
/* already bound to it.. ok */
break;
} else if (lep == NULL) {
((struct sockaddr_in *)addr_touse)->sin_port = 0;
error = sctp_addr_mgmt_ep_sa(inp, addr_touse,
SCTP_ADD_IP_ADDRESS, vrf_id);
} else {
error = EADDRNOTAVAIL;
}
if (error)
break;
} else {
/*
* FIX: decide whether we allow assoc based
* bindx
*/
}
}
break;
case SCTP_BINDX_REM_ADDR:
{
struct sctp_getaddresses *addrs;
struct sockaddr *addr_touse;
struct sockaddr_in sin;
SCTP_CHECK_AND_CAST(addrs, optval, struct sctp_getaddresses, optsize);
/* see if we're bound all already! */
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
error = EINVAL;
break;
}
addr_touse = addrs->addr;
#if defined(INET6)
if (addrs->addr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)addr_touse;
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
in6_sin6_2_sin(&sin, sin6);
addr_touse = (struct sockaddr *)&sin;
}
}
#endif
/*
* No lock required mgmt_ep_sa does its own locking.
* If the FIX: below is ever changed we may need to
* lock before calling association level binding.
*/
if (addrs->sget_assoc_id == 0) {
/* delete the address */
sctp_addr_mgmt_ep_sa(inp, addr_touse,
SCTP_DEL_IP_ADDRESS, vrf_id);
} else {
/*
* FIX: decide whether we allow assoc based
* bindx
*/
}
}
break;
default:
error = ENOPROTOOPT;
break;
} /* end switch (opt) */
return (error);
}
int
sctp_ctloutput(struct socket *so, struct sockopt *sopt)
{
void *optval = NULL;
size_t optsize = 0;
struct sctp_inpcb *inp;
void *p;
int error = 0;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0) {
/* I made the same as TCP since we are not setup? */
return (ECONNRESET);
}
if (sopt->sopt_level != IPPROTO_SCTP) {
/* wrong proto level... send back up to IP */
#ifdef INET6
if (INP_CHECK_SOCKAF(so, AF_INET6))
error = ip6_ctloutput(so, sopt);
else
#endif /* INET6 */
error = ip_ctloutput(so, sopt);
return (error);
}
optsize = sopt->sopt_valsize;
if (optsize) {
SCTP_MALLOC(optval, void *, optsize, "SCTPSockOpt");
if (optval == NULL) {
return (ENOBUFS);
}
error = sooptcopyin(sopt, optval, optsize, optsize);
if (error) {
SCTP_FREE(optval);
goto out;
}
}
p = (void *)sopt->sopt_td;
if (sopt->sopt_dir == SOPT_SET) {
error = sctp_setopt(so, sopt->sopt_name, optval, optsize, p);
} else if (sopt->sopt_dir == SOPT_GET) {
error = sctp_getopt(so, sopt->sopt_name, optval, &optsize, p);
} else {
error = EINVAL;
}
if ((error == 0) && (optval != NULL)) {
error = sooptcopyout(sopt, optval, optsize);
SCTP_FREE(optval);
} else if (optval != NULL) {
SCTP_FREE(optval);
}
out:
return (error);
}
static int
sctp_connect(struct socket *so, struct sockaddr *addr, struct thread *p)
{
int error = 0;
int create_lock_on = 0;
uint32_t vrf_id;
struct sctp_inpcb *inp;
struct sctp_tcb *stcb = NULL;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0) {
/* I made the same as TCP since we are not setup? */
return (ECONNRESET);
}
SCTP_ASOC_CREATE_LOCK(inp);
create_lock_on = 1;
SCTP_INP_INCR_REF(inp);
if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) {
/* Should I really unlock ? */
error = EFAULT;
goto out_now;
}
#ifdef INET6
if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) &&
(addr->sa_family == AF_INET6)) {
error = EINVAL;
goto out_now;
}
#endif /* INET6 */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) ==
SCTP_PCB_FLAGS_UNBOUND) {
/* Bind a ephemeral port */
error = sctp_inpcb_bind(so, NULL, p);
if (error) {
goto out_now;
}
}
/* Now do we connect? */
if (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) {
error = EINVAL;
goto out_now;
}
if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) &&
(inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) {
/* We are already connected AND the TCP model */
error = EADDRINUSE;
goto out_now;
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb)
SCTP_TCB_UNLOCK(stcb);
SCTP_INP_RUNLOCK(inp);
} else {
/*
* We increment here since sctp_findassociation_ep_addr()
* wil do a decrement if it finds the stcb as long as the
* locked tcb (last argument) is NOT a TCB.. aka NULL.
*/
SCTP_INP_INCR_REF(inp);
stcb = sctp_findassociation_ep_addr(&inp, addr, NULL, NULL, NULL);
if (stcb == NULL) {
SCTP_INP_DECR_REF(inp);
}
}
if (stcb != NULL) {
/* Already have or am bring up an association */
error = EALREADY;
goto out_now;
}
vrf_id = SCTP_DEFAULT_VRFID;
/* We are GOOD to go */
stcb = sctp_aloc_assoc(inp, addr, 1, &error, 0, vrf_id);
if (stcb == NULL) {
/* Gak! no memory */
goto out_now;
}
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) {
stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED;
/* Set the connected flag so we can queue data */
soisconnecting(so);
}
stcb->asoc.state = SCTP_STATE_COOKIE_WAIT;
SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered);
/* initialize authentication parameters for the assoc */
sctp_initialize_auth_params(inp, stcb);
sctp_send_initiate(inp, stcb);
out_now:
if (create_lock_on)
SCTP_ASOC_CREATE_UNLOCK(inp);
if (stcb)
SCTP_TCB_UNLOCK(stcb);
SCTP_INP_DECR_REF(inp);
return error;
}
int
sctp_listen(struct socket *so, int backlog, struct thread *p)
{
/*
* Note this module depends on the protocol processing being called
* AFTER any socket level flags and backlog are applied to the
* socket. The traditional way that the socket flags are applied is
* AFTER protocol processing. We have made a change to the
* sys/kern/uipc_socket.c module to reverse this but this MUST be in
* place if the socket API for SCTP is to work properly.
*/
int error = 0;
struct sctp_inpcb *inp;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0) {
/* I made the same as TCP since we are not setup? */
return (ECONNRESET);
}
SCTP_INP_RLOCK(inp);
#ifdef SCTP_LOCK_LOGGING
sctp_log_lock(inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_SOCK);
#endif
SOCK_LOCK(so);
error = solisten_proto_check(so);
if (error) {
SOCK_UNLOCK(so);
return (error);
}
if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) &&
(inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) {
/* We are already connected AND the TCP model */
SCTP_INP_RUNLOCK(inp);
SOCK_UNLOCK(so);
return (EADDRINUSE);
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) {
/* We must do a bind. */
SOCK_UNLOCK(so);
SCTP_INP_RUNLOCK(inp);
if ((error = sctp_inpcb_bind(so, NULL, p))) {
/* bind error, probably perm */
return (error);
}
SOCK_LOCK(so);
} else {
SCTP_INP_RUNLOCK(inp);
}
/* It appears for 7.0 and on, we must always call this. */
solisten_proto(so, backlog);
if (inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE) {
/* remove the ACCEPTCONN flag for one-to-many sockets */
so->so_options &= ~SO_ACCEPTCONN;
}
if (backlog == 0) {
/* turning off listen */
so->so_options &= ~SO_ACCEPTCONN;
}
SOCK_UNLOCK(so);
return (error);
}
static int sctp_defered_wakeup_cnt = 0;
int
sctp_accept(struct socket *so, struct sockaddr **addr)
{
struct sctp_tcb *stcb;
struct sctp_inpcb *inp;
union sctp_sockstore store;
int error;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0) {
return (ECONNRESET);
}
SCTP_INP_RLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE) {
return (ENOTSUP);
}
if (so->so_state & SS_ISDISCONNECTED) {
SCTP_INP_RUNLOCK(inp);
return (ECONNABORTED);
}
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
SCTP_INP_RUNLOCK(inp);
return (ECONNRESET);
}
SCTP_TCB_LOCK(stcb);
SCTP_INP_RUNLOCK(inp);
store = stcb->asoc.primary_destination->ro._l_addr;
SCTP_TCB_UNLOCK(stcb);
if (store.sa.sa_family == AF_INET) {
struct sockaddr_in *sin;
SCTP_MALLOC_SONAME(sin, struct sockaddr_in *, sizeof *sin);
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_port = ((struct sockaddr_in *)&store)->sin_port;
sin->sin_addr = ((struct sockaddr_in *)&store)->sin_addr;
*addr = (struct sockaddr *)sin;
} else {
struct sockaddr_in6 *sin6;
SCTP_MALLOC_SONAME(sin6, struct sockaddr_in6 *, sizeof *sin6);
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof(*sin6);
sin6->sin6_port = ((struct sockaddr_in6 *)&store)->sin6_port;
sin6->sin6_addr = ((struct sockaddr_in6 *)&store)->sin6_addr;
if ((error = sa6_recoverscope(sin6)) != 0) {
SCTP_FREE_SONAME(sin6);
return (error);
}
*addr = (struct sockaddr *)sin6;
}
/* Wake any delayed sleep action */
if (inp->sctp_flags & SCTP_PCB_FLAGS_DONT_WAKE) {
SCTP_INP_WLOCK(inp);
inp->sctp_flags &= ~SCTP_PCB_FLAGS_DONT_WAKE;
if (inp->sctp_flags & SCTP_PCB_FLAGS_WAKEOUTPUT) {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEOUTPUT;
SCTP_INP_WUNLOCK(inp);
SOCKBUF_LOCK(&inp->sctp_socket->so_snd);
if (sowriteable(inp->sctp_socket)) {
sowwakeup_locked(inp->sctp_socket);
} else {
SOCKBUF_UNLOCK(&inp->sctp_socket->so_snd);
}
SCTP_INP_WLOCK(inp);
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_WAKEINPUT) {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEINPUT;
SCTP_INP_WUNLOCK(inp);
SOCKBUF_LOCK(&inp->sctp_socket->so_rcv);
if (soreadable(inp->sctp_socket)) {
sctp_defered_wakeup_cnt++;
sorwakeup_locked(inp->sctp_socket);
} else {
SOCKBUF_UNLOCK(&inp->sctp_socket->so_rcv);
}
SCTP_INP_WLOCK(inp);
}
SCTP_INP_WUNLOCK(inp);
}
return (0);
}
int
sctp_ingetaddr(struct socket *so, struct sockaddr **addr)
{
struct sockaddr_in *sin;
uint32_t vrf_id;
struct sctp_inpcb *inp;
struct sctp_ifa *sctp_ifa;
/*
* Do the malloc first in case it blocks.
*/
SCTP_MALLOC_SONAME(sin, struct sockaddr_in *, sizeof *sin);
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
inp = (struct sctp_inpcb *)so->so_pcb;
if (!inp) {
SCTP_FREE_SONAME(sin);
return ECONNRESET;
}
SCTP_INP_RLOCK(inp);
sin->sin_port = inp->sctp_lport;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
struct sctp_tcb *stcb;
struct sockaddr_in *sin_a;
struct sctp_nets *net;
int fnd;
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
goto notConn;
}
fnd = 0;
sin_a = NULL;
SCTP_TCB_LOCK(stcb);
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
sin_a = (struct sockaddr_in *)&net->ro._l_addr;
if (sin_a == NULL)
/* this will make coverity happy */
continue;
if (sin_a->sin_family == AF_INET) {
fnd = 1;
break;
}
}
if ((!fnd) || (sin_a == NULL)) {
/* punt */
SCTP_TCB_UNLOCK(stcb);
goto notConn;
}
vrf_id = SCTP_DEFAULT_VRFID;
sctp_ifa = sctp_source_address_selection(inp,
stcb,
(struct route *)&net->ro,
net, 0, vrf_id);
if (sctp_ifa) {
sin->sin_addr = sctp_ifa->address.sin.sin_addr;
sctp_free_ifa(sctp_ifa);
}
SCTP_TCB_UNLOCK(stcb);
} else {
/* For the bound all case you get back 0 */
notConn:
sin->sin_addr.s_addr = 0;
}
} else {
/* Take the first IPv4 address in the list */
struct sctp_laddr *laddr;
int fnd = 0;
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa->address.sa.sa_family == AF_INET) {
struct sockaddr_in *sin_a;
sin_a = (struct sockaddr_in *)&laddr->ifa->address.sa;
sin->sin_addr = sin_a->sin_addr;
fnd = 1;
break;
}
}
if (!fnd) {
SCTP_FREE_SONAME(sin);
SCTP_INP_RUNLOCK(inp);
return ENOENT;
}
}
SCTP_INP_RUNLOCK(inp);
(*addr) = (struct sockaddr *)sin;
return (0);
}
int
sctp_peeraddr(struct socket *so, struct sockaddr **addr)
{
struct sockaddr_in *sin = (struct sockaddr_in *)*addr;
int fnd;
struct sockaddr_in *sin_a;
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
struct sctp_nets *net;
/* Do the malloc first in case it blocks. */
inp = (struct sctp_inpcb *)so->so_pcb;
if ((inp == NULL) ||
((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) {
/* UDP type and listeners will drop out here */
return (ENOTCONN);
}
SCTP_MALLOC_SONAME(sin, struct sockaddr_in *, sizeof *sin);
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
/* We must recapture incase we blocked */
inp = (struct sctp_inpcb *)so->so_pcb;
if (!inp) {
SCTP_FREE_SONAME(sin);
return ECONNRESET;
}
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb)
SCTP_TCB_LOCK(stcb);
SCTP_INP_RUNLOCK(inp);
if (stcb == NULL) {
SCTP_FREE_SONAME(sin);
return ECONNRESET;
}
fnd = 0;
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
sin_a = (struct sockaddr_in *)&net->ro._l_addr;
if (sin_a->sin_family == AF_INET) {
fnd = 1;
sin->sin_port = stcb->rport;
sin->sin_addr = sin_a->sin_addr;
break;
}
}
SCTP_TCB_UNLOCK(stcb);
if (!fnd) {
/* No IPv4 address */
SCTP_FREE_SONAME(sin);
return ENOENT;
}
(*addr) = (struct sockaddr *)sin;
return (0);
}
struct pr_usrreqs sctp_usrreqs = {
.pru_abort = sctp_abort,
.pru_accept = sctp_accept,
.pru_attach = sctp_attach,
.pru_bind = sctp_bind,
.pru_connect = sctp_connect,
.pru_control = in_control,
.pru_close = sctp_close,
.pru_detach = sctp_close,
.pru_sopoll = sopoll_generic,
.pru_disconnect = sctp_disconnect,
.pru_listen = sctp_listen,
.pru_peeraddr = sctp_peeraddr,
.pru_send = sctp_sendm,
.pru_shutdown = sctp_shutdown,
.pru_sockaddr = sctp_ingetaddr,
.pru_sosend = sctp_sosend,
.pru_soreceive = sctp_soreceive
};