- Tweak the updating of the ithread name in ithread_update() so that the
'+' and '*' characters for device names that were too short only get
added at the end after as many device names as possible were fit into
the allocated space. Prior to this, some long devices would result
in '+' chars showing up between two different devices rather than at the
end.
motherboard, in practice the changes resulted in many false positives for
heavy network loads, etc. resulting in poor performance. Also, the
motherboard referenced in the 1.109 log has other problems and simply does
not seem to work with the APIC enabled even with the changes in 1.109. The
correct fix for that board seems to be to not use the APIC at all. One
thing kept from 1.109 is that throttled interrupts are now effectively
polled on every clock tick rather than just 10 times per second.
MFC after: 1 month
Tested by: Shunsuke SHINOMIYA shino at fornext dot org
control the number of lines per page rather than a constant. The variable
can be examined and changed in ddb as '$lines'. Setting the variable to
0 will effectively turn off paging.
- Change db_putchar() to force out pending whitespace before outputting
newlines and carriage returns so that one can rub out content on the
current line via '\r \r' type strings.
- Change the simple pager to rub out the --More-- prompt explicitly when
the routine exits.
- Add some aliases to the simple pager to make it more compatible with
more(1): 'e' and 'j' do a single line. 'd' does half a page, and
'f' does a full page.
MFC after: 1 month
Inspired by: kris
but with slightly cleaned up interfaces.
The KSE structure has become the same as the "per thread scheduler
private data" structure. In order to not make the diffs too great
one is #defined as the other at this time.
The KSE (or td_sched) structure is now allocated per thread and has no
allocation code of its own.
Concurrency for a KSEGRP is now kept track of via a simple pair of counters
rather than using KSE structures as tokens.
Since the KSE structure is different in each scheduler, kern_switch.c
is now included at the end of each scheduler. Nothing outside the
scheduler knows the contents of the KSE (aka td_sched) structure.
The fields in the ksegrp structure that are to do with the scheduler's
queueing mechanisms are now moved to the kg_sched structure.
(per ksegrp scheduler private data structure). In other words how the
scheduler queues and keeps track of threads is no-one's business except
the scheduler's. This should allow people to write experimental
schedulers with completely different internal structuring.
A scheduler call sched_set_concurrency(kg, N) has been added that
notifies teh scheduler that no more than N threads from that ksegrp
should be allowed to be on concurrently scheduled. This is also
used to enforce 'fainess' at this time so that a ksegrp with
10000 threads can not swamp a the run queue and force out a process
with 1 thread, since the current code will not set the concurrency above
NCPU, and both schedulers will not allow more than that many
onto the system run queue at a time. Each scheduler should eventualy develop
their own methods to do this now that they are effectively separated.
Rejig libthr's kernel interface to follow the same code paths as
linkse for scope system threads. This has slightly hurt libthr's performance
but I will work to recover as much of it as I can.
Thread exit code has been cleaned up greatly.
exit and exec code now transitions a process back to
'standard non-threaded mode' before taking the next step.
Reviewed by: scottl, peter
MFC after: 1 week
a result of scheduling an ithread, cut a KTR_INTR trace record so
that it's clear in tracing interrupt activity where and when the
entropy harvesting code is invoked.
than as one-off hacks in various other parts of the kernel:
- Add a function maybe_preempt() that is called from sched_add() to
determine if a thread about to be added to a run queue should be
preempted to directly. If it is not safe to preempt or if the new
thread does not have a high enough priority, then the function returns
false and sched_add() adds the thread to the run queue. If the thread
should be preempted to but the current thread is in a nested critical
section, then the flag TDF_OWEPREEMPT is set and the thread is added
to the run queue. Otherwise, mi_switch() is called immediately and the
thread is never added to the run queue since it is switch to directly.
When exiting an outermost critical section, if TDF_OWEPREEMPT is set,
then clear it and call mi_switch() to perform the deferred preemption.
- Remove explicit preemption from ithread_schedule() as calling
setrunqueue() now does all the correct work. This also removes the
do_switch argument from ithread_schedule().
- Do not use the manual preemption code in mtx_unlock if the architecture
supports native preemption.
- Don't call mi_switch() in a loop during shutdown to give ithreads a
chance to run if the architecture supports native preemption since
the ithreads will just preempt DELAY().
- Don't call mi_switch() from the page zeroing idle thread for
architectures that support native preemption as it is unnecessary.
- Native preemption is enabled on the same archs that supported ithread
preemption, namely alpha, i386, and amd64.
This change should largely be a NOP for the default case as committed
except that we will do fewer context switches in a few cases and will
avoid the run queues completely when preempting.
Approved by: scottl (with his re@ hat)
switch to. If a non-NULL thread pointer is passed in, then the CPU will
switch to that thread directly rather than calling choosethread() to pick
a thread to choose to.
- Make sched_switch() aware of idle threads and know to do
TD_SET_CAN_RUN() instead of sticking them on the run queue rather than
requiring all callers of mi_switch() to know to do this if they can be
called from an idlethread.
- Move constants for arguments to mi_switch() and thread_single() out of
the middle of the function prototypes and up above into their own
section.
with an ASUS A7N8X-E motherboard in APIC mode, since storming interrupts
don't repeat immediately. Use DELAY(1) to wait a bit for them to repeat.
This affects all systems. Only delay for the first
(10 * intr_storm_threshold) interrupts (per interrupt handler) so that
this is only a pessimization while warming up. Throttle after calling
the sub-handlers instead of before so that the long delay given by
throttling can be used instead of the DELAY(1) to detect storms after
warming up.
Reduced the throttling period from 1/10 second to 1/hz seconds so that
throttling doesn't destroy performance so much. Interrupts that are
detected as storming are effectively handled by polling at a frequency
of hz Hz. On A7N8X-E's there is another hardware or configuration bug
that makes the throttled frequency closer to 2*hz Hz.
Specifically, we used to enable the source after locking sched_lock
and just before we had already decided to do a context switch.
This meant that an ithread could never process more than one interrupt
per context switch. Enabling earlier in the loop before sched_lock is
acquired allows an ithread to handle multiple interrupts per context
switch if interrupts fire very rapidly. For the case of heavy interrupt
load this can reduce the number of context switches (and thus overhead)
as well as reduce interrupt latency.
- Now that we can handle multiple interrupts per context switch, add simple
interrupt storm protection to threaded interrupts. If X number of
consecutive interrupts are triggered before the itherad voluntarily
yields to another thread, then the interrupt thread will sleep with the
associated interrupt source disabled (masked) for 1/10th of a second.
The default value of X is 500, but it can be tweaked via the tunable/
sysctl hw.intr_storm_threshold. If an interrupt storm is detected, then
a message is output to the kernel console on the first occurrence per
interrupt thread. Interrupt storm protection can be disabled completely
by setting this value to 0. There is no scientific reasoning for the
1/10th of a second or 500 interrupts values, so they may require tweaking
at some point in the future.
Tested by: rwatson (an earlier version w/o the storm protection)
Tested by: mux (reportedly made a machine with two PCI interrupts
storming usable rather than hard locked)
Reviewed by: imp
SW_INVOL. Assert that one of these is set in mi_switch() and propery
adjust the rusage statistics. This is to simplify the large number of
users of this interface which were previously all required to adjust the
proper counter prior to calling mi_switch(). This also facilitates more
switch and locking optimizations.
- Change all callers of mi_switch() to pass the appropriate paramter and
remove direct references to the process statistics.
ithread_remove_handler() may fail to remove the interrupt handler if
it decides to let the ithread do the removal. The problem is that during
boot "cold" is set, which causes msleep() to return immediately. This
will cause ithread_remove_handler() to fail to wait for the ithread
to do the removal from the handler TAILQ before freeing the handler
back to the heap. Bad things will happen when some other user of the
TAILQ, such as ithread_add_handler() or the actual ithread attempts to use
the freed handler. Fix the problem by forcing ithread_remove_handler()
to do the actual removal itself if the "cold" flag is set.
Reviewed by: jhb
happen in interrupt context; 1) sleep locks, and 2) malloc/free
calls.
1) is fixed by using spin locks instead.
2) is fixed by preallocating a FIFO (implemented with a STAILQ)
and using elements from this FIFO instead. This turns out
to be rather fast.
OK'ed by: re (scottl)
Thanks to: peter, jhb, rwatson, jake
Apologies to: *
let the MD code choose whether or not to implement such a policy. The new
i386 interrupt code allows multiple FAST handlers for a given source for
example. However, the code does not allow FAST and non-FAST handlers to be
mixed.
- Add a DDB function to dump the contents of an ithread and optionally
details about each handler in that ithread. This function can be used
by MD code to implement DDB commands that display information about
interrupt sources and their registered handlers.
I was in two minds as to where to put them in the first case..
I should have listenned to the other mind.
Submitted by: parts by davidxu@
Reviewed by: jeff@ mini@
To fix scsi, don't wait for ithreads if we're dumping, it makes the
debugger sad.
To fix ata, use what appears to be a polling method if we're dumping,
I stole this from tmm but added code to ensure that this change is
only in effect while dumping.
Tested by: des
(sizeof(destination_buffer) - 1) bytes into the destination buffer.
This was not harmful because they currently both provide space for
(MAXCOMLEN + 1) bytes.
doesn't give them enough stack to do much before blowing away the pcb.
This adds MI and MD code to allow the allocation of an alternate kstack
who's size can be speficied when calling kthread_create. Passing the
value 0 prevents the alternate kstack from being created. Note that the
ia64 MD code is missing for now, and PowerPC was only partially written
due to the pmap.c being incomplete there.
Though this patch does not modify anything to make use of the alternate
kstack, acpi and usb are good candidates.
Reviewed by: jake, peter, jhb
Make idle process state more consistant.
Add an assert on thread state.
Clean up idleproc/mi_switch() interaction.
Use a local instead of referencing curthread 7 times in a row
(I've been told curthread can be expensive on some architectures)
Remove some commented out code.
Add a little commented out code (completion coming soon)
Reviewed by: jhb@freebsd.org
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)
Reviewed by: Almost everyone who counts
(at various times, peter, jhb, matt, alfred, mini, bernd,
and a cast of thousands)
NOTE: this is still Beta code, and contains lots of debugging stuff.
expect slight instability in signals..
most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.
Tested on: i386, alpha, sparc64