HWPMC_HOOKS is enabled in GENERIC and triggers some work avoidable in the
common (module not loaded) case.
In particular this avoids permission checks + lock downgrade
singlethreaded and in cases were an executable mapping is found the pmc
sx lock is no longer bounced.
Note this is a band aid.
MFC after: 1 week
Add additionally safety and overflow checks to clock_ts_to_ct and the
BCD routines while we're here.
Perform a safety check in sys_clock_settime() first to avoid easy local
root panic, without having to propagate an error value back through
dozens of APIs currently lacking error returns.
PR: 211960, 214300
Submitted by: Justin McOmie <justin.mcomie at gmail.com>, kib@
Reported by: Tim Newsham <tim.newsham at nccgroup.trust>
Reviewed by: kib@
Sponsored by: Dell EMC Isilon, FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D9279
Add internal tracking of smp startup status to reliably figure out
what methods are to be used to get gtaskqueue up and running.
e1000:
Calculating this pointer gives undefined behaviour when (last == -1)
(it is before the buffer). The pointer is always followed. Panics
occurred when it points to an unmapped page. Otherwise, the pointed-to
garbage tends to not have the E1000_TXD_STAT_DD bit set in it, so in the
broken case the loop was usually null and the function just returned, and
this was acidentally correct.
Submitted by: bde
Reported by: Matt Macy <mmacy@nextbsd.org>
Add internal tracking of smp startup status to reliably figure out
what methods are to be used to get gtaskqueue up and running.
e1000:
Calculating this pointer gives undefined behaviour when (last == -1)
(it is before the buffer). The pointer is always followed. Panics
occurred when it points to an unmapped page. Otherwise, the pointed-to
garbage tends to not have the E1000_TXD_STAT_DD bit set in it, so in the
broken case the loop was usually null and the function just returned, and
this was acidentally correct.
Submitted by: bde
Reviewed by: Matt Macy <mmacy@nextbsd.org>
If "capacity" LU option is set, ramdisk backend now implements featured
thin provisioned disk, storing data in malloc(9) allocated memory blocks
of pblocksize bytes (default PAGE_SIZE or 4KB). Additionally ~0.2% of LU
size is used for indirection tree (bigger pblocksize reduce the overhead).
Backend supports all unmap and anchor operations. If configured capacity
is overflowed, proper error conditions are reported.
If "capacity" LU option is not set, the backend operates mostly the same
as before without allocating real storage: writes go to nowhere, reads
return zeroes, reporting that all LBAs are unmapped.
This backend is still mostly oriented on testing and benchmarking (it is
still a volatile RAM disk), but now it should allow to run real FS tests,
not only simple dumb dd.
MFC after: 2 weeks
This makes it easier for the userland script to find the releated
VF interface.
Reviewed by: sephe
Approved by: sephe (mentor)
MFC after: 2 weeks
Sponsored by: Microsoft
Differential Revision: https://reviews.freebsd.org/D9101
Hyper-V's NIC SR-IOV implementation needs a Hyper-V synthetic NIC and
a VF NIC to work together (both NICs have the same MAC address), mainly to
support seamless live migration.
When the VF device becomes UP (or DOWN), the synthetic NIC driver needs
to switch the data path from the synthetic NIC to the VF (or the opposite).
Note: multicast/broadcast packets are still received through the synthetic
NIC and we need to inject the packets through the VF interface (if the VF is
UP), even if the synthetic NIC is DOWN (so we need to force the rxfilter
to be NDIS_PACKET_TYPE_PROMISCUOUS, when the VF is UP).
Reviewed by: sephe
Approved by: sephe (mentor)
MFC after: 2 weeks
Sponsored by: Microsoft
Differential Revision: https://reviews.freebsd.org/D8964
Hyper-V's NIC SR-IOV implementation needs a Hyper-V synthetic NIC and
a VF NIC to work together, mainly to support seamless live migration.
When the VF device becomes UP (or DOWN), the synthetic NIC driver needs
to switch the data path from the synthetic NIC to the VF (or the opposite).
So the synthetic NIC driver needs to know when a VF device is becoming
UP or DOWN and hence the patch is made.
Reviewed by: sephe
Approved by: sephe (mentor)
MFC after: 2 weeks
Sponsored by: Microsoft
Differential Revision: https://reviews.freebsd.org/D8963
It's unnecessary because the upper nework stack does the same checking.
In the case of Hyper-V SR-IOV, we need to remove the checking because
1) multicast/broadcast packets are still received through the synthetic
NIC and we need to inject the packets through the VF interface;
2) we must inject the packets even if the synthetic NIC is down, or has
a different MTU from the VF device.
Reviewed by: sephe
Approved by: sephe (mentor)
MFC after: 2 weeks
Sponsored by: Microsoft
Differential Revision: https://reviews.freebsd.org/D8962
This will be used by the coming NIC SR-IOV patch.
Reviewed by: sephe
Approved by: sephe (mentor)
MFC after: 2 weeks
Sponsored by: Microsoft
Differential Revision: https://reviews.freebsd.org/D8909
Variables "fast" and "active" are both constant in lacp_port_create(), but
comments mispleadingly suggest that "fast" can be changed via ioctl. The
constant values control the value of "lp->lp_state", so it too is constant,
and the code for assigning different value to it is essentially dead.
Remove both "fast" and "active", and set "lp->lp_state" unconditionally;
that gets rid of the dead code and misleading comments.
CID: 1305692
CID: 1305734
Reported by: asomers
Reviewed by: asomers
MFC after: 1 week
Sponsored by: Panasas
Differential Revision: https://reviews.freebsd.org/D9302
Remove custom DTS duplicate of tda19988 node and use upstream-provided
one introduced by r295436. This duplication created two tdaX devices
which confused fb driver into using only 640x480 area while setting
display to native resolution.
Reported by: Michael Smith
MFC after: 3 days
Worker threads now use a pthread_cond_t to wait for work instead of
burning the cpu up.
Obtained from: DragonflyBSD (07774aea0ccf64a48fcfad8899e3bf7c8f18277a)
MFC after: 2 weeks
* limit cabq to 64 - in practice if this stays at ath_txbuf then
all buffers can be tied up by a very busy broadcast domain (eg ARP
storm, way too much MDNS/NETBIOS). It's been like this in the
freebsd-wifi-build AP project for the longest time.
* Now that I figured out the hilarity inherent in aggregate forming
and AR9380 EDMA work, change the per-node to 64 frames by default.
I'll do some more work to shorten the queue latency introduced when
doing data so TCP isn't so terrible, but it's now no longer /always/
tens of milliseconds of extra latency when doing active iperf tests.
Notes:
The reason for the extra latency is partly tx/rx taskqueue handling and
scheduling, and partly due to a lack of airtime/QoS awareness of per-node
traffic. Ideally we'd have different limits/priorities on the QoS/TID
levels per node so say, voice/video data got a better share of buffer
allocations over best effort/bulk data, but we currently don't implement
that. It's not /hard/ to do, I just need to do it.
Tested:
* AR9380 (STA), AR9580 (hostap) - both with the relevant changes.
TCP is now at around 180mbit with rate control and RTS protection
enabled. UDP stays at 355mbit at MCS23, no HT protection.
This is two fixes, which establishes what I /think/ is pretty close to the
theoretical PHY maximum speed on the AR9380 devices.
* When doing A-MPDU on a TID, don't queue to the hardware directly if
the hardware queue is busy. This gives us time to get more packets
queued up (and the hardware is busy, so there's no point in queuing
more to the hardware right now) to potentially form an A-MPDU.
This fixes up the throughput issue I was seeing where a couple hundred
single frames were being sent a second interspersed between A-MPDU
frames. It just happened that the software queue had exactly one
frame in it at that point. Queuing it until the hardware finishes
transmitting isn't exactly costly.
* When determining whether to dequeue from a software node/TID queue into
the hardware queue, fix up the checks to work right for EDMA chips
(ar9380 and later.) Before it was not dispatching anything until
the FIFO was empty. Now we allow it to dispatch another aggregate
up to the hardware aggregate limit, like I intended with the earlier
work.
This allows a 5GHz HT40, short-GI, "htprotmode off" test at MCS23
to achieve 357 Mbit/sec in a one-way UDP test. The stars have to be
aligned /just right/ so there are no retries but it can happen.
Just don't expect it to work in an OTA test if your 2yo is running
around the room - MCS23 is very very sensitive to channel conditions.
Tested:
* AR9380 STA (test) -> AR9580 hostap
TODO:
* More thorough testing on pre-AR9380 chips (AR5416, AR9160, AR9280)
* (Finally) teach ath_rate_sample about throughput/latency rather than
air time, so I can get good transmit rates with a 2yo running around.
When investigating performance on UDP TX on the AR9380 I found that the
following sequence was occuring:
* INTR
* EINPROGRESS - nothing yet
* INTR
* TXSTATUS - process a TX completion for an aggregate
* INTR, INTR
* TXSTATUS - process a TX completion for an aggregate
* TXD, TXD ... populate frames from the hardware queue and submit
What should be happening is a completed TXSTATUS fires off more packets
that are queued on active TIDs.
What /was/ happening was after that first TXSTATUS the TX queue hardware queue
was still empty, so it didn't push anything into the FIFO. Only after the
second TXSTATUS did any progress get made.
This is one of two commits - it ensures that the software TX queue scheduler
is called /after/ TX completion, otherwise no frames from the software staging
queues will be processed into the hardware queues.
The second commit will fix it so it populates aggregate frames correctly
when the above occurs - right now ath_txq_sched() is called, but it doesn't
populate anything because its pre-check conditions are wrong.
Whilst here, add/tweak debugging.
Tested:
* AR9380 STA (testing device) -> AR9580 hostap
Building kernel with devel/powerpc64-gcc (6.2.0) yields the following error:
/usr/src/sys/powerpc/powerpc/db_trace.c:299:20: error: calling
'__builtin_frame_address' with a nonzero argument is unsafe
[-Werror=frame-address]
Work around this by dereferencing the frame address manually instead.
PR: 215600
Reported by: Mark Millard <markmi AT dsl-only DOT net>
MFC after: 2 weeks
This ioctl has been considered legacy by upstream since the DTrace code
was first imported, and is unused. The removal also allows some
simplification of dtrace_helper_slurp().
Also remove a bogus copyout in the DTRACEHIOC_ADDDOF handler. Due to a
bug, it would overwrite an in-memory copy of the DOF header rather than
the passed-in DOF helper. Moreover, DTRACEHIOC_ADDDOF already copies the
helper back out automatically since its argument has the IOC_OUT attribute.
critical_exit().
Based on the discussion with: jhb
Reviewed by: imp
Sponsored by: The FreeBSD Foundation
Differential revision: D9276
MFC after: 1 week