freebsd_amp_hwpstate/sys/netatalk/at_control.c

667 lines
17 KiB
C
Raw Normal View History

/*
* Copyright (c) 1990,1991 Regents of The University of Michigan.
* All Rights Reserved.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#undef s_net
#include <netinet/if_ether.h>
#include "at.h"
#include "at_var.h"
#include "aarp.h"
#include "phase2.h"
#include <netatalk/at_extern.h>
static int aa_addrangeroute(struct ifaddr *ifa, int first, int last);
static int aa_addsingleroute(struct ifaddr *ifa,
struct at_addr *addr, struct at_addr *mask);
static int aa_delsingleroute(struct ifaddr *ifa,
struct at_addr *addr, struct at_addr *mask);
static int aa_dosingleroute(struct ifaddr *ifa, struct at_addr *addr,
struct at_addr *mask, int cmd, int flags);
static int at_scrub( struct ifnet *ifp, struct at_ifaddr *aa );
static int at_ifinit( struct ifnet *ifp, struct at_ifaddr *aa,
struct sockaddr_at *sat );
# define sateqaddr(a,b) ((a)->sat_len == (b)->sat_len && \
(a)->sat_family == (b)->sat_family && \
(a)->sat_addr.s_net == (b)->sat_addr.s_net && \
(a)->sat_addr.s_node == (b)->sat_addr.s_node )
int
at_control( int cmd, caddr_t data, struct ifnet *ifp, struct proc *p )
{
struct ifreq *ifr = (struct ifreq *)data;
struct sockaddr_at *sat;
struct netrange *nr;
struct at_aliasreq *ifra = (struct at_aliasreq *)data;
struct at_ifaddr *aa0;
struct at_ifaddr *aa = 0;
struct mbuf *m;
struct ifaddr *ifa;
if ( ifp ) {
for ( aa = at_ifaddr; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp ) break;
}
}
switch ( cmd ) {
case SIOCAIFADDR:
case SIOCDIFADDR:
if ( ifra->ifra_addr.sat_family == AF_APPLETALK ) {
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp &&
sateqaddr( &aa->aa_addr, &ifra->ifra_addr )) {
break;
}
}
}
if ( cmd == SIOCDIFADDR && aa == 0 ) {
return( EADDRNOTAVAIL );
}
/*FALLTHROUGH*/
case SIOCSIFADDR:
if ( suser(p->p_ucred, &p->p_acflag) ) {
return( EPERM );
}
sat = satosat( &ifr->ifr_addr );
nr = (struct netrange *)sat->sat_zero;
if ( nr->nr_phase == 1 ) {
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp &&
( aa->aa_flags & AFA_PHASE2 ) == 0 ) {
break;
}
}
} else { /* default to phase 2 */
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp && ( aa->aa_flags & AFA_PHASE2 )) {
break;
}
}
}
if ( ifp == 0 )
panic( "at_control" );
if ( aa == (struct at_ifaddr *) 0 ) {
m = m_getclr( M_WAIT, MT_IFADDR );
if ( m == (struct mbuf *)NULL ) {
return( ENOBUFS );
}
if (( aa = at_ifaddr ) != NULL ) {
/*
* Don't let the loopback be first, since the first
* address is the machine's default address for
* binding.
*/
if ( at_ifaddr->aa_ifp->if_flags & IFF_LOOPBACK ) {
aa = mtod( m, struct at_ifaddr *);
aa->aa_next = at_ifaddr;
at_ifaddr = aa;
} else {
for ( ; aa->aa_next; aa = aa->aa_next )
;
aa->aa_next = mtod( m, struct at_ifaddr *);
}
} else {
at_ifaddr = mtod( m, struct at_ifaddr *);
}
aa = mtod( m, struct at_ifaddr *);
if (( ifa = ifp->if_addrlist ) != NULL ) {
for ( ; ifa->ifa_next; ifa = ifa->ifa_next )
;
ifa->ifa_next = (struct ifaddr *)aa;
} else {
ifp->if_addrlist = (struct ifaddr *)aa;
}
aa->aa_ifa.ifa_addr = (struct sockaddr *)&aa->aa_addr;
aa->aa_ifa.ifa_dstaddr = (struct sockaddr *)&aa->aa_addr;
aa->aa_ifa.ifa_netmask = (struct sockaddr *)&aa->aa_netmask;
/*
* Set/clear the phase 2 bit.
*/
if ( nr->nr_phase == 1 ) {
aa->aa_flags &= ~AFA_PHASE2;
} else {
aa->aa_flags |= AFA_PHASE2;
}
aa->aa_ifp = ifp;
} else {
at_scrub( ifp, aa );
}
break;
case SIOCGIFADDR :
sat = satosat( &ifr->ifr_addr );
nr = (struct netrange *)sat->sat_zero;
if ( nr->nr_phase == 1 ) {
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp &&
( aa->aa_flags & AFA_PHASE2 ) == 0 ) {
break;
}
}
} else { /* default to phase 2 */
for ( ; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp && ( aa->aa_flags & AFA_PHASE2 )) {
break;
}
}
}
if ( aa == (struct at_ifaddr *) 0 )
return( EADDRNOTAVAIL );
break;
}
switch ( cmd ) {
case SIOCGIFADDR:
sat = (struct sockaddr_at *)&ifr->ifr_addr;
*sat = aa->aa_addr;
((struct netrange *)&sat->sat_zero)->nr_phase
= (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
((struct netrange *)&sat->sat_zero)->nr_firstnet = aa->aa_firstnet;
((struct netrange *)&sat->sat_zero)->nr_lastnet = aa->aa_lastnet;
break;
case SIOCSIFADDR:
return( at_ifinit( ifp, aa, (struct sockaddr_at *)&ifr->ifr_addr ));
case SIOCAIFADDR:
if ( sateqaddr( &ifra->ifra_addr, &aa->aa_addr )) {
return( 0 );
}
return( at_ifinit( ifp, aa, (struct sockaddr_at *)&ifr->ifr_addr ));
case SIOCDIFADDR:
at_scrub( ifp, aa );
if (( ifa = ifp->if_addrlist ) == (struct ifaddr *)aa ) {
ifp->if_addrlist = ifa->ifa_next;
} else {
while ( ifa->ifa_next && ( ifa->ifa_next != (struct ifaddr *)aa )) {
ifa = ifa->ifa_next;
}
if ( ifa->ifa_next ) {
ifa->ifa_next = ((struct ifaddr *)aa)->ifa_next;
} else {
panic( "at_control" );
}
}
aa0 = aa;
if ( aa0 == ( aa = at_ifaddr )) {
at_ifaddr = aa->aa_next;
} else {
while ( aa->aa_next && ( aa->aa_next != aa0 )) {
aa = aa->aa_next;
}
if ( aa->aa_next ) {
aa->aa_next = aa0->aa_next;
} else {
panic( "at_control" );
}
}
m_free( dtom( aa0 ));
break;
default:
if ( ifp == 0 || ifp->if_ioctl == 0 )
return( EOPNOTSUPP );
return( (*ifp->if_ioctl)( ifp, cmd, data ));
}
return( 0 );
}
static int
at_scrub( ifp, aa )
struct ifnet *ifp;
struct at_ifaddr *aa;
{
int error;
if ( aa->aa_flags & AFA_ROUTE ) {
if (( error = rtinit( &(aa->aa_ifa), RTM_DELETE,
( ifp->if_flags & IFF_LOOPBACK ) ? RTF_HOST : 0 )) != 0 ) {
return( error );
}
aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
aa->aa_flags &= ~AFA_ROUTE;
}
return( 0 );
}
static int
at_ifinit( ifp, aa, sat )
struct ifnet *ifp;
struct at_ifaddr *aa;
struct sockaddr_at *sat;
{
struct netrange nr, onr;
struct sockaddr_at oldaddr;
int s = splimp(), error = 0, i, j;
int flags = RTF_UP, netinc, nodeinc, nnets;
u_short net;
oldaddr = aa->aa_addr;
bzero( AA_SAT( aa ), sizeof( struct sockaddr_at ));
bcopy( sat->sat_zero, &nr, sizeof( struct netrange ));
bcopy( sat->sat_zero, AA_SAT( aa )->sat_zero, sizeof( struct netrange ));
nnets = ntohs( nr.nr_lastnet ) - ntohs( nr.nr_firstnet ) + 1;
onr.nr_firstnet = aa->aa_firstnet;
onr.nr_lastnet = aa->aa_lastnet;
aa->aa_firstnet = nr.nr_firstnet;
aa->aa_lastnet = nr.nr_lastnet;
/* XXX ALC */
printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
ifp->if_name,
ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
(aa->aa_flags & AFA_PHASE2) ? 2 : 1);
/*
* We could eliminate the need for a second phase 1 probe (post
* autoconf) if we check whether we're resetting the node. Note
* that phase 1 probes use only nodes, not net.node pairs. Under
* phase 2, both the net and node must be the same.
*/
if ( ifp->if_flags & IFF_LOOPBACK ) {
AA_SAT( aa )->sat_len = sat->sat_len;
AA_SAT( aa )->sat_family = AF_APPLETALK;
AA_SAT( aa )->sat_addr.s_net = sat->sat_addr.s_net;
AA_SAT( aa )->sat_addr.s_node = sat->sat_addr.s_node;
#if 0
} else if ( fp->if_flags & IFF_POINTOPOINT) {
/* unimplemented */
#endif
} else {
aa->aa_flags |= AFA_PROBING;
AA_SAT( aa )->sat_len = sizeof(struct sockaddr_at);
AA_SAT( aa )->sat_family = AF_APPLETALK;
if ( aa->aa_flags & AFA_PHASE2 ) {
if ( sat->sat_addr.s_net == ATADDR_ANYNET ) {
if ( nnets != 1 ) {
net = ntohs( nr.nr_firstnet ) + time.tv_sec % ( nnets - 1 );
} else {
net = ntohs( nr.nr_firstnet );
}
} else {
if ( ntohs( sat->sat_addr.s_net ) < ntohs( nr.nr_firstnet ) ||
ntohs( sat->sat_addr.s_net ) > ntohs( nr.nr_lastnet )) {
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
return( EINVAL );
}
net = ntohs( sat->sat_addr.s_net );
}
} else {
net = ntohs( sat->sat_addr.s_net );
}
if ( sat->sat_addr.s_node == ATADDR_ANYNODE ) {
AA_SAT( aa )->sat_addr.s_node = time.tv_sec;
} else {
AA_SAT( aa )->sat_addr.s_node = sat->sat_addr.s_node;
}
for ( i = nnets, netinc = 1; i > 0; net = ntohs( nr.nr_firstnet ) +
(( net - ntohs( nr.nr_firstnet ) + netinc ) % nnets ), i-- ) {
AA_SAT( aa )->sat_addr.s_net = htons( net );
for ( j = 0, nodeinc = time.tv_sec | 1; j < 256;
j++, AA_SAT( aa )->sat_addr.s_node += nodeinc ) {
if ( AA_SAT( aa )->sat_addr.s_node > 253 ||
AA_SAT( aa )->sat_addr.s_node < 1 ) {
continue;
}
aa->aa_probcnt = 10;
timeout( (timeout_func_t)aarpprobe, (caddr_t)ifp, hz / 5 );
splx( s );
if ( tsleep( aa, PPAUSE|PCATCH, "at_ifinit", 0 )) {
printf( "at_ifinit: why did this happen?!\n" );
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
return( EINTR );
}
s = splimp();
if (( aa->aa_flags & AFA_PROBING ) == 0 ) {
break;
}
}
if (( aa->aa_flags & AFA_PROBING ) == 0 ) {
break;
}
/* reset node for next network */
AA_SAT( aa )->sat_addr.s_node = time.tv_sec;
}
if ( aa->aa_flags & AFA_PROBING ) {
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
splx( s );
return( EADDRINUSE );
}
}
if ( ifp->if_ioctl &&
( error = (*ifp->if_ioctl)( ifp, SIOCSIFADDR, (caddr_t)aa ))) {
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
splx( s );
return( error );
}
#if 1
/* this works */
aa->aa_netmask.sat_len = 6/*sizeof(struct sockaddr_at)*/;
aa->aa_netmask.sat_family = AF_APPLETALK;
aa->aa_netmask.sat_addr.s_net = 0xffff;
aa->aa_netmask.sat_addr.s_node = 0;
aa->aa_ifa.ifa_netmask =(struct sockaddr *) &(aa->aa_netmask); /* XXX */
#else
/* this doesn't */
/* Initialize netmask and broadcast address */
bzero(&aa->aa_netmask, sizeof(aa->aa_netmask));
aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
aa->aa_netmask.sat_family = AF_APPLETALK;
aa->aa_netmask.sat_addr.s_net = 0xffff;
aa->aa_netmask.sat_addr.s_node = 0;
aa->aa_ifa.ifa_netmask = (struct sockaddr *) &aa->aa_netmask;
bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr));
aa->aa_ifa.ifa_broadaddr = (struct sockaddr *) &aa->aa_broadaddr;
aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
aa->aa_broadaddr.sat_family = AF_APPLETALK;
/* "Add a route to the network" */
aa->aa_ifa.ifa_metric = ifp->if_metric;
if (ifp->if_flags & IFF_BROADCAST) {
aa->aa_broadaddr.sat_addr.s_net = htons(0);
aa->aa_broadaddr.sat_addr.s_node = 0xff;
aa->aa_netmask.sat_addr.s_net = htons(0xffff); /* XXX */
aa->aa_netmask.sat_addr.s_node = 0; /* XXX */
} else if (ifp->if_flags & IFF_LOOPBACK) {
aa->aa_ifa.ifa_dstaddr = aa->aa_ifa.ifa_addr;
aa->aa_netmask.sat_addr.s_net = htons(0xffff); /* XXX */
aa->aa_netmask.sat_addr.s_node = 0xff; /* XXX */
flags |= RTF_HOST;
} else if (ifp->if_flags & IFF_POINTOPOINT) {
aa->aa_ifa.ifa_dstaddr = aa->aa_ifa.ifa_addr;
aa->aa_netmask.sat_addr.s_net = htons(0xffff);
aa->aa_netmask.sat_addr.s_node = 0xff;
flags |= RTF_HOST;
}
#endif
error = rtinit(&aa->aa_ifa, RTM_ADD, flags);
#if 0
if ( ifp->if_flags & IFF_LOOPBACK ) {
struct at_addr rtaddr, rtmask;
bzero(&rtaddr, sizeof(rtaddr));
bzero(&rtmask, sizeof(rtmask));
rtaddr.s_net = AA_SAT( aa )->sat_addr.s_net;
rtaddr.s_node = AA_SAT( aa )->sat_addr.s_node;
rtmask.s_net = 0xffff;
rtmask.s_node = 0xff;
error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
} else {
/* Install routes for our own network, and then also for
all networks above and below it in the network range */
error = aa_addrangeroute(&aa->aa_ifa,
ntohs(aa->aa_addr.sat_addr.s_net),
ntohs(aa->aa_addr.sat_addr.s_net) + 1);
if (!error
&& ntohs(aa->aa_firstnet) < ntohs(aa->aa_addr.sat_addr.s_net))
error = aa_addrangeroute(&aa->aa_ifa,
ntohs(aa->aa_firstnet), ntohs(aa->aa_addr.sat_addr.s_net));
if (!error
&& ntohs(aa->aa_addr.sat_addr.s_net) < ntohs(aa->aa_lastnet))
error = aa_addrangeroute(&aa->aa_ifa,
ntohs(aa->aa_addr.sat_addr.s_net) + 1,
ntohs(aa->aa_lastnet) + 1);
}
#endif
if ( error ) {
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
splx( s );
return( error );
}
aa->aa_ifa.ifa_flags |= IFA_ROUTE;
aa->aa_flags |= AFA_ROUTE;
splx( s );
return( 0 );
}
int
at_broadcast( sat )
struct sockaddr_at *sat;
{
struct at_ifaddr *aa;
if ( sat->sat_addr.s_node != ATADDR_BCAST ) {
return( 0 );
}
if ( sat->sat_addr.s_net == ATADDR_ANYNET ) {
return( 1 );
} else {
for ( aa = at_ifaddr; aa; aa = aa->aa_next ) {
if (( aa->aa_ifp->if_flags & IFF_BROADCAST ) &&
( ntohs( sat->sat_addr.s_net ) >= ntohs( aa->aa_firstnet ) &&
ntohs( sat->sat_addr.s_net ) <= ntohs( aa->aa_lastnet ))) {
return( 1 );
}
}
}
return( 0 );
}
/*
* aa_addrangeroute()
*
* Add a route for a range of networks from bot to top - 1.
* Algorithm:
*
* Split the range into three subranges such that the middle
* subrange is from (base + 2^N) to (base + 2^N + 2^(N-1)) for
* some N. Then add a route for the middle range and recurse on
* the upper and lower sub-ranges. As a degenerate case, it may
* be that the middle subrange is empty.
*/
static int
aa_addrangeroute(struct ifaddr *ifa, int bot, int top)
{
int base, mask, mbot, mtop;
int a, b, abit, bbit, error;
struct at_addr rtaddr, rtmask;
/* Special case the whole range */
if (bot == 0 && top == 0xffff)
{
bzero(&rtaddr, sizeof(rtaddr));
bzero(&rtmask, sizeof(rtmask));
return(aa_addsingleroute(ifa, &rtaddr, &rtmask));
}
if (top <= bot)
panic("aa_addrangeroute");
/* Mask out the high order bits on which both bounds agree */
for (mask = 0xffff; (bot & mask) != (top & mask); mask <<= 1);
base = bot & mask;
a = bot & ~mask;
b = top & ~mask;
/* Find suitable powers of two between a and b we can make a route with */
for (bbit = 0x8000; bbit > b; bbit >>= 1);
if (a == 0)
abit = 0;
else
{
for (abit = 0x0001; a > abit; abit <<= 1);
if ((abit << 1) > bbit)
bbit = abit;
else
bbit = abit << 1;
}
/* Now we have a "square" middle chunk from abit to bbit, possibly empty */
mbot = base + abit;
mtop = base + bbit;
mask = ~(bbit - 1);
/* Route to the middle chunk */
if (mbot < mtop)
{
bzero(&rtaddr, sizeof(rtaddr));
bzero(&rtmask, sizeof(rtmask));
rtaddr.s_net = htons((u_short) mbot);
rtmask.s_net = htons((u_short) mask);
if ((error = aa_addsingleroute(ifa, &rtaddr, &rtmask)))
return(error);
}
/* Recurse on the upper and lower chunks we didn't get to */
if (bot < mbot)
if ((error = aa_addrangeroute(ifa, bot, mbot)))
{
if (mbot < mtop)
aa_delsingleroute(ifa, &rtaddr, &rtmask);
return(error);
}
if (mtop < top)
if ((error = aa_addrangeroute(ifa, mtop, top)))
{
if (mbot < mtop)
aa_delsingleroute(ifa, &rtaddr, &rtmask);
return(error);
}
return(0);
}
static int
aa_addsingleroute(struct ifaddr *ifa,
struct at_addr *addr, struct at_addr *mask)
{
int error;
printf("aa_addsingleroute: %x.%x mask %x.%x ...\n",
ntohs(addr->s_net), addr->s_node,
ntohs(mask->s_net), mask->s_node);
error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP);
if (error)
printf("error %d\n", error);
return(error);
}
static int
aa_delsingleroute(struct ifaddr *ifa,
struct at_addr *addr, struct at_addr *mask)
{
int error;
error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0);
if (error)
printf("aa_delsingleroute: error %d\n", error);
return(error);
}
static int
aa_dosingleroute(struct ifaddr *ifa,
struct at_addr *at_addr, struct at_addr *at_mask, int cmd, int flags)
{
struct sockaddr_at addr, mask;
bzero(&addr, sizeof(addr));
bzero(&mask, sizeof(mask));
addr.sat_family = AF_APPLETALK;
addr.sat_len = sizeof(struct sockaddr_at);
addr.sat_addr.s_net = at_addr->s_net;
addr.sat_addr.s_node = at_addr->s_node;
mask.sat_addr.s_net = at_mask->s_net;
mask.sat_addr.s_node = at_mask->s_node;
if (at_mask->s_node)
flags |= RTF_HOST;
return(rtrequest(cmd, (struct sockaddr *) &addr, ifa->ifa_addr,
(struct sockaddr *) &mask, flags, NULL));
}
#if 0
static void
aa_clean(void)
{
struct at_ifaddr *aa;
struct ifaddr *ifa;
struct ifnet *ifp;
while ( aa = at_ifaddr ) {
ifp = aa->aa_ifp;
at_scrub( ifp, aa );
at_ifaddr = aa->aa_next;
if (( ifa = ifp->if_addrlist ) == (struct ifaddr *)aa ) {
ifp->if_addrlist = ifa->ifa_next;
} else {
while ( ifa->ifa_next &&
( ifa->ifa_next != (struct ifaddr *)aa )) {
ifa = ifa->ifa_next;
}
if ( ifa->ifa_next ) {
ifa->ifa_next = ((struct ifaddr *)aa)->ifa_next;
} else {
panic( "at_entry" );
}
}
}
}
#endif