these two reasons:
1. On ia64 a function pointer does not hold the address of the first
instruction of a functions implementation. It holds the address
of a function descriptor. Hence the user(), btrap(), eintr() and
bintr() prototypes are wrong for getting the actual code address.
2. The logic forces interrupt, trap and exception entry points to
be layed-out contiguously. This can not be achieved on ia64 and is
generally just bad programming.
The MCOUNT_FROMPC_USER macro is used to set the frompc argument to
some kernel address which represents any frompc that falls outside
the kernel text range. The macro can expand to ~0U to bail out in
that case.
The MCOUNT_FROMPC_INTR macro is used to set the frompc argument to
some kernel address to represent a call to a trap or interrupt
handler. This to avoid that the trap or interrupt handler appear to
be called from everywhere in the call graph. The macro can expand
to ~0U to prevent adjusting frompc. Note that the argument is selfpc,
not frompc.
This commit defines the macros on all architectures equivalently to
the original code in sys/libkern/mcount.c. People can take it from
here...
Compile-tested on: alpha, amd64, i386, ia64 and sparc64
Boot-tested on: i386
The C code assumes that the carry bit is always kept from the previous
operation. However, the pointer indexing requires another add operation.
Thus, the carry bit from the first operation is tromped over by the
"addl" operation that ends up following it, so the "adcl" that follows
that has no effect because the carry bit is cleared before it.
The result is checksum failure on received packets.
The larger issue is that there isn't any other way of preventing the compiler
inserting arbitrary instructions between different __asm statements (and
that the commit message in revision 1.13 of in_cksum.h is wrong on
this point). From
http://developer.apple.com/documentation/DeveloperTools/gcc-3.3/gcc/Extended-Asm.html
---8<---8<---8<---
You can't expect a sequence of volatile asm instructions to remain
perfectly consecutive. If you want consecutive output, use a single
asm. Also, GCC will perform some optimizations across a volatile
asm instruction; GCC does not "forget everything" when it encounters
a volatile asm instruction the way some other compilers do.
---8<---8<---8<---
Also, this change also makes the ASM code much easier to read.
PR: 69257
Submitted by: Mike Bristow <mike@urgle.com>, Qing Li <qing.li@bluecoat.com>
logical CPUs on a system to be used as a dedicated watchdog to cause a
drop to the debugger and/or generate an NMI to the boot processor if
the kernel ceases to respond. A sysctl enables the watchdog running
out of the processor's idle thread; a callout is launched to reset a
timer in the watchdog. If the callout fails to reset the timer for ten
seconds, the watchdog will fire. The sysctl allows you to select which
CPU will run the watchdog.
A sample "debug.leak_schedlock" is included, which causes a sysctl to
spin holding sched_lock in order to trigger the watchdog. On my Xeons,
the watchdog is able to detect this failure mode and break into the
debugger, which cannot otherwise be done without an NMI button.
This option does not currently work with sched_ule due to ule's push
notion of scheduling, similar to machdep.hlt_logical_cpus failing to
work with that scheduler.
On face value, this might seem somewhat inefficient, but there are a
lot of dual-processor Xeons with HTT around, so using one as a watchdog
for testing is not as inefficient as one might fear.
being defined, define and use a new MD macro, cpu_spinwait(). It only
expands to something on i386 and amd64, so the compiled code should be
identical.
Name of the macro found by: jhb
Reviewed by: jhb
pic_eoi_source() into one call. This halves the number of spinlock operations
and indirect function calls in the normal case of handling a normal (ithread)
interrupt. Optimize the atpic and ioapic drivers to use inlines where
appropriate in supporting the intr_execute_handlers() change.
This knocks 900ns, or roughly 1350 cycles, off of the time spent servicing an
interrupt in the common case on my 1.5GHz P4 uniprocessor system. SMP systems
likely won't see as much of a gain due to the ioapic being more efficient than
the atpic. I'll investigate porting this to amd64 soon.
Reviewed by: jhb
their own directory and module, leaving the MD parts in the MD
area (the MD parts _are_ part of the modules). /dev/mem and /dev/io
are now loadable modules, thus taking us one step further towards
a kernel created entirely out of modules. Of course, there is nothing
preventing the kernel from having these statically compiled.
dereference curthread. It is called only from critical_{enter,exit}(),
which already dereferences curthread. This doesn't seem to affect SMP
performance in my benchmarks, but improves MySQL transaction throughput
by about 1% on UP on my Xeon.
Head nodding: jhb, bmilekic
Most of the changes are a direct result of adding thread awareness.
Typically, DDB_REGS is gone. All registers are taken from the
trapframe and backtraces use the PCB based contexts. DDB_REGS was
defined to be a trapframe on all platforms anyway.
Thread awareness introduces the following new commands:
thread X switch to thread X (where X is the TID),
show threads list all threads.
The backtrace code has been made more flexible so that one can
create backtraces for any thread by giving the thread ID as an
argument to trace.
With this change, ia64 has support for breakpoints.
o s/ddb_on_nmi/kdb_on_nmi/g
o Rename sysctl machdep.ddb_on_nmi to machdep.kdb_on_nmi
o Make debugging support conditional upon KDB instead of DDB.
o Call kdb_reenter() when kdb_active is non-zero.
o Call kdb_trap() to enter the debugger when not already active.
o Update comments accordingly.
o Remove misplaced prototype of kdb_trap().
a PCB from a trapframe for purposes of unwinding the stack. The PCB
is used as the thread context and all but the thread that entered the
debugger has a valid PCB.
This function can also be used to create a context for the threads
running on the CPUs that have been stopped when the debugger got
entered. This however is not done at the time of this commit.
in which multiple (presumably different) debugger backends can be
configured and which provides basic services to those backends.
Besides providing services to backends, it also serves as the single
point of contact for any and all code that wants to make use of the
debugger functions, such as entering the debugger or handling of the
alternate break sequence. For this purpose, the frontend has been
made non-optional.
All debugger requests are forwarded or handed over to the current
backend, if applicable. Selection of the current backend is done by
the debug.kdb.current sysctl. A list of configured backends can be
obtained with the debug.kdb.available sysctl. One can enter the
debugger by writing to the debug.kdb.enter sysctl.
backend improves over the old GDB support in the following ways:
o Unified implementation with minimal MD code.
o A simple interface for devices to register themselves as debug
ports, ala consoles.
o Compression by using run-length encoding.
o Implements GDB threading support.
than as one-off hacks in various other parts of the kernel:
- Add a function maybe_preempt() that is called from sched_add() to
determine if a thread about to be added to a run queue should be
preempted to directly. If it is not safe to preempt or if the new
thread does not have a high enough priority, then the function returns
false and sched_add() adds the thread to the run queue. If the thread
should be preempted to but the current thread is in a nested critical
section, then the flag TDF_OWEPREEMPT is set and the thread is added
to the run queue. Otherwise, mi_switch() is called immediately and the
thread is never added to the run queue since it is switch to directly.
When exiting an outermost critical section, if TDF_OWEPREEMPT is set,
then clear it and call mi_switch() to perform the deferred preemption.
- Remove explicit preemption from ithread_schedule() as calling
setrunqueue() now does all the correct work. This also removes the
do_switch argument from ithread_schedule().
- Do not use the manual preemption code in mtx_unlock if the architecture
supports native preemption.
- Don't call mi_switch() in a loop during shutdown to give ithreads a
chance to run if the architecture supports native preemption since
the ithreads will just preempt DELAY().
- Don't call mi_switch() from the page zeroing idle thread for
architectures that support native preemption as it is unnecessary.
- Native preemption is enabled on the same archs that supported ithread
preemption, namely alpha, i386, and amd64.
This change should largely be a NOP for the default case as committed
except that we will do fewer context switches in a few cases and will
avoid the run queues completely when preempting.
Approved by: scottl (with his re@ hat)
pv entries per 1GB of user virtual memory. (eg: if we had 1GB file was
mmaped into 30 processes, that would theoretically reduce the KVA demand by
30MB for pv entries. In reality though, we limit pv entries so we don't
have that many at once.)
We used to store the vm_page_t for the page table page. But we recently
had the pa of the ptp, or can calculate it fairly quickly. If we wanted
to avoid the shift/mask operation in pmap_pde(), we could recover the
pa but that means we have to store it for a while.
This does not measurably change performance.
Suggested by: alc
Tested by: alc
- Allow ioapic_set_{nmi,smi,extint}() to be called multiple times on the
same pin so long as the pin's mode is the same as the mode being
requested.
- Add a notion of bus type for the interrupt associated with interrupt pin.
This is needed so that we can force all EISA interrupts to be active high
in the forthcoming ioapic_config_intr().
- Fix a bug for EISA systems that didn't remap IRQs. This would have broken
EISA systems that tried to disable mixed mode for IRQ 0.
present and thus that the PnPBIOS probe should be skipped instead of
having ACPI zero out the PnPBIOStable pointer.
- Make the PnPBIOStable pointer static to i386/i386/bios.c now that that is
the only place it is used.
high resolution kernel profiling (options GUPROF. "U" in GUPROF stands
for microseconds resolution, but the resolution is now smaller than 1
nanosecond on multi-GHz machines and the accuracy is heading towards
1 nanosecond too). Arches that support GUPROF must now provide certain
macros for the calibration. GUPROF is now only supported for i386's,
so the absence of the new macros for other arches doesn't break anything
that wasn't already broken. amd64's have uncommitted support for
GUPROF, and sparc64's have support that seems to be complete except
here (there was an #error for non-i386 cases; now there are undefined
macros).
Changed the asms a little:
- declare them as __volatile. They must not be moved, and exporting a
label across asms is technically incorrect, so try harder to stop gcc
moving them.
- don't put the non-clobbered register "bx" in the clobber list. The
clobber lists are still more conservative than necessary.
- drop the non-support for gcc-1. It just gave a better error message,
and this is not useful since compiling with gcc-1 would cause thousands
of worse error messages.
- drop the support for aout.
to <sys/gmon.h>. Cleaned them up a little by not attempting to ifdef
for incomplete and out of date support for GUPROF in userland, as in
the sparc64 version.
- Require the APIC enumerators to explicitly enable mixed mode by calling
ioapic_enable_mixed_mode(). Calling this function tells the apic driver
that the PC-AT 8259A PICs are present and routable through the first I/O
APIC via an ExtINT pin. The mptable enumerator always calls this
function for now. The MADT enumerator only enables mixed mode if the
PC-AT compatability flag is set in the MADT header.
- Allow mixed mode to be enabled or disabled via a 'hw.apic.mixed_mode'
tunable. By default this tunable is set to 1 (true). The kernel option
NO_MIXED_MODE changes the default to 0 to preserve existing behavior, but
adding 'hw.apic.mixed_mode=0' to loader.conf achieves the same effect.
- Only use mixed mode to route IRQ 0 if it is both enabled by the APIC
enumerator and activated by the loader tunable. Note that both
conditions must be true, so if the APIC enumerator does not enable mixed
mode, then you can't set the tunable to try to override the enumerator.
individual asm versions. The global lock is shared between the BIOS and
OS and thus cannot use our mutexes. It is defined in section 5.2.9.1 of
the ACPI specification.
Reviewed by: marcel, bde, jhb
host-PCI bridge device and find a valid $PIR.
- Make pci_pir_parse() private to pci_pir.c and have pir0's attach routine
call it instead of having legacy_pcib_attach() call it.
- Implement suspend/resume support for the $PIR by giving pir0 a resume
method that calls the BIOS to reroute each link that was already routed
before the machine was suspended.
- Dump the state of the routed flag in the links display code.
- If a link's IRQ is set by a tunable, then force that link to be re-routed
the first time it is used.
- Move the 'Found $PIR' message under bootverbose as the pir0 description
line lists the number of entries already. The pir0 line also only shows
up if we are actually using the $PIR which is a bonus.
- Use BUS_CONFIG_INTR() to ensure that any IRQs used by a PCI link are
set to level/low trigger/polarity.
polarity for a specified IRQ. The intr_config_intr() function wraps
this pic method hiding the IRQ to interrupt source lookup.
- Add a config_intr() method to the atpic(4) driver that reconfigures
the interrupt using the ELCR if possible and returns an error otherwise.
- Add a config_intr() method to the apic(4) driver that just logs any
requests that would change the existing programming under bootverbose.
Currently, the only changes the apic(4) driver receives are due to bugs
in the acpi(4) driver and its handling of link devices, hence the reason
for such requests currently being ignored.
- Have the nexus(4) driver on i386 implement the bus_config_intr() function
by calling intr_config_intr().
and intr_polarity enums for passing around interrupt trigger modes and
polarity rather than using the magic numbers 0 for level/low and 1 for
edge/high.
- Convert the mptable parsing code to use the new ELCR wrapper code rather
than reading the ELCR directly. Also, use the ELCR settings to control
both the trigger and polarity of EISA IRQs instead of just the trigger
mode.
- Rework the MADT's handling of the ACPI SCI again:
- If no override entry for the SCI exists at all, use level/low trigger
instead of the default edge/high used for ISA IRQs.
- For the ACPI SCI, use level/low values for conforming trigger and
polarity rather than the edge/high values we use for all other ISA
IRQs.
- Rework the tunables available to override the MADT. The
hw.acpi.force_sci_lo tunable is no longer supported. Instead, there
are now two tunables that can independently override the trigger mode
and/or polarity of the SCI. The hw.acpi.sci.trigger tunable can be
set to either "edge" or "level", and the hw.acpi.sci.polarity tunable
can be set to either "high" or "low". To simulate hw.acpi.force_sci_lo,
set hw.acpi.sci.trigger to "level" and hw.acpi.sci.polarity to "low".
If you are having problems with ACPI either causing an interrupt storm
or not working at all (e.g., the power button doesn't turn invoke a
shutdown -p now), you can try tweaking these two tunables to find the
combination that works.
register controlled the trigger mode and polarity of EISA interrupts.
However, it appears that most (all?) PCI systems use the ELCR to manage
the trigger mode and polarity of ISA interrupts as well since ISA IRQs used
to route PCI interrupts need to be level triggered with active low
polarity. We check to see if the ELCR exists by sanity checking the value
we get back ensuring that IRQS 0 (8254), 1 (atkbd), 2 (the link from the
slave PIC), and 8 (RTC) are all clear indicating edge trigger and active
high polarity.
This mini-driver will be used by the atpic driver to manage the trigger and
polarity of ISA IRQs. Also, the mptable parsing code will use this mini
driver rather than examining the ELCR directly.
move its declaration to the machine-dependent header file on those
machines that use it. In principle, only i386 should have it.
Alpha and AMD64 should use their direct virtual-to-physical mapping.
- Remove pmap_kenter_temporary() from ia64. It is unused. Approved
by: marcel@
it belongs. Change the implementation to match those of rfs() and
rgs() for consistency and irrespective of whether the original was
more correct or not (technically speaking).
level of abstraction for any and all CPU mask and CPU bitmap variables
so that platforms have the ability to break free from the hard limit
of 32 CPUs, simply because we don't have more bits in an u_int. Note
that the type is not supposed to solve massive parallelism, where
the number of CPUs can be larger than the width of the widest integral
type. As such, cpumask_t is not supposed to be a compound type. If
such would be necessary in the future, we can deal with the issues
then and there. For now, it can be assumed that the type is integral
and unsigned.
With this commit, all MD definitions start off as u_int. This allows
us to phase-in cpumask_t at our leasure without breaking anything.
Once cpumask_t is used consistently, platforms can switch to wider
(or smaller) types if such would be beneficial (or not; whatever :-)
Compile-tested on: i386
COMPAT_PCI api. This API is going away, so this driver is going away
also.
If users are interested in updating this, please contact the author
since he has some preliminary work to move this to newer APIs.
to build the kernel. It doesn't affect the operation if gcc.
Most of the changes are just adding __INTEL_COMPILER to #ifdef's, as
icc v8 may define __GNUC__ some parts may look strange but are
necessary.
Additional changes:
- in_cksum.[ch]:
* use a generic C version instead of the assembly version in the !gcc
case (ASM code breaks with the optimizations icc does)
-> no bad checksums with an icc compiled kernel
Help from: andre, grehan, das
Stolen from: alpha version via ppc version
The entire checksum code should IMHO be replaced with the DragonFly
version (because it isn't guaranteed future revisions of gcc will
include similar optimizations) as in:
---snip---
Revision Changes Path
1.12 +1 -0 src/sys/conf/files.i386
1.4 +142 -558 src/sys/i386/i386/in_cksum.c
1.5 +33 -69 src/sys/i386/include/in_cksum.h
1.5 +2 -0 src/sys/netinet/igmp.c
1.6 +0 -1 src/sys/netinet/in.h
1.6 +2 -0 src/sys/netinet/ip_icmp.c
1.4 +3 -4 src/contrib/ipfilter/ip_compat.h
1.3 +1 -2 src/sbin/natd/icmp.c
1.4 +0 -1 src/sbin/natd/natd.c
1.48 +1 -0 src/sys/conf/files
1.2 +0 -1 src/sys/conf/files.amd64
1.13 +0 -1 src/sys/conf/files.i386
1.5 +0 -1 src/sys/conf/files.pc98
1.7 +1 -1 src/sys/contrib/ipfilter/netinet/fil.c
1.10 +2 -3 src/sys/contrib/ipfilter/netinet/ip_compat.h
1.10 +1 -1 src/sys/contrib/ipfilter/netinet/ip_fil.c
1.7 +1 -1 src/sys/dev/netif/txp/if_txp.c
1.7 +1 -1 src/sys/net/ip_mroute/ip_mroute.c
1.7 +1 -2 src/sys/net/ipfw/ip_fw2.c
1.6 +1 -2 src/sys/netinet/igmp.c
1.4 +158 -116 src/sys/netinet/in_cksum.c
1.6 +1 -1 src/sys/netinet/ip_gre.c
1.7 +1 -2 src/sys/netinet/ip_icmp.c
1.10 +1 -1 src/sys/netinet/ip_input.c
1.10 +1 -2 src/sys/netinet/ip_output.c
1.13 +1 -2 src/sys/netinet/tcp_input.c
1.9 +1 -2 src/sys/netinet/tcp_output.c
1.10 +1 -1 src/sys/netinet/tcp_subr.c
1.10 +1 -1 src/sys/netinet/tcp_syncache.c
1.9 +1 -2 src/sys/netinet/udp_usrreq.c
1.5 +1 -2 src/sys/netinet6/ipsec.c
1.5 +1 -2 src/sys/netproto/ipsec/ipsec.c
1.5 +1 -1 src/sys/netproto/ipsec/ipsec_input.c
1.4 +1 -2 src/sys/netproto/ipsec/ipsec_output.c
and finally remove
sys/i386/i386 in_cksum.c
sys/i386/include in_cksum.h
---snip---
- endian.h:
* DTRT in C++ mode
- quad.h:
* we don't use gcc v1 anymore, remove support for it
Suggested by: bde (long ago)
- assym.h:
* avoid zero-length arrays (remove dependency on a gcc specific
feature)
This change changes the contents of the object file, but as it's
only used to generate some values for a header, and the generator
knows how to handle this, there's no impact in the gcc case.
Explained by: bde
Submitted by: Marius Strobl <marius@alchemy.franken.de>
- aicasm.c:
* minor change to teach it about the way icc spells "-nostdinc"
Not approved by: gibbs (no reply to my mail)
- bump __FreeBSD_version (lang/icc needs to know about the changes)
Incarnations of this patch survive gcc compiles since a loooong time,
I use it on my desktop. An icc compiled kernel works since Nov. 2003
(exceptions: snd_* if used as modules), it survives a build of the
entire ports collection with icc.
Parts of this commit contains suggestions or submissions from
Marius Strobl <marius@alchemy.franken.de>.
Reviewed by: -arch
Submitted by: netchild
in the non-_KERNEL case. This "fixes" applications that include
this "kernel-only" header and also include <strings.h> (or get
<strings.h> via the default _BSD_VISIBLE pollution in <string.h>.
In C++ there was a fatal error: the declaration specifies C linkage
but the implementation gives C++ linkage. In C there was only a
static/extern mismatch if the headers were included in a certain order
order, and a partially redundant declaration for all include orders;
gcc emits incomplete or wrong diagnostics for these, but only for
compiling with -Wsystem-headers and certain other warning options, so
the problem was usually not seen for C.
Ports breakage reported by: kris
- completely unused things
- all of rev.1.102 (C++ support). <sys/cdefs.h> is included by the
prerequisite <sys/types.h>. __BEGIN_DECLS/__END_DECLS has no effect
(except possibly if undefined behaviour is invoked using a hack like
defining away __inline) since this header doesn't really support any
extern functions.
CPU_ENABLE_TCC enables Thermal Control Circuitry (TCC) found in some
Pentium(tm) 4 and (possibly) later CPUs. When enabled and detected,
TCC allows to restrict power consumption by using machdep.cpuperf*
sysctls. This operates independently of SpeedStep and is useful on
systems where other mechanisms such as apm(4) or acpi(4) don't work.
Given the fact that many, even modern, notebooks don't work properly
with Intel ACPI, this is indeed very useful option for notebook owners.
Obtained from: OpenBSD
MFC after: 2 weeks
at it, use the ANSI C generic pointer type for the second argument,
thus matching the documentation.
Remove the now extraneous (and now conflicting) function declarations
in various libc sources. Remove now unnecessary casts.
Reviewed by: bde
Put a CTASSERT() on the size of the struct.
Use the struct where it is easy to do so in elan_mmcr.c
Add the Elan specific hardware reset code (also from jb@).
such that 'ispcvt' can build. Unforunately 'ispcvt' is needed in order for
/etc/rc.d/syscons to run. This fixes the bug where I could not get my
keymap effective at boot.
as these ioctl's aren't MD. This also means they are installed in
/usr/include/dev/bktr now. Also provide compatability wrappers for
where these headers lived in 4.x.
Instead, allow the mapping to persist, but add the sf_buf to a free list.
If a later sendfile(2) or zero-copy send resends the same physical page,
perhaps with the same or different contents, then the mapping overhead is
avoided and the sf_buf is simply removed from the free list.
In other words, the i386 sf_buf implementation now behaves as a cache of
virtual-to-physical translations using an LRU replacement policy on
inactive sf_bufs. This is similar in concept to a part of
http://www.cs.princeton.edu/~yruan/debox/ patch, but much simpler in
implementation. Note: none of this is required on alpha, amd64, or ia64.
They now use their direct virtual-to-physical mapping to avoid any
emphemeral mapping overheads in their sf_buf implementations.
This is the vastly updated cx drvier from Roman Kurakin <rik@cronyx.ru>
who has been patiently waiting for this update for sometime.
The driver is mostly a rewrite from the version we have in the tree.
While some similarities remain, losing the little history that the old
driver has is not a big loss, and the re@ felt it was easier this way (less
error prone).
The userland parts of this update will be committed shortly.
The driver is not connected to the build yet. I want to make sure I
don't break any platform at any time, so I want to test that with
these files in the tree before I continue (on the off chance I'm
forgetting a file).
I changed the DEBUG macro to CX_DEBUG from the code that was submitted
(to not break when we go to building with opt_global.h after the
release), as well adding $FreeBSD$.
Submitted by: Roman Kurakin
Approved by: re@ <scottl>
more than one sf_buf for one vm_page. To accomplish this, we add
a global hash table mapping vm_pages to sf_bufs and a reference
count to each sf_buf. (This is similar to the patches for RELENG_4
at http://www.cs.princeton.edu/~yruan/debox/.)
For the uninitiated, an sf_buf is nothing more than a kernel virtual
address that is used for temporary virtual-to-physical mappings by
sendfile(2) and zero-copy sockets. As such, there is no reason for
one vm_page to have several sf_bufs mapping it. In fact, using more
than one sf_buf for a single vm_page increases the likelihood that
sendfile(2) blocks, hurting throughput.
(See http://www.cs.princeton.edu/~yruan/debox/.)
is the warning that points to the bug in `(char *)malloc(...)' where
malloc() is implicitly declared as returning int. We do similar things
here, but they work because u_int is the same as uintptr_t on i386's.)
physical mapping.
- Move the sf_buf API to its own header file; make struct sf_buf's
definition machine dependent. In this commit, we remove an
unnecessary field from struct sf_buf on the alpha, amd64, and ia64.
Ultimately, we may eliminate struct sf_buf on those architecures
except as an opaque pointer that references a vm page.
- Move the IPI and local APIC interrupt vectors up into the 0xf0 - 0xff
range. The pmap lazyfix IPI was reordered down next to the TLB
shootdowns to avoid conflicting with the spurious interrupt vector.
- Move the base of APIC interrupts up 16 so that the first 16 APIC
interrupts do not overlap the vectors used by the ATPIC.
- Remove bogus interrupt vector reservations for LINT[01].
- Now that 0xc0 - 0xef are available, use them for device interrupts.
This increases the number of APIC device interrupts to 191.
- Increase the system-wide number of global interrupts to 191 to catch up
to more APIC interrupts.
Requested by: peter (2)
vector stubs and into the C functions they call.
- Move disabling and EOIing of interrupt sources out of PIC driver entry
points and into intr_execute_handlers(). Intr_execute_handlers() only
disables a source for an interrupt if it is a stray interrupt or has
threaded handlers. Sources with fast handlers no longer disable (mask)
the source while executing the handlers.
- Move the setting of clkintr_pending into intr_execute_handlers() and set
the variable for any interrupt source with a vector of 0. (Should only
be true for IRQ 0.) This fixes clkintr_pending in the NO_MIXED_MODE
case.
- Implement lapic_eoi() and use it to implement ioapic_eoi_source().
- Rename atpic_sched_ithd() to atpic_handle_intr() since it is used to
handle all atpic interrupts and not just threaded ones.
Inspired by: peter's changes to amd64 in p4 (1)
Requested by: bde (2)
pmap_pte() and pmap_pte_quick(). The distinction being based upon the
locks that are held by the caller. When the given pmap is not the
current pmap, pmap_pte() should be used when Giant is held and
pmap_pte_quick() should be used when the vm page queues lock is held.
- When assigning to PMAP1 or PMAP2, include PG_A anf PG_M.
- Reenable the inlining of pmap_is_current().
In collaboration with: tegge
- The MP code no longer knows anything specific about an MP Table.
Instead, the local APIC code adds CPUs via the cpu_add() function when
a local APIC is enumerated by an APIC enumerator.
- Don't divide the argument to mp_bootaddress() by 1024 just so that we
can turn around and mulitply it by 1024 again.
- We no longer panic if SMP is enabled but we are booted on a UP machine.
- init_secondary(), the asm code between init_secondary() and ap_init()
in mpboot.s and ap_init() have all been merged together in C into
init_secondary().
- We now use the cpuid feature bits to determine if we should enable
PSE, PGE, or VME on each AP.
- Due to the change in the implementation of critical sections, acquire
the SMP TLB mutex around a slightly larger chunk of code for TLB
shootdowns.
- Remove some of the debug code from the original SMP implementation
that is no longer used or no longer applies to the new APIC code.
- Use a temporary hack to disable the ACPI module until the SMP code has
been further reorganized to allow ACPI to work as a module again.
- Add a DDB command to dump the interesting contents of the IDT.