1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-18 15:30:21 +00:00
Commit Graph

10 Commits

Author SHA1 Message Date
David Schultz
1192a80ed1 On i386, gcc truncates long double constants to double precision
at compile time regardless of the dynamic precision, and there's
no way to disable this misfeature at compile time. Hence, it's
impossible to generate the appropriate tables of constants for the
long double inverse trig functions in a straightforward way on i386;
this change hacks around the problem by encoding the underlying bits
in the table.

Note that these functions won't pass the regression test on i386,
even with the FPU set to extended precision, because the regression
test is similarly damaged by gcc. However, the tests all pass when
compiled with a modified version of gcc.

Reported by:  	bde
2008-08-02 03:56:22 +00:00
David Schultz
17303c626f Add implementations of acosl(), asinl(), atanl(), atan2l(),
and cargl().

Reviewed by:			bde
sparc64 testing resources from:	remko
2008-07-31 22:41:26 +00:00
Bruce Evans
be396b71c1 2 long double constants were missing L suffixes. This helped break tanl()
on !(amd64 || i386).  It gave slightly worse than double precision in some
cases.  tanl() now passes tests of 2^24 values on ia64.
2008-02-18 15:39:52 +00:00
Bruce Evans
19a9e1bb1c Fix a typo which broke k_tanl.c on !(amd64 || i386). 2008-02-18 14:09:41 +00:00
David Schultz
de336b0c5e Add kernel functions for 80-bit long doubles. Many thanks to Steve and
Bruce for putting lots of effort into these; getting them right isn't
easy, and they went through many iterations.

Submitted by:	Steve Kargl <sgk@apl.washington.edu> with revisions from bde
2008-02-17 07:32:14 +00:00
Bruce Evans
f01bfe5c6d Fix exp2*(x) on signaling NaNs by returning x+x as usual.
This has the side effect of confusing gcc-4.2.1's optimizer into more
often doing the right thing.  When it does the wrong thing here, it
seems to be mainly making too many copies of x with dependency chains.
This effect is tiny on amd64, but in some cases on i386 it is enormous.
E.g., on i386 (A64) with -O1, the current version of exp2() should
take about 50 cycles, but took 83 cycles before this change and 66
cycles after this change.  exp2f() with -O1 only speeded up from 51
to 47 cycles.  (exp2f() should take about 40 cycles, on an Athlon in
either i386 or amd64 mode, and now takes 42 on amd64).  exp2l() with
-O1 slowed down from 155 cycles to 123 for some args; this is unimportant
since the i386 exp2l() is a fake; the wrong thing for it seems to
involve branch misprediction.
2008-02-13 10:44:44 +00:00
Bruce Evans
a373e66b85 Use a better method of scaling by 2**k. Instead of adding to the
exponent bits of the reduced result, construct 2**k (hopefully in
parallel with the construction of the reduced result) and multiply by
it.  This tends to be much faster if the construction of 2**k is
actually in parallel, and might be faster even with no parallelism
since adjustment of the exponent requires a read-modify-wrtite at an
unfortunate time for pipelines.

In some cases involving exp2* on amd64 (A64), this change saves about
40 cycles or 30%.  I think it is inherently only about 12 cycles faster
in these cases and the rest of the speedup is from partly-accidentally
avoiding compiler pessimizations (the construction of 2**k is now
manually scheduled for good results, and -O2 doesn't always mess this
up).  In most cases on amd64 (A64) and i386 (A64) the speedup is about
20 cycles.  The worst case that I found is expf on ia64 where this
change is a pessimization of about 10 cycles or 5%.  The manual
scheduling for plain exp[f] is harder and not as tuned.

This change ld128/s_exp2l.c has not been tested.
2008-02-07 03:17:05 +00:00
David Schultz
968b39e3b9 Implement exp2l(). There is one version for machines with 80-bit
long doubles (i386, amd64, ia64) and one for machines with 128-bit
long doubles (sparc64). Other platforms use the double version.
I've only done runtime testing on i386.

Thanks to bde@ for helpful discussions and bugfixes.
2008-01-18 21:42:46 +00:00
David Schultz
7cd4a83267 Since nan() is supposed to work the same as strtod("nan(...)", NULL),
my original implementation made both use the same code. Unfortunately,
this meant libm depended on a vendor header at compile time and previously-
unexposed vendor bits in libc at runtime.

Hence, I just wrote my own version of the relevant vendor routine. As it
turns out, mine has a factor of 8 fewer of lines of code, and is a bit more
readable anyway. The strtod() and *scanf() routines still use vendor code.

Reviewed by:	bde
2007-12-18 23:46:32 +00:00
David Schultz
4b6b574455 Implement and document nan(), nanf(), and nanl(). This commit
adds two new directories in msun: ld80 and ld128. These are for
long double functions specific to the 80-bit long double format
used on x86-derived architectures, and the 128-bit format used on
sparc64, respectively.
2007-12-16 21:19:28 +00:00