bus hanging off from the Fireplane/Safari bus in some USIII machines.
This is part 3/4 of allowing creator(4) to work in these machines.
The little info needed on how to configure the bridge and to work
around the incorrect values contained in the `interrupts' properties
of its children were obtained form OpenSolaris.
The separate bus front-end was inherited from the OpenBSD creator(4),
which at that time had a mainbus(4) (for USI/II machines, which use
an UPA interconnection bus as the nexus) and an upa(4) (for USIII
machines, which use a subordinate/slave UPA bus hanging off from the
Fireplane/Safari interconnection bus) front-end. With FreeBSD and
newbus there is/will be no need to have two separate bus front-ends
for these busses, so we can easily coallapse the shared front-end
and the back-end into a single source file (note that the FreeBSD
creator_upa.c was misnomer anyway; based on what it actually attached
to that should have been creator_nexus.c), actually OpenBSD meanwhile
also has moved to a shared front-end and a single source file. Due
to the low-level console support creator.c also wasn't free from bus
related things before.
While at it, also split sys/sparc64/creator/creator.h into a
sys/dev/fb/creatorreg.h that only contains register macros and move
the structures to the top of sys/dev/fb/creator.c as suggested by
style(9) so creator(4) is no longer scattered over two directories.
- Use OF_decode_addr()/sparc64_fake_bustag() to obtain the bus tags and
handles for the low-level console support instead of hardcoding
support for AFB/FFB hanging off from nexus(4) only. This is part 2/4
of allowing creator(4) to work in USIII machines (which have a UPA
bus hanging off from the Fireplane/Safari bus reflected by the nexus),
which already makes it work as the low-level console there.
- Allocate resources in the bus attach routine regardless of whether
creator(4) is used as for the low-level console and thus the required
bus tags and handles have been already obtained or not so the resources
are marked as taken in the respective RMAN.
- For both obtaining the bus tags and handles for the low-level console
support as well as allocating the corresponding resources in the
regular bus attach routine don't bother to get all for the maximum of
24 register banks but only (for) the two tag/handle pairs required for
providing the video interface for syscons(4) support. If we can't
allocate the rest of them just limit the memory range accessible via
creator_fb_mmap() accordingly.
- Sanity check the memory range spanned by the first and last resources
and the resources in between as far as possible, as the XFree86/Xorg
sunffb(4) expects to be able to access the whole region, even though
the backing resources are actually non-continuous. Limit and check
the memory range accessible via creator_fb_mmap() accordingly.
- Reduce the size of buffers for OFW properties to what they actually
need to hold.
- Rename some tables to creator_<foo> for consistency.
- Also for the sizes in the creator_fb_mmap() mapping table entries use
macros for consistency, add macros for the remaining register banks
for completeness.
nexus (which might or might not reflect an UPA interconnection bus;
accordingly UPA_BUS_SPACE should be renamed to NEXUS_BUS_SPACE at a
later point) and subordinate/slave UPA busses. This is part 1/4 of
allowing creator(4) to work in USIII machines (which have a UPA bus
hanging off from the Fireplane/Safari bus reflected by the nexus).
- Clear the PCI AFSR and status error bits as previous errors still
might be indicated.
- Set up the PCI control and diagnostic registers according to the
capabilities, workarounds, etc of/for specific revisions of the
supported bridges. This includes no longer setting Hummingbird-/
Sabre-specific bits in the PCI control register but preserving
what the firmware has initialized them to like OpenSolaris does.
Previously we were setting these bits according to the example in
the Sabre documentation, which I doubt is appropriate for all
Sabre based designs and especially not for Hummingbirds. This
also includes not enabling bus parking unless the firmware tells
us to.
- Set the PCI latency timer register as this isn't always done by
the firmware.
o Remove a redundant argument from psycho_set_intr() and in this
function check the return value of bus_setup_intr(). [2]
o Let psycho_setup_intr() return ENOMEM instead of 0 when it can't
allocate memory for the interrupt wrapper stub and EINVAL instead
of 0 if it can't find the interrupt vector in the interrupt map.
o Add a workaround for a bug of the Sabre-APB-combination where it
doesn't drain DMA write data for devices behind additional PCI-PCI
bridges underneath the APB PCI-PCI bridge. This workaround (do
things necessary in order to achieve a manual drain when coherency
is required) is currently implemented in psycho_setup_intr() and
psycho_intr_stub() (for easy MFC'ing) and therefore is only applied
for interrupt handlers. This should be moved to psycho(4)-specific
bus_dma_tag_create() and bus_dmamap_sync() methods, respectively,
once this driver is converted to make use of BUS_GET_DMA_TAG(), so
the workaround is also applied for polling(4) callbacks. [3]
o Fix some minor style issues.
Info from: OpenSolaris [1]
Info from: Linux, OpenBSD, OpenSolaris [3]
Suggested by: Coverity Prevent (CID 682) [2]
MFC after: 1 month
firmware (mainly 'pmu' and its 'lomp' dupe found in a couple of
later USII{e,i}-based machines) by checking whether a device with
the same triple of bus number, slot and function already has been
added. This is the simple yet effective approach introduced in
OpenBSD some time ago, but which has the flaw that it assumes
that the device and its dupe(s) found in the OFW device tree are
equal or at least the one encountered first is in some way the
more important one (this is the case with 'pmu' and 'lomp'; the
'pmu' node has couple of properties and children while the 'lomp'
one misses most of these). If there's ever a device/dupe pair
where we don't encounter the more important node first, we'll
probably need to introduce a quirk list in order to add the
desired device but prevent its dupe(s) from being added.
MFC after: 1 week
Make part of John Birrell's KSE patch permanent..
Specifically, remove:
Any reference of the ksegrp structure. This feature was
never fully utilised and made things overly complicated.
All code in the scheduler that tried to make threaded programs
fair to unthreaded programs. Libpthread processes will already
do this to some extent and libthr processes already disable it.
Also:
Since this makes such a big change to the scheduler(s), take the opportunity
to rename some structures and elements that had to be moved anyhow.
This makes the code a lot more readable.
The ULE scheduler compiles again but I have no idea if it works.
The 4bsd scheduler still reqires a little cleaning and some functions that now do
ALMOST nothing will go away, but I thought I'd do that as a separate commit.
Tested by David Xu, and Dan Eischen using libthr and libpthread.
by default for sun4v where it is absolutely required.
This change moves the buffer from struct pcpu to the stack to avoid
using the critical section which created a LOR in a couple of cases
due to interaction with the tty code and kqueue. The LOR can't be
fixed with the critical section and the pcpu buffer can't be used
without the critical section.
Putting the buffer on the stack was my initial solution, but it was
pointed out that the stress on the stack might cause problems
depending on the call path. We don't have a way of creating tests
for those possible cases, so it's best to leave this as an option
for the time being. In time we may get enough data to enable this
option more generally.
retrieval, rather than using pad
- save the fault address in sfar for use by the alignment fixup handler
- mask off the trap number, so the context id doesn't confuse the UT_MAX
comparison
This change fixes alignment fixup handling which is needed for traceroute
to work in spite of its copious unaligned accesses
it as a default.
For the record, the KDTRACE option caused _no_ additional source files
to be compiled in; certainly no CDDL source files. All it did was to
allow existing BSD licensed kernel files to include one or more CDDL
header files.
By removing this from DEFAULTS, the onus is on a kernel builder to add
the option to the kernel config, possibly by including GENERIC and
customising from there. It means that DTrace won't be a feature
available in FreeBSD by default, which is the way I intended it to be.
Without this option, you can't load the dtrace module (which contains
the dtrace device and the DTrace framework). This is equivalent to
requiring an option in a kernel config before you can load the linux
emulation module, for example.
I think it is a mistake to have DTrace ported to FreeBSD, but not
to have it available to everyone, all the time. The only exception
to this is the companies which distribute systems with FreeBSD embedded.
Those companies will customise their systems anyway. The KDTRACE
option was intended for them, and only them.
adds the hooks that DTrace modules register with, and adds a few functions
which have the dtrace_ prefix to allow the DTrace FBT (function boundary
trace) provider to avoid tracing because they are called from the DTtrace
probe context.
Unlike other forms of tracing and debug, DTrace support in the kernel
incurs negligible run-time cost.
I think the only reason why anyone wouldn't want to have kernel support
enabled for DTrace would be due to the license (CDDL) under which DTrace
is released.
as we have no use for that info. Instead let this function return the
keyboard ID and verify at its invocation in sunkbd_configure() that we're
talking to a Sun type 4/5/6 keyboard, i.e. a keyboard supported by this
driver.
- Add an option SUNKBD_EMULATE_ATKBD whose code is based on the respective
code in ukbd(4) and like UKBD_EMULATE_ATSCANCODE causes this driver to
emit AT keyboard/KB_101 compatible scan codes in K_RAW mode as assumed by
kbdmux(4). Unlike UKBD_EMULATE_ATSCANCODE, SUNKBD_EMULATE_ATKBD also
triggers the use of AT keyboard maps and thus allows to use the map files
in share/syscons/keymaps with this driver at the cost of an additional
translation (in ukbd(4) this just is the way of operation).
- Implement an option SUNKBD_DFLT_KEYMAP, which like the equivalent options
of the other keyboard drivers allows to specify the default in-kernel
keyboard map. For obvious reasons this made to only work when also using
SUNKBD_EMULATE_ATKBD.
- Implement sunkbd_check(), sunkbd_check_char() and sunkbd_clear_state(),
which are also required for interoperability with kbdmux(4).
- Implement K_CODE mode and FreeBSD keypad compose.
- As a minor hack define KBD_DFLT_KEYMAP also in the !SUNKBD_EMULATE_ATKBD
case so we can obtain fkey_tab from <dev/kbd/kbdtables.h> rather than
having to duplicate it and #ifdef some more code.
- Don't use the TX-buffer for writing the two command bytes for setting the
keyboard LEDs as this consequently requires a hardware FIFO that is at
least two bytes in depth, which the NMOS-variant of the Zilog SCCs doesn't
have. Thus use an inlined version of uart_putc() to consecutively write
the command bytes (a cleaner approach would be to do this via the soft
interrupt handler but that variant wouldn't work while in ddb(4)). [1]
- Fix some minor style(9) bugs.
PR: 90316 [1]
Reviewed by: marcel [1]
a lock to prevent interspersed strings written from different CPUs
at the same time.
To avoid putting a buffer on the stack or having to malloc one,
space is incorporated in the per-cpu structure. The buffer
size if 128 bytes; chosen because it's the next power of 2 size
up from 80 characters.
String writes to the console are buffered up the end of the line
or until the buffer fills. Then the buffer is flushed to all
console devices.
Existing low level console output via cnputc() is unaffected by
this change. ithread calls to log() are also unaffected to avoid
blocking those threads.
A minor change to the behaviour in a panic situation is that
console output will still be buffered, but won't be written to
a tty as before. This should prevent interspersed panic output
as a number of CPUs panic before we end up single threaded
running ddb.
Reviewed by: scottl, jhb
MFC after: 2 weeks
argument in parentheses so these macros are safe to use and invocations
with an expression as the argument like __bswap32_const(42 << 23 | 13)
work as expected. Additionally, mask all the individually shifted bytes
as appropriate so the bytes which exceed the width of the respective
__bswapN_const() macro in invocations like __bswap16_const(0xdead600d)
are ignored like it's the case with the corresponding __bswapN_var()
function.
MFC after: 3 days
The 'nooption' kernel config entry has to be used to turn KSE off now.
This isn't my preferred way of dealing with this, but I'll defer to
scottl's experience with the io/mem kernel option change and the grief
experienced over that.
Submitted by: scottl@
except sun4v.
This change makes the transition from a default to an option more
transparent and is an attempt to head off all the compliants that are
likely from people who don't read UPDATING, based on experience with
the io/mem change.
Submitted by: scottl@
: # Options for atkbd:
: options ATKBD_DFLT_KEYMAP # specify the built-in keymap
: makeoptions ATKBD_DFLT_KEYMAP=jp.106
[...]
: nooption ATKBD_DFLT_KEYMAP
: nomakeoption ATKBD_DFLT_KEYMAP
(Previously the option was inherited from MI NOTES.) So my tool in
rev. 1.26 reduced this to removing all "ATKBD_DFLT_KEYMAP" lines,
leaving the option effectively disabled as it was before, but since
it's actually supported on sparc64, turn it on now.
since they just duplicated the MI `reset' command. Instead of removing
them, make `reboot' an MI alias for `reboot' since this gives a better
way of killing the `r' alias for `reset'. Remove the `registers' command
that was used to kill the alias.
Turn the powerpc and sparc64 MD `halt' command into an MI command.
A copy of sparc64/db_interface.c grew in sun4v just after I found the
extra reboot commands. It has not been changed, and is now not
identical. Duplicated commands come out duplicated in ddb's online
help, but cause large problems when used (e.g., on i386's with 2 halt's
and an hwatch, typing h doesn' give the expected message about an
ambiguous command, but hangs like the halt command or a looping parseri
would).
unsuspecting users.
- Add a comment in NOTES about experimental status of SCHED_ULE.
- Make warning about experimental status in sched_ule(4) a bit
stronger.
Suggested and reviewed by: dougb
Discussed on: developers
MFC after: 3 days
Submitted by:
Reviewed by:
Approved by:
Obtained from:
MFC after:
Security:
Move the relocation definitions to the common elf header so that DTrace
can use them on one architecture targeted to a different one.
Add the additional ELF types defines in Sun's "Linker and Libraries"
manual.
pmap_protect(), and pmap_copy() have optimizations for regions
larger than PMAP_TSB_THRESH (which works out to 16MB). This
caused a panic in tsb_foreach for kernel mappings, since
pm->pm_tsb is NULL in that case. This fix teaches tsb_foreach
to use the kernel's tsb in that case.
Submitted by: Michael Plass
MFC after: 3 days
for a bit before retrying to resend an IPI in order to avoid
deadlocks if the other CPU is also trying to send one.
OpenSolaris uses a delay of 1 microsecond here but waiting 2
microseconds with interrupts enabled like Linux does shouldn't
hurt but is a bit safer.
MFC after: 1 day
Originally, I had adopted sparc64's name, pmap_clear_write(), for the
function that is now pmap_remove_write(). However, this function is more
like pmap_remove_all() than like pmap_clear_modify() or
pmap_clear_reference(), hence, the name change.
The higher-level rationale behind this change is described in
src/sys/amd64/amd64/pmap.c revision 1.567. The short version is that I'm
trying to clean up and fix our support for execute access.
Reviewed by: marcel@ (ia64)
and pc98 MD files. Remove nodevice and nooption lines specific
to sio(4) from ia64, powerpc and sparc64 NOTES. There were no
such lines for arm yet.
sio(4) is usable on less than half the platforms, not counting
a future mips platform. Its presence in MI files is therefore
increasingly becoming a burden.
mark system calls as being MPSAFE:
- Stop conditionally acquiring Giant around system call invocations.
- Remove all of the 'M' prefixes from the master system call files.
- Remove support for the 'M' prefix from the script that generates the
syscall-related files from the master system call files.
- Don't explicitly set SYF_MPSAFE when registering nfssvc.
implementations and adjust some of the checks while I'm here:
- Add a new check to make sure we don't return from a syscall in a critical
section.
- Add a new explicit check before userret() to make sure we don't return
with any locks held. The advantage here is that we can include the
syscall number and name in syscall() whereas that info is not available
in userret().
- Drop the mtx_assert()'s of sched_lock and Giant. They are replaced by
the more general checks just added.
MFC after: 2 weeks
system's machine-dependent and machine-independent layers. Once
pmap_clear_write() is implemented on all of our supported
architectures, I intend to replace all calls to pmap_page_protect() by
calls to pmap_clear_write(). Why? Both the use and implementation of
pmap_page_protect() in our virtual memory system has subtle errors,
specifically, the management of execute permission is broken on some
architectures. The "prot" argument to pmap_page_protect() should
behave differently from the "prot" argument to other pmap functions.
Instead of meaning, "give the specified access rights to all of the
physical page's mappings," it means "don't take away the specified
access rights from all of the physical page's mappings, but do take
away the ones that aren't specified." However, owing to our i386
legacy, i.e., no support for no-execute rights, all but one invocation
of pmap_page_protect() specifies VM_PROT_READ only, when the intent
is, in fact, to remove only write permission. Consequently, a
faithful implementation of pmap_page_protect(), e.g., ia64, would
remove execute permission as well as write permission. On the other
hand, some architectures that support execute permission have
basically ignored whether or not VM_PROT_EXECUTE is passed to
pmap_page_protect(), e.g., amd64 and sparc64. This change represents
the first step in replacing pmap_page_protect() by the less subtle
pmap_clear_write() that is already implemented on amd64, i386, and
sparc64.
Discussed with: grehan@ and marcel@
install custom pager functions didn't actually happen in practice (they
all just used the simple pager and passed in a local quit pointer). So,
just hardcode the simple pager as the only pager and make it set a global
db_pager_quit flag that db commands can check when the user hits 'q' (or a
suitable variant) at the pager prompt. Also, now that it's easy to do so,
enable paging by default for all ddb commands. Any command that wishes to
honor the quit flag can do so by checking db_pager_quit. Note that the
pager can also be effectively disabled by setting $lines to 0.
Other fixes:
- 'show idt' on i386 and pc98 now actually checks the quit flag and
terminates early.
- 'show intr' now actually checks the quit flag and terminates early.
in 1999, and there are changes to the sysctl names compared to PR,
according to that discussion. The description is in sys/conf/NOTES.
Lines in the GENERIC files are added in commented-out form.
I'll attach the test script I've used to PR.
PR: kern/14584
Submitted by: babkin
an explicit comment that it's needed for the linuxolator. This is not the
case anymore. For all other architectures there was only a "KEEP THIS".
I'm (and other people too) running a COMPAT_43-less kernel since it's not
necessary anymore for the linuxolator. Roman is running such a kernel for a
for longer time. No problems so far. And I doubt other (newer than ia32
or alpha) architectures really depend on it.
This may result in a small performance increase for some workloads.
If the removal of COMPAT_43 results in a not working program, please
recompile it and all dependencies and try again before reporting a
problem.
The only place where COMPAT_43 is needed (as in: does not compile without
it) is in the (outdated/not usable since too old) svr4 code.
Note: this does not remove the COMPAT_43TTY option.
Nagging by: rdivacky
There is a race with the current locking scheme and removing
it should have no measurable performance impact.
This fixes page faults leading to panics in pmap_enter_quick_locked()
on amd64/i386.
Reviewed by: alc,jhb,peter,ps
moving the typedef of bus_space_tag_t from sys/sparc64/include/bus.h
to sys/sparc64/include/_bus.h. This brings sparc64 in sync with the
other platforms and fixes the compilation of drivers which include
<sys/rman.h> before <machine/bus.h> after sys/sys/rman.h rev. 1.34.
- Remove the definition of bus_type_t from sys/sparc64/include/_bus.h
as it's unused since sys/sparc64/include/bus.h rev. 1.6 and
sys/sparc64/sparc64/bus_machdep.c rev. 1.3.
- Remove some pointless comments.
the arm to compile without all the extras that don't appear, at least
not in the flavors of ARM I deal with. This helps us save about 100k.
If I've botched the available devices on a platform, please let me
know and I'll correct ASAP.
Map the device memory belonging to resources of type SYS_RES_MEMORY into
KVA upon activation so that rman_get_virtual() works as expected.
- In sbus_alloc_resource() checking whether toffs is 0 as an indication
that no applicable child range was found isn't appropriate as it's
perfectly valid for the requested SYS_RES_MEMORY resource to start at
the beginning of a child range. So check for the RMAN still being NULL
instead.
- As a minor runtime speed optimization break out of the loop where we
search for the applicable child range in sbus_alloc_resource() as soon
as it's found.
- Let sbus_setup_intr() return ENOMEM rather than 0 if it can't allocate
memory for the interrupt clearing info.
- Actually do what the comment in sbus_setup_intr() says and disable the
respective interrupt while fiddling with it.
- Remove some superfluous INTVEC() around inr, which already only contains
the interrupt vector, in sbus_setup_intr().
- While here, fix a style(9) bug in sbus_setup_intr() (don't use function
calls in initializers).
The first two changes are required for a CG6 driver.
MFC after: 2 weeks
Retire pmap_track_modified(). We no longer need it because we do not
create managed mappings within the clean submap. To prevent regressions,
add assertions blocking the creation of managed mappings within the clean
submap.
above what's used for fast interrupts, only interrupts with the level of
the interrupt which led to calling intr_fast() (which is used with both
fast and ithread interrupts) are blocked while in that function. Thus
intr_fast() can be preempted by a fast interrupt (which are of a higher
level than ithread interrupts) while servicing an ithread interrupt. This
can lead to a stale pointer to the head of the active interrupt requests
list when back in the ithread interrupt invocation of intr_fast(), in turn
resulting in corruption of the interrupt request lists and consequently
in a panic. Solve this be turning off interrupts in intr_fast() before
reading the pointer to the head of the active list rather than after. [1]
- Add a KASSERT in intr_fast() which asserts that ir_func is non-zero before
calling it. [1]
- Increment interrupt stats after calling the handlers rather than before.
This reduces the delay until direct and fast handlers are serviced, in my
testings by 30% on average for the direct tick interrupt handler, in turn
resulting in less clock drift.
PR: 94778 [1]
Submitted by: Andrew Belashov [1]
MFC after: 2 weeks
PCI devices apparently was changed from a special deferred trap with TPC
pointing to the membar #Sync following the failing load/store instruction
to a precise trap with TPC pointing to the failing load/store instruction.
Thus remove the check the check whether TPC points to a membar #Sync in
case of a data access trap as it's off-by-one for USIII CPUs and it should
be sufficient to check whether the trap happend while in fasword*() to
properly detect traps caused by peeking/poking. This also corresponds to
what other OSs do. Note that also only the USIIi manual suggests to check
the TPC for such traps while the USII one doesn't (in the public USIII
manual device peeking/poking isn't mentioned at all).
PCB in which the context of stopped CPUs is stored. To access this
PCB from KDB, we introduce a new define, called KDB_STOPPEDPCB. The
definition, when present, lives in <machine/kdb.h> and abstracts
where MD code saves the context. Define KDB_STOPPEDPCB on i386,
amd64, alpha and sparc64 in accordance to previous code.
- Use FBSDID in trap.c
- Make the global trap_sig[] static as it's not used outside of trap.c.
- In sendsig() remove an unused variable.
- In trap() sync with the other archs; for fast data access MMU miss and
data access protection traps set ksi_addr to the SFAR reg which contains
the faulting address and otherwise to the TPC reg. Generally the TCP reg
contains the address of the instruction that caused the exception, except
for fast instruction access traps (and some others; more refinement may
be needed here) it also contains the faulting address.
Previously sendsig() always set si_addr to the SFAR reg which is wrong
for most traps.
- In sendsig() add support for FreeBSD old-style signals.
These changes are inspired by kmacy's sun4v changes and allow libsigsegv
to build on FreeBSD/sparc64, but it doesn't pass all checks and tests it
actually should, yet.
MFC after: 5 days
foreign per-CPU pages in cpu_ipi_send() in order to get the module IDs
of the other CPUs can cause a page fault. If this happens when doing a
TLB shootdown while dealing with another page fault this causes a panic
due to the recursive page fault. As I don't spot other code that assumes
or requires that accessing foreign per-CPU pages must not page fault
solve this by adding a statically allocated (and therefore locked in the
kernel pages) array which establishes a FreeBSD CPU ID -> module ID
relation and use that in cpu_ipi_selected() (instead of statically
allocating the per-CPU pages which would just waste memory on say a dual
CPU machine as sun4u theoretically supports up to 128 CPUs or wasting
dTLB slots for the foreign per-CPU pages). [1]
- Fix a potential race in cpu_ipi_send(); as we don't serialize the access
to cpu_ipi_selected() between MI and MD use (only MI-MI and MD-MD) we
might catch the NACK bit caused by sending another IPI. Solve this by
checking the NACK bit in the contents of the interrupt dispatch status
reg read while interrupts were still turned off instead of reading that
reg anew after interrupts were turned on again. This is also what the
CPU docs suggest to do.
- Add a workaround for the SpitFire erratum #54 bug (affecting interrupt
dispatch). While public info regarding what this CPU bug actually causes
is not available testing shows that with the workaround in place it's
less likely to get a "couldn't send ipi" panic, it doesn't solve these
panics entirely though. [2]
Reported by: kris [1]
Some clue from: kmacy [1]
Info from: Linux, OpenSolaris [2]
Additional testing by: kris
MFC after: 3 days
as we have to call tick_init() before cninit() in order to provide the
low-level console drivers with a working DELAY() which in turn means we
cannot use panic() in tick_init().
- s,to high, too high, in the panic string
Inspired by: kmacy's sun4v changes
MFC after: 3 days
when option DEBUG_LOCKS is used. Trap frames are determined by checking
whether the caller was one of the tl0_*() or tl1_*() asm functions via
a newly added pair of dummy symbols in exception.S which mark the begin
and end of these functions. The tl_trap_* pair marks those in the special
.trap section and the tl_text_* in the regular .text section. Because
of their performance penalty db_search_symbol()/db_symbol_values() and
linker_ddb_search_symbol()/linker_ddb_symbol_values() aren't used here
for determining the caller, with db_search_symbol()/db_symbol_values()
additionally not being reentrant.
- For consistency, change db_backtrace() to also use the new markers for
determining the tl0_*() and tl1_*() asm functions instead of bcmp()'ing
the symbol name.
- Use FBSDID in db_trace.c.
PR: 93226
Based on a patch by: Antoine Brodin <antoine.brodin@laposte.net>
Ok'ed by: jhb
pages, not a count of bytes. The sysctl handler for hw.realmem already
uses ctob() to convert realmem from pages to bytes. Thus, on archs that
were storing a byte count in the realmem variable, hw.realmem was inflated.
Reported by: Valerio daelli valerio dot daelli at gmail dot com (alpha)
MFC after: 3 days
Keep accounting time (in per-cpu) cputicks and the statistics counts
in the thread and summarize into struct proc when at context switch.
Don't reach across CPUs in calcru().
Add code to calibrate the top speed of cpu_tickrate() for variable
cpu_tick hardware (like TSC on power managed machines).
Don't enforce monotonicity (at least for now) in calcru. While the
calibrated cpu_tickrate ramps up it may not be true.
Use 27MHz counter on i386/Geode.
Use TSC on amd64 & i386 if present.
Use tick counter on sparc64
Rename struct thread's td_sticks to td_pticks, we will need the
other name for more appropriately named use shortly. Reduce it
from uint64_t to u_int.
Clear td_pticks whenever we enter the kernel instead of recording
its value as reference for userret(). Use the absolute value of
td->pticks in userret() and eliminate third argument.
Keep track of time spent by the cpu in various contexts in units of
"cputicks" and scale to real-world microsec^H^H^H^H^H^H^H^Hclock_t
only when somebody wants to inspect the numbers.
For now "cputicks" are still derived from the current timecounter
and therefore things should by definition remain sensible also on
SMP machines. (The main reason for this first milestone commit is
to verify that hypothesis.)
On slower machines, the avoided multiplications to normalize timestams
at every context switch, comes out as a 5-7% better score on the
unixbench/context1 microbenchmark. On more modern hardware no change
in performance is seen.
in order to support the on-board LANCE in Ultra 1 and to the MI NOTES as
it should work just fine with the AMD PCnet family of chips on all archs
but is not yet meant to replace lnc(4). If a kernel includes all of le(4),
lnc(4) and pcn(4) precedence is given to lnc(4)/pcn(4) for now.
- Like lsi64854_scsi_intr() return -1 in case there was a DMA error so
the caller can distinguish it from a normal interrupt and leave the
reset of the DMA engine to the caller so we don't kill any state there.
- Move the static 'dodrain' flag to struct lsi64854_softc as there can
be more than one LSI64854 used for a LANCE in a system and reset it
again once draining the E-cache is done so we don't keep draining the
cache with every interrupt.
- Remove calling sc->sc_intrchain(), we will call lsi64854_enet_intr()
via sc->intr() in the interrupt handler of the LANCE driver and not
use it in chained mode.
o lsi64854_pp_intr():
- Like lsi64854_scsi_intr() return -1 in case there was a DMA error so
the caller can distinguish it from a normal interrupt.
o Remove the no longer used sc_intrchain* from struct lsi64854_softc.
o Make lsi64854_reset(), lsi64854_setup*() and lsi64854_*_intr() static
to lsi64854.c as we do and will only call them via the respective
function pointers in struct lsi64854_softc.
o While here fix style(9) bugs (variable definition inside a nested scope).
interrupt handler for the LANCE devices and remove dma_setup_intr(). We
just can't completely ignore the DMA engine in a LANCE driver anyway and
calling the DMA engine interrupt handler in the LANCE driver directly
allows to cover it by the LANCE driver lock.
and resume methods so these events propagate through the device driver
hierarchy.
- In dma(4) enable the chaining of the DMA engine interrupt handler for
the LANCE devices via a dma_setup_intr(). This was commented out before
as I was unsure whether I'd use it but this is probably cleaner than
fiddling with the DMA engine interrupt in the LANCE driver directly.
- In ebus_setup_dinfo() free 'intrs' instead of 'reg' twice in case
setting up a child fails due to routing one of its interrupts fails. [1]
Found by: Coverity Prevent [1]
MFC after: 3 days