The ttyinfo() routine generates the fancy output when pressing ^T. Right
now it is stored in tty.c. In the MPSAFE TTY code it is already stored
in tty_info.c. To make integration of the MPSAFE TTY code a little
easier, take the same approach.
This makes the TTY code a little bit more readable, because having the
proc_*/thread_* routines in tty.c is very distractful.
Approved by: philip (mentor)
MPSAFE patches on current@ and stable@. This driver also has a fundamental
issue in that it sleeps when sending commands to the card including in the
if_init/if_start routines (which can be called from interrupt context). As
such, the driver shouldn't be working reliably even on 4.x.
and stable@. It also is a driver for an older non-802.11 wireless PC card
that is quite slow in comparison to say, wi(4). I know Warner wants this
driver axed as well.
provides the correct semantics for flock(2) style locks which are used by the
lockf(1) command line tool and the pidfile(3) library. It also implements
recovery from server restarts and ensures that dirty cache blocks are written
to the server before obtaining locks (allowing multiple clients to use file
locking to safely share data).
Sponsored by: Isilon Systems
PR: 94256
MFC after: 2 weeks
- It is opt-out for now so as to give it maximum testing, but it may be
turned opt-in for stable branches depending on the consensus. You
can turn it off with WITHOUT_SSP.
- WITHOUT_SSP was previously used to disable the build of GNU libssp.
It is harmless to steal the knob as SSP symbols have been provided
by libc for a long time, GNU libssp should not have been much used.
- SSP is disabled in a few corners such as system bootstrap programs
(sys/boot), process bootstrap code (rtld, csu) and SSP symbols themselves.
- It should be safe to use -fstack-protector-all to build world, however
libc will be automatically downgraded to -fstack-protector because it
breaks rtld otherwise.
- This option is unavailable on ia64.
Enable GCC stack protection (aka Propolice) for kernel:
- It is opt-out for now so as to give it maximum testing.
- Do not compile your kernel with -fstack-protector-all, it won't work.
Submitted by: Jeremie Le Hen <jeremie@le-hen.org>
of whether NETATALKDEBUG is enabled, so make building it conditional on
NETATALK instead. This problem appears to have been present from the time
that the netatalk implementation was imported.
PR: 124456
Submitted by: Nathan Whitehorn <whitehorn at wisc dot edu>
MFC after: 3 days
sn(4) driver and also looking at newer drivers. The reason for the rewrite is
to support MII and to try and resolve some performance issues found when trying
to use the sn(4) driver on the Gumstix network boards.
For reference, the SMSC LAN91C111 is a non-PCI ethernet part whose lineage
dates back to Ye Olde Days of ISA. It seems to get some use in the embedded
space these days on parts lacking on-board MACs or on-board PCI controllers,
such as the XScale PXA line of ARM CPUs.
This also includes a driver for the SMSC LAN83C183 10/100 PHY.
Man page to follow.
Because clists are also used outside the TTY layer, rename the file
containing the clist routines to something more accurate.
The mpsafetty TTY layer doesn't use clists. It uses its own buffers,
which also implement the unbuffered copying to userspace. We cannot
simply remove the clist routines then, because this would break various
drivers that are present within the kernel.
Approved by: philip (mentor)
parts relied on the now removed NET_NEEDS_GIANT.
Most of I4B has been disconnected from the build
since July 2007 in HEAD/RELENG_7.
This is what was removed:
- configuration in /etc/isdn
- examples
- man pages
- kernel configuration
- sys/i4b (drivers, layers, include files)
- user space tools
- i4b support from ppp
- further documentation
Discussed with: rwatson, re
NET_NEEDS_GIANT. netatm has been disconnected from the build for ten
months in HEAD/RELENG_7. Specifics:
- netatm include files
- netatm command line management tools
- libatm
- ATM parts in rescue and sysinstall
- sample configuration files and documents
- kernel support as a module or in NOTES
- netgraph wrapper nodes for netatm
- ctags data for netatm.
- netatm-specific device drivers.
MFC after: 3 weeks
Reviewed by: bz
Discussed with: bms, bz, harti
-It has new hardware support
-It uses a new method of TX cleanup called Head Write Back
-It includes the provisional generic TCP LRO feature contributed
by Myricom and made general purpose by me. This should move into
the stack upon approval but for this driver drop its in here.
-Also bug fixes and etc...
MFC in a week if no serious issues arise.
perform various operations on a controller. Specifically, for each mpt(4)
device, create a character device in devfs which accepts ioctl requests for
reading and writing configuration pages and performing RAID actions.
MFC after: 1 week
Reviewed by: scottl
Note this includes changes to all drivers and moves some device firmware
loading to use firmware(9) and a separate module (e.g. ral). Also there
no longer are separate wlan_scan* modules; this functionality is now
bundled into the wlan module.
Supported by: Hobnob and Marvell
Reviewed by: many
Obtained from: Atheros (some bits)
move most offload functionality from NIC to TOE
factor out all socket and inpcb direct access
factor out access to locking in incpb, pcbinfo, and sockbuf
(ECMP) for both IPv4 and IPv6. Previously, multipath route insertion
is disallowed. For example,
route add -net 192.103.54.0/24 10.9.44.1
route add -net 192.103.54.0/24 10.9.44.2
The second route insertion will trigger an error message of
"add net 192.103.54.0/24: gateway 10.2.5.2: route already in table"
Multiple default routes can also be inserted. Here is the netstat
output:
default 10.2.5.1 UGS 0 3074 bge0 =>
default 10.2.5.2 UGS 0 0 bge0
When multipath routes exist, the "route delete" command requires
a specific gateway to be specified or else an error message would
be displayed. For example,
route delete default
would fail and trigger the following error message:
"route: writing to routing socket: No such process"
"delete net default: not in table"
On the other hand,
route delete default 10.2.5.2
would be successful: "delete net default: gateway 10.2.5.2"
One does not have to specify a gateway if there is only a single
route for a particular destination.
I need to perform more testings on address aliases and multiple
interfaces that have the same IP prefixes. This patch as it
stands today is not yet ready for prime time. Therefore, the ECMP
code fragments are fully guarded by the RADIX_MPATH macro.
Include the "options RADIX_MPATH" in the kernel configuration
to enable this feature.
Reviewed by: robert, sam, gnn, julian, kmacy
and the igb driver static in the kernel. But it also reflects
some other bug fixes in my development stream at Intel.
PR 122373 is also fixed in this code.
user-mode lock manager, build a kernel with the NFSLOCKD option and
add '-k' to 'rpc_lockd_flags' in rc.conf.
Highlights include:
* Thread-safe kernel RPC client - many threads can use the same RPC
client handle safely with replies being de-multiplexed at the socket
upcall (typically driven directly by the NIC interrupt) and handed
off to whichever thread matches the reply. For UDP sockets, many RPC
clients can share the same socket. This allows the use of a single
privileged UDP port number to talk to an arbitrary number of remote
hosts.
* Single-threaded kernel RPC server. Adding support for multi-threaded
server would be relatively straightforward and would follow
approximately the Solaris KPI. A single thread should be sufficient
for the NLM since it should rarely block in normal operation.
* Kernel mode NLM server supporting cancel requests and granted
callbacks. I've tested the NLM server reasonably extensively - it
passes both my own tests and the NFS Connectathon locking tests
running on Solaris, Mac OS X and Ubuntu Linux.
* Userland NLM client supported. While the NLM server doesn't have
support for the local NFS client's locking needs, it does have to
field async replies and granted callbacks from remote NLMs that the
local client has contacted. We relay these replies to the userland
rpc.lockd over a local domain RPC socket.
* Robust deadlock detection for the local lock manager. In particular
it will detect deadlocks caused by a lock request that covers more
than one blocking request. As required by the NLM protocol, all
deadlock detection happens synchronously - a user is guaranteed that
if a lock request isn't rejected immediately, the lock will
eventually be granted. The old system allowed for a 'deferred
deadlock' condition where a blocked lock request could wake up and
find that some other deadlock-causing lock owner had beaten them to
the lock.
* Since both local and remote locks are managed by the same kernel
locking code, local and remote processes can safely use file locks
for mutual exclusion. Local processes have no fairness advantage
compared to remote processes when contending to lock a region that
has just been unlocked - the local lock manager enforces a strict
first-come first-served model for both local and remote lockers.
Sponsored by: Isilon Systems
PR: 95247 107555 115524 116679
MFC after: 2 weeks
overhead of packet capture by allowing a user process to directly "loan"
buffer memory to the kernel rather than using read(2) to explicitly copy
data from kernel address space.
The user process will issue new BPF ioctls to set the shared memory
buffer mode and provide pointers to buffers and their size. The kernel
then wires and maps the pages into kernel address space using sf_buf(9),
which on supporting architectures will use the direct map region. The
current "buffered" access mode remains the default, and support for
zero-copy buffers must, for the time being, be explicitly enabled using
a sysctl for the kernel to accept requests to use it.
The kernel and user process synchronize use of the buffers with atomic
operations, avoiding the need for system calls under load; the user
process may use select()/poll()/kqueue() to manage blocking while
waiting for network data if the user process is able to consume data
faster than the kernel generates it. Patchs to libpcap are available
to allow libpcap applications to transparently take advantage of this
support. Detailed information on the new API may be found in bpf(4),
including specific atomic operations and memory barriers required to
synchronize buffer use safely.
These changes modify the base BPF implementation to (roughly) abstrac
the current buffer model, allowing the new shared memory model to be
added, and add new monitoring statistics for netstat to print. The
implementation, with the exception of some monitoring hanges that break
the netstat monitoring ABI for BPF, will be MFC'd.
Zerocopy bpf buffers are still considered experimental are disabled
by default. To experiment with this new facility, adjust the
net.bpf.zerocopy_enable sysctl variable to 1.
Changes to libpcap will be made available as a patch for the time being,
and further refinements to the implementation are expected.
Sponsored by: Seccuris Inc.
In collaboration with: rwatson
Tested by: pwood, gallatin
MFC after: 4 months [1]
[1] Certain portions will probably not be MFCed, specifically things
that can break the monitoring ABI.
rqindex back in struct thread.
- Compile kern_switch.c independently again and stop #include'ing it from
schedulers.
- Remove the ts_thread backpointers and convert most code to go from
struct thread to struct td_sched.
- Cleanup the ts_flags #define garbage that was causing us to sometimes
do things that expanded to td->td_sched->ts_thread->td_flags in 4BSD.
- Export the kern.sched sysctl node in sysctl.h
vm/vm_contig.c, vm/vm_page.c, and vm/vm_pageq.c. Today, vm/vm_pageq.c
has withered to the point that it contains only four short functions,
two of which are only used by vm/vm_page.c. Since I can't foresee any
reason for vm/vm_pageq.c to grow, it is time to fold the remaining
contents of vm/vm_pageq.c back into vm/vm_page.c.
Add some comments. Rename one of the functions, vm_pageq_enqueue(),
that is now static within vm/vm_page.c to vm_page_enqueue().
Eliminate PQ_MAXCOUNT as it no longer serves any purpose.
While the KSE project was quite successful in bringing threading to
FreeBSD, the M:N approach taken by the kse library was never developed
to its full potential. Backwards compatibility will be provided via
libmap.conf for dynamically linked binaries and static binaries will
be broken.
The kernel config file is KERNCONF=MPC85XX, so the usual procedure applies:
1. make buildworld TARGET_ARCH=powerpc
2. make buildkernel TARGET_ARCH=powerpc TARGET_CPUTYPE=e500 KERNCONF=MPC85XX
This default config uses kernel-level FPU emulation. For the soft-float world
approach:
1. make buildworld TARGET_ARCH=powerpc TARGET_CPUTYPE=e500
2. disable FPU_EMU option in sys/powerpc/conf/MPC85XX
3. make buildkernel TARGET_ARCH=powerpc TARGET_CPUTYPE=e500 KERNCONF=MPC85XX
Approved by: cognet (mentor)
MFp4: e500
and assignment.
- Add a reference to a struct cpuset in each thread that is inherited from
the thread that created it.
- Release the reference when the thread is destroyed.
- Add prototypes for syscalls and macros for manipulating cpusets in
sys/cpuset.h
- Add syscalls to create, get, and set new numbered cpusets:
cpuset(), cpuset_{get,set}id()
- Add syscalls for getting and setting affinity masks for cpusets or
individual threads: cpuid_{get,set}affinity()
- Add types for the 'level' and 'which' parameters for the cpuset. This
will permit expansion of the api to cover cpu masks for other objects
identifiable with an id_t integer. For example, IRQs and Jails may be
coming soon.
- The root set 0 contains all valid cpus. All thread initially belong to
cpuset 1. This permits migrating all threads off of certain cpus to
reserve them for special applications.
Sponsored by: Nokia
Discussed with: arch, rwatson, brooks, davidxu, deischen
Reviewed by: antoine
not have VTOC information about the partitions, it will be created.
This is because the VTOC information is used for the partition type
and FreeBSD's sunlabel(8) does not create nor use VTOC information.
For this purpose, new tags have been added to support FreeBSD's
partition types.
just em, there is an igb driver (this follows behavior with our Linux drivers).
All adapters up to the 82575 are supported in em, and new client/desktop support
will continue to be in that adapter.
The igb driver is for new server NICs like the 82575 and its followons.
Advanced features for virtualization and performance will be in this driver.
Also, both drivers now have shared code that is up to the latest we have
released. Some stylistic changes as well.
Enjoy :)