BTX (aka the boot extender) is an i386 kernel that hosts 32-bit

bootstrap programs, and provides page-level protection, hardware
interrupt reflection, a virtual-8086 mode interface to BIOS, etc.
This commit is contained in:
Robert Nordier 1998-09-12 04:29:23 +00:00
parent f4208b7ea8
commit aa7af79537
5 changed files with 1960 additions and 0 deletions

View File

@ -0,0 +1,5 @@
# $Id:$
SUBDIR= btx
.include <bsd.subdir.mk>

View File

@ -0,0 +1,22 @@
# $Id:$
M4?= m4
ORG= 0x9000
all: btx
btx: btx.o
.if ${OBJFORMAT} == aout
${LD} -nostdlib -N -s -T ${ORG} -o btx.out btx.o
dd if=btx.out of=${.TARGET} ibs=32 skip=1
.else
${LD} -N -e start -Ttext ${ORG} -o btx.out btx.o
/usr/libexec/elf/objcopy -S -O binary btx.out ${.TARGET}
.endif
btx.o: btx.m4 btx.s
${M4} btx.m4 btx.s | ${AS} ${AFLAGS} -o ${.TARGET}
clean:
rm -f btx btx.out btx.o

937
sys/boot/i386/btx/btx/btx.S Normal file
View File

@ -0,0 +1,937 @@
#
# Copyright (c) 1998 Robert Nordier
# All rights reserved.
#
# Redistribution and use in source and binary forms are freely
# permitted provided that the above copyright notice and this
# paragraph and the following disclaimer are duplicated in all
# such forms.
#
# This software is provided "AS IS" and without any express or
# implied warranties, including, without limitation, the implied
# warranties of merchantability and fitness for a particular
# purpose.
#
# $Id:$
#
# Memory layout.
#
.set MEM_BTX,0x1000 # Start of BTX memory
.set MEM_ESP0,0x1800 # Supervisor stack
.set MEM_BUF,0x1800 # Scratch buffer
.set MEM_ESP1,0x1e00 # Link stack
.set MEM_IDT,0x1e00 # IDT
.set MEM_TSS,0x1f98 # TSS
.set MEM_MAP,0x2000 # I/O bit map
.set MEM_DIR,0x4000 # Page directory
.set MEM_TBL,0x5000 # Page tables
.set MEM_ORG,0x9000 # BTX code
.set MEM_USR,0xa000 # Start of user memory
#
# Paging control.
#
.set PAG_SIZ,0x1000 # Page size
.set PAG_CNT,0x1000 # Pages to map
#
# Segment selectors.
#
.set SEL_SCODE,0x8 # Supervisor code
.set SEL_SDATA,0x10 # Supervisor data
.set SEL_RCODE,0x18 # Real mode code
.set SEL_RDATA,0x20 # Real mode data
.set SEL_UCODE,0x28|3 # User code
.set SEL_UDATA,0x30|3 # User data
.set SEL_TSS,0x38 # TSS
#
# Task state segment fields.
#
.set TSS_ESP0,0x4 # PL 0 ESP
.set TSS_SS0,0x8 # PL 0 SS
.set TSS_ESP1,0xc # PL 1 ESP
.set TSS_MAP,0x66 # I/O bit map base
#
# V86 constants.
#
.set V86_FLG,0x208eff # V86 flag mask
.set V86_STK,0x400 # V86 stack allowance
#
# Dump format control bytes.
#
.set DMP_X16,0x1 # Word
.set DMP_X32,0x2 # Long
.set DMP_MEM,0x4 # Memory
.set DMP_EOL,0x8 # End of line
#
# Screen defaults and assumptions.
#
.set SCR_MAT,0x7 # Mode/attribute
.set SCR_COL,0x50 # Columns per row
.set SCR_ROW,0x19 # Rows per screen
#
# BIOS Data Area locations.
#
.set BDA_MEM,0x413 # Free memory
.set BDA_SCR,0x449 # Video mode
.set BDA_POS,0x450 # Cursor position
#
# Derivations, for brevity.
#
.set _ESP0H,MEM_ESP0>>0x8 # Byte 1 of ESP0
.set _ESP1H,MEM_ESP1>>0x8 # Byte 1 of ESP1
.set _TSSIO,MEM_MAP-MEM_TSS # TSS I/O base
.set _TSSLM,MEM_DIR-MEM_TSS-1 # TSS limit
.set _IDTLM,MEM_TSS-MEM_IDT-1 # IDT limit
#
# Code segment.
#
.globl start
start: # Start of code
#
# BTX header.
#
btx_hdr: .byte 0xeb # Machine ID
.byte 0xe # Header size
.ascii "BTX" # Magic
.byte 0x0 # Major version
.byte 0x50 # Minor version
.byte 0x0 # Flags
.word PAG_CNT-MEM_ORG>>0xc # Paging control
.word break-start # Text size
.long 0x0 # Entry address
#
# Initialization routine.
#
init: cli # Disable interrupts
xorl %eax,%eax # Zero/segment
movl %ax,%ss # Set up
movwir(MEM_ESP0,_sp) # stack
movl %ax,%es # Address
movl %ax,%ds # data
pushw $0x2 # Clear
popfw # flags
#
# Initialize memory.
#
movwir(MEM_IDT,_di) # Memory to initialize
movwir((MEM_ORG-MEM_IDT)/2,_cx) # Words to zero
pushl %edi # Save
rep # Zero-fill
stosl # memory
popl %edi # Restore
#
# Create IDT.
#
movwir(idtctl,_si) # Control string
init.1: lodsb # Get entry
cwde # count
xchgl %eax,%ecx # as word
jecxz init.4 # If done
lodsb # Get segment
xchgl %eax,%edx # P:DPL:type
lodsl # Get control
xchgl %eax,%ebx # set
lodsl # Get handler offset
movb $SEL_SCODE,%dh # Segment selector
init.2: shrl %ebx # Handle this int?
jnc init.3 # No
movwr0(_ax,_di_) # Set handler offset
movbr1(_dh,0x2,_di_) # and selector
movbr1(_dl,0x5,_di_) # Set P:DPL:type
addwia(0x4) # Next handler
init.3: leaw1r(0x8,_di_,_di) # Next entry
loop init.2 # Till set done
jmp init.1 # Continue
#
# Initialize TSS.
#
init.4: movbi1(_ESP0H,TSS_ESP0+1,_di_) # Set ESP0
movbi1(SEL_SDATA,TSS_SS0,_di_) # Set SS0
movbi1(_ESP1H,TSS_ESP1+1,_di_) # Set ESP1
movbi1(_TSSIO,TSS_MAP,_di_) # Set I/O bit map base
#
# Create page directory.
#
xorw %dx,%dx # Page
movb $PAG_SIZ>>0x8,%dh # size
xorw %ax,%ax # Zero
movwir(MEM_DIR,_di) # Page directory
movb $PAG_CNT>>0xa,%cl # Entries
movwir(MEM_TBL|0x7,_ax) # First entry
init.5: stosw # Write entry
addl %edx,%eax # To next
loop init.5 # Till done
#
# Create page tables.
#
movwir(MEM_TBL,_di) # Page table
movb $PAG_CNT>>0x8,%ch # Entries
xorl %eax,%eax # Start address
init.6: movb $0x7,%al # Set U:W:P flags
cmpwmr(btx_hdr+0x8,_cx) # Standard user page?
jb init.8 # Yes
cmpwir(PAG_CNT-MEM_BTX>>0xc,_cx)# BTX memory?
ja init.8 # No
je init.7 # If first page
andb $~0x2,%al # Clear W flag
cmpwir(PAG_CNT-MEM_ORG>>0xc,_cx)# BTX code?
je init.8 # Yes
cmpwir(PAG_CNT-MEM_USR>>0xc,_cx)# User memory?
jb init.8 # User page >= 1
ja init.7 # BTX page
tstbim(0x80,btx_hdr+0x7) # Unmap user page 0?
jz init.7 # No
andb $~0x1,%al # Clear P flag
init.7: andb $~0x4,%al # Clear U flag
init.8: stosw # Set entry
addw %dx,%ax # Next address
loop init.6 # Till done
#
# Bring up the system.
#
movwir(0x2820,_bx) # Set protected mode
callwi(setpic) # IRQ offsets
lidtwm(idtdesc) # Set IDT
xorw %ax,%ax # Set base
movb $MEM_DIR>>0x8,%ah # of page
movl %eax,%cr3 # directory
lgdtwm(gdtdesc) # Set GDT
movl %cr0,%eax # Switch to
o16 # protected mode
orl $0x80000001,%eax # and enable
movl %eax,%cr0 # paging
jmpfwi(SEL_SCODE,init.9) # To 32-bit code
init.9: xorl %ecx,%ecx # Zero
movb $SEL_SDATA,%cl # To 32-bit
movl %cx,%ss # stack
#
# Launch user task.
#
movb $SEL_TSS,%cl # Set task
ltrl %ecx # register
movl $MEM_USR,%edx # User base address
movzwl %ss:BDA_MEM,%eax # Get free memory
shll $0xa,%eax # To bytes
subl %edx,%eax # Less base
movb $SEL_UDATA,%cl # User data selector
pushl %ecx # Set SS
pushl %eax # Set ESP
pushl $0x202 # Set flags (IF set)
pushl $SEL_UCODE # Set CS
pushl $0x0 # Set EIP
pushl %ecx # Set GS
pushl %ecx # Set FS
pushl %ecx # Set DS
pushl %ecx # Set ES
pushl %edx # Set EAX
movb $0x7,%cl # Set remaining
init.10: pushb $0x0 # general
loop init.10 # registers
popa # and initialize
popl %es # Initialize
popl %ds # user
popl %fs # segment
popl %gs # registers
iret # To user mode
#
# Exit routine.
#
exit: cld # String ops inc
movl $MEM_ESP0,%esp # Clear stack
#
# Turn off paging.
#
movl %cr0,%eax # Get CR0
andl $~0x80000000,%eax # Disable
movl %eax,%cr0 # paging
xorl %ecx,%ecx # Zero
movl %ecx,%cr3 # Flush TLB
#
# To 16 bits.
#
o16 # Reload
jmpfwi(SEL_RCODE,exit.1) # CS
exit.1: movb $SEL_RDATA,%cl # 16-bit selector
movl %cx,%ss # Reload SS
movl %cx,%ds # Load
movl %cx,%es # remaining
movl %cx,%fs # segment
movl %cx,%gs # registers
#
# To real-address mode.
#
decl %eax # Switch to
movl %eax,%cr0 # real mode
jmpfwi(0x0,exit.2) # Reload CS
exit.2: xorl %eax,%eax # Real mode segment
movl %ax,%ss # Reload SS
movl %ax,%ds # Address data
movwir(0x7008,_bx) # Set real mode
callwi(setpic) # IRQ offsets
lidtwm(ivtdesc) # Set IVT
#
# Prompt for reboot.
#
sti # Enable interrupts
movwir(prompt,_si) # Display
callwi(puts16) # prompt
xorb %ah,%ah # BIOS: Get
int $0x16 # keypress
int $0x19 # BIOS: Reboot
#
# Set IRQ offsets by reprogramming 8259A PICs.
#
setpic: inb $0x21,%al # Save master
pushl %eax # IMR
inb $0xa1,%al # Save slave
pushl %eax # IMR
movb $0x11,%al # ICW1 to
outb %al,$0x20 # master,
outb %al,$0xa0 # slave
movb %bl,%al # ICW2 to
outb %al,$0x21 # master
movb %bh,%al # ICW2 to
outb %al,$0xa1 # slave
movb $0x4,%al # ICW3 to
outb %al,$0x21 # master
movb $0x2,%al # ICW3 to
outb %al,$0xa1 # slave
movb $0x1,%al # ICW4 to
outb %al,$0x21 # master,
outb %al,$0xa1 # slave
popl %eax # Restore slave
outb %al,$0xa1 # IMR
popl %eax # Restore master
outb %al,$0x21 # IMR
ret # To caller
#
# Display zero-terminated string [ESI] using BIOS.
#
puts16.0: movwir(0x7,_bx) # Page:attribute
movb $0xe,%ah # BIOS: Display
int $0x10 # char
puts16: lodsb # Load char
testb %al,%al # End of string?
jnz puts16.0 # No
ret # To caller
#
# Initiate return from V86 mode to user mode.
#
inthlt: hlt # To supervisor mode
#
# Exception jump table.
#
intx00: pushb $0x0 # Int 0x0: #DE
jmp ex_noc # Divide error
pushb $0x1 # Int 0x1: #DB
jmp ex_noc # Debug
pushb $0x3 # Int 0x3: #BP
jmp ex_noc # Breakpoint
pushb $0x4 # Int 0x4: #OF
jmp ex_noc # Overflow
pushb $0x5 # Int 0x5: #BR
jmp ex_noc # BOUND range exceeded
pushb $0x6 # Int 0x6: #UD
jmp ex_noc # Invalid opcode
pushb $0x7 # Int 0x7: #NM
jmp ex_noc # Device not available
pushb $0x8 # Int 0x8: #DF
jmp except # Double fault
pushb $0xa # Int 0xa: #TS
jmp except # Invalid TSS
pushb $0xb # Int 0xb: #NP
jmp except # Segment not present
pushb $0xc # Int 0xc: #SS
jmp except # Stack segment fault
pushb $0xd # Int 0xd: #GP
jmp ex_v86 # General protection
pushb $0xe # Int 0xe: #PF
jmp except # Page fault
intx10: pushb $0x10 # Int 0x10: #MF
jmp ex_noc # Floating-point error
#
#
#
ex_v86: testb $0x2,0x12(%esp,1) # V86 mode?
jz except # No
jmp v86mon # To monitor
#
# Save a zero error code.
#
ex_noc: pushl (%esp,1) # Duplicate int no
movb $0x0,0x4(%esp,1) # Fake error code
#
# Handle exception.
#
except: cld # String ops inc
pushl %ds # Save
pushl %es # most
pusha # registers
movb $0x6,%al # Push loop count
testb $0x2,0x3a(%esp,1) # V86 mode?
jnz except.1 # Yes
pushl %gs # Set GS
pushl %fs # Set FS
pushl %ds # Set DS
pushl %es # Set ES
movb $0x2,%al # Push loop count
cmpw $SEL_SCODE,0x44(%esp,1) # Supervisor mode?
jne except.1 # No
pushl %ss # Set SS
leal 0x50(%esp,1),%eax # Set
pushl %eax # ESP
jmp except.2 # Join common code
except.1: pushl 0x50(%esp,1) # Set GS, FS, DS, ES
decb %al # (if V86 mode), and
jne except.1 # SS, ESP
except.2: pushl $SEL_SDATA # Set up
popl %ds # to
pushl %ds # address
popl %es # data
movl %esp,%ebx # Stack frame
movl $dmpfmt,%esi # Dump format string
movl $MEM_BUF,%edi # Buffer
pushl %edi # Dump to
call dump # buffer
popl %esi # and
call putstr # display
leal 0x18(%esp,1),%esp # Discard frame
popa # Restore
popl %es # registers
popl %ds # saved
cmpb $0x3,(%esp,1) # Breakpoint?
je except.3 # Yes
jmp exit # Exit
except.3: leal 0x8(%esp,1),%esp # Discard err, int no
iret # From interrupt
#
# Return to user mode from V86 mode.
#
intrtn: cld # String ops inc
pushl %ds # Address
popl %es # data
leal 0x3c(%ebp),%edx # V86 Segment registers
movl MEM_TSS+TSS_ESP1,%esi # Link stack pointer
lodsl # INT_V86 args pointer
movl %esi,%ebx # Saved exception frame
testl %eax,%eax # INT_V86 args?
jz intrtn.2 # No
movl $MEM_USR,%edi # User base
movl 0x1c(%esi),%ebx # User ESP
movl %eax,(%edi,%ebx,1) # Restore to user stack
leal 0x8(%edi,%eax,1),%edi # Arg segment registers
testb $0x4,-0x6(%edi) # Return flags?
jz intrtn.1 # No
movl 0x30(%ebp),%eax # Get V86 flags
movw %ax,0x18(%esi) # Set user flags
intrtn.1: leal 0x10(%esi),%ebx # Saved exception frame
xchgl %edx,%esi # Segment registers
movb $0x4,%cl # Update seg regs
rep # in INT_V86
movsl # args
intrtn.2: movl %edx,%esi # Segment registers
leal 0x28(%ebp),%edi # Set up seg
movb $0x4,%cl # regs for
rep # later
movsl # pop
movl %ebx,%esi # Restore exception
movb $0x5,%cl # frame to
rep # supervisor
movsl # stack
movl %esi,MEM_TSS+TSS_ESP1 # Link stack pointer
popa # Restore
leal 0x8(%esp,1),%esp # Discard err, int no
popl %es # Restore
popl %ds # user
popl %fs # segment
popl %gs # registers
iret # To user mode
#
# V86 monitor.
#
v86mon: cld # String ops inc
pushl $SEL_SDATA # Set up for
popl %ds # flat addressing
pusha # Save registers
movl %esp,%ebp # Address stack frame
movzwl 0x2c(%ebp),%edi # Load V86 CS
shll $0x4,%edi # To linear
movl 0x28(%ebp),%esi # Load V86 IP
addl %edi,%esi # Code pointer
xorl %ecx,%ecx # Zero
movb $0x2,%cl # 16-bit operands
xorl %eax,%eax # Zero
v86mon.1: lodsb # Get opcode
cmpb $0x66,%al # Operand size prefix?
jne v86mon.2 # No
movb $0x4,%cl # 32-bit operands
jmp v86mon.1 # Continue
v86mon.2: cmpb $0xf4,%al # HLT?
jne v86mon.3 # No
cmpl $inthlt+0x1,%esi # Is inthlt?
jne v86mon.4 # No
jmp intrtn # Return to user mode
v86mon.3: cmpb $0xfa,%al # CLI?
je v86cli # Yes
cmpb $0xfb,%al # STI?
je v86sti # Yes
movzwl 0x38(%ebp),%ebx # Load V86 SS
shll $0x4,%ebx # To offset
pushl %ebx # Save
addl 0x34(%ebp),%ebx # Add V86 SP
movl 0x30(%ebp),%edx # Load V86 flags
cmpb $0x9c,%al # PUSHF/PUSHFD?
je v86pushf # Yes
cmpb $0x9d,%al # POPF/POPFD?
je v86popf # Yes
cmpb $0xcd,%al # INT imm8?
je v86intn # Yes
cmpb $0xcf,%al # IRET/IRETD?
je v86iret # Yes
popl %ebx # Restore
v86mon.4: popa # Restore
jmp except # Handle exception
v86mon.5: movl %edx,0x30(%ebp) # Save V86 flags
v86mon.6: popl %edx # V86 SS adjustment
subl %edx,%ebx # Save V86
movl %ebx,0x34(%ebp) # SP
v86mon.7: subl %edi,%esi # From linear
movl %esi,0x28(%ebp) # Save V86 IP
popa # Restore
leal 0x8(%esp,1),%esp # Discard int no, error
iret # To V86 mode
#
# Emulate CLI.
#
v86cli: andb $~0x2,0x31(%ebp) # Clear IF
jmp v86mon.7 # Finish up
#
# Emulate STI.
#
v86sti: orb $0x2,0x31(%ebp) # Set IF
jmp v86mon.7 # Finish up
#
# Emulate PUSHF/PUSHFD.
#
v86pushf: subl %ecx,%ebx # Adjust SP
cmpb $0x4,%cl # 32-bit
je v86pushf.1 # Yes
o16 # 16-bit
v86pushf.1: movl %edx,(%ebx) # Save flags
jmp v86mon.6 # Finish up
#
# Emulate IRET/IRETD.
#
v86iret: movzwl (%ebx),%esi # Load V86 IP
movzwl 0x2(%ebx),%edi # Load V86 CS
leal 0x4(%ebx),%ebx # Adjust SP
movl %edi,0x2c(%ebp) # Save V86 CS
xorl %edi,%edi # No ESI adjustment
#
# Emulate POPF/POPFD (and remainder of IRET/IRETD).
#
v86popf: cmpb $0x4,%cl # 32-bit?
je v86popf.1 # Yes
movl %edx,%eax # Initialize
o16 # 16-bit
v86popf.1: movl (%ebx),%eax # Load flags
addl %ecx,%ebx # Adjust SP
andl $V86_FLG,%eax # Merge
andl $~V86_FLG,%edx # the
orl %eax,%edx # flags
jmp v86mon.5 # Finish up
#
# Emulate INT imm8.
#
v86intn: lodsb # Get int no
subl %edi,%esi # From
shrl $0x4,%edi # linear
movw %dx,-0x2(%ebx) # Save flags
movw %di,-0x4(%ebx) # Save CS
leal -0x6(%ebx),%ebx # Adjust SP
movw %si,(%ebx) # Save IP
shll $0x2,%eax # Scale
movzwl (%eax),%esi # Load IP
movzwl 0x2(%eax),%edi # Load CS
movl %edi,0x2c(%ebp) # Save CS
xorl %edi,%edi # No ESI adjustment
andb $~0x3,%dh # Clear IF and TF
jmp v86mon.5 # Finish up
#
# Hardware interrupt jump table.
#
intx20: pushb $0x8 # Int 0x20: IRQ0
jmp int_hw # V86 int 0x8
pushb $0x9 # Int 0x21: IRQ1
jmp int_hw # V86 int 0x9
pushb $0xa # Int 0x22: IRQ2
jmp int_hw # V86 int 0xa
pushb $0xb # Int 0x23: IRQ3
jmp int_hw # V86 int 0xb
pushb $0xc # Int 0x24: IRQ4
jmp int_hw # V86 int 0xc
pushb $0xd # Int 0x25: IRQ5
jmp int_hw # V86 int 0xd
pushb $0xe # Int 0x26: IRQ6
jmp int_hw # V86 int 0xe
pushb $0xf # Int 0x27: IRQ7
jmp int_hw # V86 int 0xf
pushb $0x70 # Int 0x28: IRQ8
jmp int_hw # V86 int 0x70
pushb $0x71 # Int 0x29: IRQ9
jmp int_hw # V86 int 0x71
pushb $0x72 # Int 0x2a: IRQ10
jmp int_hw # V86 int 0x72
pushb $0x73 # Int 0x2b: IRQ11
jmp int_hw # V86 int 0x73
pushb $0x74 # Int 0x2c: IRQ12
jmp int_hw # V86 int 0x74
pushb $0x75 # Int 0x2d: IRQ13
jmp int_hw # V86 int 0x75
pushb $0x76 # Int 0x2e: IRQ14
jmp int_hw # V86 int 0x76
pushb $0x77 # Int 0x2f: IRQ15
jmp int_hw # V86 int 0x77
#
# Reflect hardware interrupts.
#
int_hw: testb $0x2,0xe(%esp,1) # V86 mode?
jz intusr # No
pushl $SEL_SDATA # Address
popl %ds # data
xchgl %eax,(%esp,1) # Swap EAX, int no
pushl %ebp # Address
movl %esp,%ebp # stack frame
pushl %ebx # Save
shll $0x2,%eax # Get int
movl (%eax),%eax # vector
subl $0x6,0x14(%ebp) # Adjust V86 ESP
movzwl 0x18(%ebp),%ebx # V86 SS
shll $0x4,%ebx # * 0x10
addl 0x14(%ebp),%ebx # + V86 ESP
xchgw %ax,0x8(%ebp) # Swap V86 IP
rorl $0x10,%eax # Swap words
xchgw %ax,0xc(%ebp) # Swap V86 CS
roll $0x10,%eax # Swap words
movl %eax,(%ebx) # CS:IP for IRET
movl 0x10(%ebp),%eax # V86 flags
movw %ax,0x4(%ebx) # Flags for IRET
andb $~0x3,0x11(%ebp) # Clear IF, TF
popl %ebx # Restore
popl %ebp # saved
popl %eax # registers
iret # To V86 mode
#
# Invoke V86 interrupt from user mode, with arguments.
#
intx31: stc # Have btx_v86
pushl %eax # Missing int no
#
# Invoke V86 interrupt from user mode.
#
intusr: std # String ops dec
pushl %eax # Expand
pushl %eax # stack
pushl %eax # frame
pusha # Save
pushl %gs # Save
movl %esp,%eax # seg regs
pushl %fs # and
pushl %ds # point
pushl %es # to them
pushb $SEL_SDATA # Set up
popl %ds # to
pushl %ds # address
popl %es # data
movl $MEM_USR,%ebx # User base
movl %ebx,%edx # address
jc intusr.1 # If btx_v86
xorl %edx,%edx # Control flags
xorl %ebp,%ebp # btx_v86 pointer
intusr.1: leal 0x50(%esp,1),%esi # Base of frame
pushl %esi # Save
addl -0x4(%esi),%ebx # User ESP
movl MEM_TSS+TSS_ESP1,%edi # Link stack pointer
leal -0x4(%edi),%edi # Adjust for push
xorl %ecx,%ecx # Zero
movb $0x5,%cl # Push exception
rep # frame on
movsl # link stack
xchgl %eax,%esi # Saved seg regs
movl 0x40(%esp,1),%eax # Get int no
testl %edx,%edx # Have btx_v86?
jz intusr.2 # No
movl (%ebx),%ebp # btx_v86 pointer
movb $0x4,%cl # Count
addl %ecx,%ebx # Adjust for pop
rep # Push saved seg regs
movsl # on link stack
addl %ebp,%edx # Flatten btx_v86 ptr
leal 0x14(%edx),%esi # Seg regs pointer
movl 0x4(%edx),%eax # Get int no/address
movzwl 0x2(%edx),%edx # Get control flags
intusr.2: movl %ebp,(%edi) # Push btx_v86 and
movl %edi,MEM_TSS+TSS_ESP1 # save link stack ptr
popl %edi # Base of frame
xchgl %eax,%ebp # Save intno/address
movl 0x48(%esp,1),%eax # Get flags
testb $0x2,%dl # Simulate CALLF?
jnz intusr.3 # Yes
decl %ebx # Push flags
decl %ebx # on V86
movw %ax,(%ebx) # stack
intusr.3: movb $0x4,%cl # Count
subl %ecx,%ebx # Push return address
movl $inthlt,(%ebx) # on V86 stack
rep # Copy seg regs to
movsl # exception frame
xchgl %eax,%ecx # Save flags
movl %ebx,%eax # User ESP
subl $V86_STK,%eax # Less bytes
ja intusr.4 # to
xorl %eax,%eax # keep
intusr.4: shrl $0x4,%eax # Gives segment
stosl # Set SS
shll $0x4,%eax # To bytes
xchgl %eax,%ebx # Swap
subl %ebx,%eax # Gives offset
stosl # Set ESP
xchgl %eax,%ecx # Get flags
btsl $0x11,%eax # Set VM
andb $~0x3,%ah # Clear IF and TF
stosl # Set EFL
xchgl %eax,%ebp # Get int no/address
testb $0x1,%dl # Address?
jnz intusr.5 # Yes
shll $0x2,%eax # XXX Scale
movl (%eax),%eax # Load int vector
intusr.5: movl %eax,%ecx # XXX Save
shrl $0x10,%eax # Gives segment
stosl # Set CS
movw %cx,%ax # XXX Restore
stosl # Set EIP
leal 0x10(%esp,1),%esp # Discard seg regs
popa # Restore
iret # To V86 mode
#
# System Call.
#
intx30: jmp exit # Just exit for now
#
# Dump structure [EBX] to [EDI], using format string [ESI].
#
dump.0: stosb # Save char
dump: lodsb # Load char
testb %al,%al # End of string?
jz dump.10 # Yes
testb $0x80,%al # Control?
jz dump.0 # No
movb %al,%ch # Save control
movb $'=',%al # Append
stosb # '='
lodsb # Get offset
pushl %esi # Save
movsbl %al,%esi # To
addl %ebx,%esi # pointer
testb $DMP_X16,%ch # Dump word?
jz dump.1 # No
lodsw # Get and
call hex16 # dump it
dump.1: testb $DMP_X32,%ch # Dump long?
jz dump.2 # No
lodsl # Get and
call hex32 # dump it
dump.2: testb $DMP_MEM,%ch # Dump memory?
jz dump.8 # No
pushl %ds # Save
testb $0x2,0x52(%ebx) # XXX V86 mode?
jnz dump.3 # Yes
verrl 0x4(%esi) # Readable selector?
jnz dump.3 # No
ldsl (%esi),%esi # Load pointer
jmp dump.4 # Join common code
dump.3: lodsl # Set offset
xchgl %eax,%edx # Save
lodsl # Get segment
shll $0x4,%eax # * 0x10
addl %edx,%eax # + offset
xchgl %eax,%esi # Set pointer
dump.4: movb $0x10,%cl # Bytes to dump
dump.5: lodsb # Get byte and
call hex8 # dump it
decb %cl # Keep count
jz dump.7 # If done
movb $'-',%al # Separator
cmpb $0x8,%cl # Half way?
je dump.6 # Yes
movb $' ',%al # Use space
dump.6: stosb # Save separator
jmp dump.5 # Continue
dump.7: popl %ds # Restore
dump.8: popl %esi # Restore
movb $0xa,%al # Line feed
testb $DMP_EOL,%ch # End of line?
jnz dump.9 # Yes
movb $' ',%al # Use spaces
stosb # Save one
dump.9: jmp dump.0 # Continue
dump.10: stosb # Terminate string
ret # To caller
#
# Convert EAX, AX, or AL to hex, saving the result to [EDI].
#
hex32: pushl %eax # Save
shrl $0x10,%eax # Do upper
call hex16 # 16
popl %eax # Restore
hex16: call hex16.1 # Do upper 8
hex16.1: xchgb %ah,%al # Save/restore
hex8: pushl %eax # Save
shrb $0x4,%al # Do upper
call hex8.1 # 4
popl %eax # Restore
hex8.1: andb $0xf,%al # Get lower 4
cmpb $0xa,%al # Convert
sbbb $0x69,%al # to hex
das # digit
orb $0x20,%al # To lower case
stosb # Save char
ret # (Recursive)
#
# Output zero-terminated string [ESI] to the console.
#
putstr.0: call putchr # Output char
putstr: lodsb # Load char
testb %al,%al # End of string?
jnz putstr.0 # No
ret # To caller
#
# Output character AL to the console.
#
putchr: pusha # Save
xorl %ecx,%ecx # Zero for loops
movb $SCR_MAT,%ah # Mode/attribute
movl $BDA_POS,%ebx # BDA pointer
movw (%ebx),%dx # Cursor position
movl $0xb8000,%edi # Regen buffer (color)
cmpb %ah,BDA_SCR-BDA_POS(%ebx) # Mono mode?
jne putchr.1 # No
xorw %di,%di # Regen buffer (mono)
putchr.1: cmpb $0xa,%al # New line?
je putchr.2 # Yes
xchgl %eax,%ecx # Save char
movb $SCR_COL,%al # Columns per row
mulb %dh # * row position
addb %dl,%al # + column
adcb $0x0,%ah # position
shll %eax # * 2
xchgl %eax,%ecx # Swap char, offset
movw %ax,(%edi,%ecx,1) # Write attr:char
incl %edx # Bump cursor
cmpb $SCR_COL,%dl # Beyond row?
jb putchr.3 # No
putchr.2: xorb %dl,%dl # Zero column
incb %dh # Bump row
putchr.3: cmpb $SCR_ROW,%dh # Beyond screen?
jb putchr.4 # No
leal 2*SCR_COL(%edi),%esi # New top line
movw $(SCR_ROW-1)*SCR_COL/2,%cx # Words to move
rep # Scroll
movsl # screen
movb $' ',%al # Space
movb $SCR_COL,%cl # Columns to clear
rep # Clear
stosw # line
movb $SCR_ROW-1,%dh # Bottom line
putchr.4: movw %dx,(%ebx) # Update position
popa # Restore
ret # To caller
.p2align 4
#
# Global descriptor table.
#
gdt: .word 0x0,0x0,0x0,0x0 # Null entry
.word 0xffff,0x0,0x9a00,0xcf # SEL_SCODE
.word 0xffff,0x0,0x9200,0xcf # SEL_SDATA
.word 0xffff,0x0,0x9a00,0x0 # SEL_RCODE
.word 0xffff,0x0,0x9200,0x0 # SEL_RDATA
.word 0xffff,MEM_USR,0xfa00,0xcf# SEL_UCODE
.word 0xffff,MEM_USR,0xf200,0xcf# SEL_UDATA
.word _TSSLM,MEM_TSS,0x8900,0x0 # SEL_TSS
gdt.1:
#
# Pseudo-descriptors.
#
gdtdesc: .word gdt.1-gdt-1,gdt,0x0 # GDT
idtdesc: .word _IDTLM,MEM_IDT,0x0 # IDT
ivtdesc: .word 0x400-0x0-1,0x0,0x0 # IVT
#
# IDT construction control string.
#
idtctl: .byte 0x10, 0x8e # Int 0x0-0xf
.word 0x7dfb,intx00 # (exceptions)
.byte 0x10, 0x8e # Int 0x10
.word 0x1, intx10 # (exception)
.byte 0x10, 0x8e # Int 0x20-0x2f
.word 0xffff,intx20 # (hardware)
.byte 0x1, 0xee # int 0x30
.word 0x1, intx30 # (system call)
.byte 0x2, 0xee # Int 0x31-0x32
.word 0x1, intx31 # (V86, null)
.byte 0x0 # End of string
#
# Dump format string.
#
dmpfmt: .ascii "int" # "int="
.byte 0x80|DMP_X32, 0x40 # "00000000 "
.ascii "err" # "err="
.byte 0x80|DMP_X32, 0x44 # "00000000 "
.ascii "efl" # "efl="
.byte 0x80|DMP_X32, 0x50 # "00000000 "
.ascii "eip" # "eip="
.byte 0x80|DMP_X32|DMP_EOL,0x48 # "00000000\n"
.ascii "eax" # "eax="
.byte 0x80|DMP_X32, 0x34 # "00000000 "
.ascii "ebx" # "ebx="
.byte 0x80|DMP_X32, 0x28 # "00000000 "
.ascii "ecx" # "ecx="
.byte 0x80|DMP_X32, 0x30 # "00000000 "
.ascii "edx" # "edx="
.byte 0x80|DMP_X32|DMP_EOL,0x2c # "00000000\n"
.ascii "esi" # "esi="
.byte 0x80|DMP_X32, 0x1c # "00000000 "
.ascii "edi" # "edi="
.byte 0x80|DMP_X32, 0x18 # "00000000 "
.ascii "ebp" # "ebp="
.byte 0x80|DMP_X32, 0x20 # "00000000 "
.ascii "esp" # "esp="
.byte 0x80|DMP_X32|DMP_EOL,0x0 # "00000000\n"
.ascii "cs" # "cs="
.byte 0x80|DMP_X16, 0x4c # "0000 "
.ascii "ds" # "ds="
.byte 0x80|DMP_X16, 0xc # "0000 "
.ascii "es" # "es="
.byte 0x80|DMP_X16, 0x8 # "0000 "
.ascii " " # " "
.ascii "fs" # "fs="
.byte 0x80|DMP_X16, 0x10 # "0000 "
.ascii "gs" # "gs="
.byte 0x80|DMP_X16, 0x14 # "0000 "
.ascii "ss" # "ss="
.byte 0x80|DMP_X16|DMP_EOL,0x4 # "0000\n"
.ascii "cs:eip" # "cs:eip="
.byte 0x80|DMP_MEM|DMP_EOL,0x48 # "00 00 ... 00 00\n"
.ascii "ss:esp" # "ss:esp="
.byte 0x80|DMP_MEM|DMP_EOL,0x0 # "00 00 ... 00 00\n"
.byte 0x0 # End of string
#
# Messages.
#
prompt: .asciz "Press ENTER to reboot"
#
# Start of user memory.
#
.p2align 4
break:

View File

@ -0,0 +1,59 @@
#
# Copyright (c) 1998 Robert Nordier
# All rights reserved.
#
# Redistribution and use in source and binary forms are freely
# permitted provided that the above copyright notice and this
# paragraph and the following disclaimer are duplicated in all
# such forms.
#
# This software is provided "AS IS" and without any express or
# implied warranties, including, without limitation, the implied
# warranties of merchantability and fitness for a particular
# purpose.
#
# $Id:$
define(_al,0x0)dnl
define(_cl,0x1)dnl
define(_dl,0x2)dnl
define(_bl,0x3)dnl
define(_ah,0x4)dnl
define(_ch,0x5)dnl
define(_dh,0x6)dnl
define(_bh,0x7)dnl
define(_ax,0x0)dnl
define(_cx,0x1)dnl
define(_dx,0x2)dnl
define(_bx,0x3)dnl
define(_sp,0x4)dnl
define(_bp,0x5)dnl
define(_si,0x6)dnl
define(_di,0x7)dnl
define(_bx_si,0x0)dnl
define(_bx_di,0x1)dnl
define(_bp_si,0x2)dnl
define(_bp_di,0x3)dnl
define(_si_,0x4)dnl
define(_di_,0x5)dnl
define(_bp_,0x6)dnl
define(_bx_,0x7)dnl
define(o16,`.byte 0x66')dnl
define(addwia,`.byte 0x5; .word $1')dnl
define(lgdtwm,`.byte 0xf; .byte 0x1; .byte 0x16; .word $1')dnl
define(lidtwm,`.byte 0xf; .byte 0x1; .byte 0x1e; .word $1')dnl
define(cmpwmr,`.byte 0x3b; .byte ($2 << 0x3) | 0x6; .word $1')dnl
define(cmpwir,`.byte 0x81; .byte 0xf8 | $2; .word $1')dnl
define(movbr1,`.byte 0x88; .byte 0x40 | ($1 << 0x3) | $3; .byte $2')dnl
define(movwr0,`.byte 0x89; .byte ($1 << 0x3) | $2')dnl
define(leaw1r,`.byte 0x8d; .byte 0x40 | ($3 << 0x3) | $2; .byte $1')dnl
define(movwir,`.byte 0xb8 | $2; .word $1')dnl
define(movbi1,`.byte 0xc6; .byte 0x40 | $3; .byte $2; .byte $1')dnl
define(callwi,`.byte 0xe8; .word $1 - . - 0x2')dnl
define(jmpfwi,`.byte 0xea; .word $2; .word $1')dnl
define(tstbim,`.byte 0xf6; .byte 0x6; .word $2; .byte $1')dnl

937
sys/boot/i386/btx/btx/btx.s Normal file
View File

@ -0,0 +1,937 @@
#
# Copyright (c) 1998 Robert Nordier
# All rights reserved.
#
# Redistribution and use in source and binary forms are freely
# permitted provided that the above copyright notice and this
# paragraph and the following disclaimer are duplicated in all
# such forms.
#
# This software is provided "AS IS" and without any express or
# implied warranties, including, without limitation, the implied
# warranties of merchantability and fitness for a particular
# purpose.
#
# $Id:$
#
# Memory layout.
#
.set MEM_BTX,0x1000 # Start of BTX memory
.set MEM_ESP0,0x1800 # Supervisor stack
.set MEM_BUF,0x1800 # Scratch buffer
.set MEM_ESP1,0x1e00 # Link stack
.set MEM_IDT,0x1e00 # IDT
.set MEM_TSS,0x1f98 # TSS
.set MEM_MAP,0x2000 # I/O bit map
.set MEM_DIR,0x4000 # Page directory
.set MEM_TBL,0x5000 # Page tables
.set MEM_ORG,0x9000 # BTX code
.set MEM_USR,0xa000 # Start of user memory
#
# Paging control.
#
.set PAG_SIZ,0x1000 # Page size
.set PAG_CNT,0x1000 # Pages to map
#
# Segment selectors.
#
.set SEL_SCODE,0x8 # Supervisor code
.set SEL_SDATA,0x10 # Supervisor data
.set SEL_RCODE,0x18 # Real mode code
.set SEL_RDATA,0x20 # Real mode data
.set SEL_UCODE,0x28|3 # User code
.set SEL_UDATA,0x30|3 # User data
.set SEL_TSS,0x38 # TSS
#
# Task state segment fields.
#
.set TSS_ESP0,0x4 # PL 0 ESP
.set TSS_SS0,0x8 # PL 0 SS
.set TSS_ESP1,0xc # PL 1 ESP
.set TSS_MAP,0x66 # I/O bit map base
#
# V86 constants.
#
.set V86_FLG,0x208eff # V86 flag mask
.set V86_STK,0x400 # V86 stack allowance
#
# Dump format control bytes.
#
.set DMP_X16,0x1 # Word
.set DMP_X32,0x2 # Long
.set DMP_MEM,0x4 # Memory
.set DMP_EOL,0x8 # End of line
#
# Screen defaults and assumptions.
#
.set SCR_MAT,0x7 # Mode/attribute
.set SCR_COL,0x50 # Columns per row
.set SCR_ROW,0x19 # Rows per screen
#
# BIOS Data Area locations.
#
.set BDA_MEM,0x413 # Free memory
.set BDA_SCR,0x449 # Video mode
.set BDA_POS,0x450 # Cursor position
#
# Derivations, for brevity.
#
.set _ESP0H,MEM_ESP0>>0x8 # Byte 1 of ESP0
.set _ESP1H,MEM_ESP1>>0x8 # Byte 1 of ESP1
.set _TSSIO,MEM_MAP-MEM_TSS # TSS I/O base
.set _TSSLM,MEM_DIR-MEM_TSS-1 # TSS limit
.set _IDTLM,MEM_TSS-MEM_IDT-1 # IDT limit
#
# Code segment.
#
.globl start
start: # Start of code
#
# BTX header.
#
btx_hdr: .byte 0xeb # Machine ID
.byte 0xe # Header size
.ascii "BTX" # Magic
.byte 0x0 # Major version
.byte 0x50 # Minor version
.byte 0x0 # Flags
.word PAG_CNT-MEM_ORG>>0xc # Paging control
.word break-start # Text size
.long 0x0 # Entry address
#
# Initialization routine.
#
init: cli # Disable interrupts
xorl %eax,%eax # Zero/segment
movl %ax,%ss # Set up
movwir(MEM_ESP0,_sp) # stack
movl %ax,%es # Address
movl %ax,%ds # data
pushw $0x2 # Clear
popfw # flags
#
# Initialize memory.
#
movwir(MEM_IDT,_di) # Memory to initialize
movwir((MEM_ORG-MEM_IDT)/2,_cx) # Words to zero
pushl %edi # Save
rep # Zero-fill
stosl # memory
popl %edi # Restore
#
# Create IDT.
#
movwir(idtctl,_si) # Control string
init.1: lodsb # Get entry
cwde # count
xchgl %eax,%ecx # as word
jecxz init.4 # If done
lodsb # Get segment
xchgl %eax,%edx # P:DPL:type
lodsl # Get control
xchgl %eax,%ebx # set
lodsl # Get handler offset
movb $SEL_SCODE,%dh # Segment selector
init.2: shrl %ebx # Handle this int?
jnc init.3 # No
movwr0(_ax,_di_) # Set handler offset
movbr1(_dh,0x2,_di_) # and selector
movbr1(_dl,0x5,_di_) # Set P:DPL:type
addwia(0x4) # Next handler
init.3: leaw1r(0x8,_di_,_di) # Next entry
loop init.2 # Till set done
jmp init.1 # Continue
#
# Initialize TSS.
#
init.4: movbi1(_ESP0H,TSS_ESP0+1,_di_) # Set ESP0
movbi1(SEL_SDATA,TSS_SS0,_di_) # Set SS0
movbi1(_ESP1H,TSS_ESP1+1,_di_) # Set ESP1
movbi1(_TSSIO,TSS_MAP,_di_) # Set I/O bit map base
#
# Create page directory.
#
xorw %dx,%dx # Page
movb $PAG_SIZ>>0x8,%dh # size
xorw %ax,%ax # Zero
movwir(MEM_DIR,_di) # Page directory
movb $PAG_CNT>>0xa,%cl # Entries
movwir(MEM_TBL|0x7,_ax) # First entry
init.5: stosw # Write entry
addl %edx,%eax # To next
loop init.5 # Till done
#
# Create page tables.
#
movwir(MEM_TBL,_di) # Page table
movb $PAG_CNT>>0x8,%ch # Entries
xorl %eax,%eax # Start address
init.6: movb $0x7,%al # Set U:W:P flags
cmpwmr(btx_hdr+0x8,_cx) # Standard user page?
jb init.8 # Yes
cmpwir(PAG_CNT-MEM_BTX>>0xc,_cx)# BTX memory?
ja init.8 # No
je init.7 # If first page
andb $~0x2,%al # Clear W flag
cmpwir(PAG_CNT-MEM_ORG>>0xc,_cx)# BTX code?
je init.8 # Yes
cmpwir(PAG_CNT-MEM_USR>>0xc,_cx)# User memory?
jb init.8 # User page >= 1
ja init.7 # BTX page
tstbim(0x80,btx_hdr+0x7) # Unmap user page 0?
jz init.7 # No
andb $~0x1,%al # Clear P flag
init.7: andb $~0x4,%al # Clear U flag
init.8: stosw # Set entry
addw %dx,%ax # Next address
loop init.6 # Till done
#
# Bring up the system.
#
movwir(0x2820,_bx) # Set protected mode
callwi(setpic) # IRQ offsets
lidtwm(idtdesc) # Set IDT
xorw %ax,%ax # Set base
movb $MEM_DIR>>0x8,%ah # of page
movl %eax,%cr3 # directory
lgdtwm(gdtdesc) # Set GDT
movl %cr0,%eax # Switch to
o16 # protected mode
orl $0x80000001,%eax # and enable
movl %eax,%cr0 # paging
jmpfwi(SEL_SCODE,init.9) # To 32-bit code
init.9: xorl %ecx,%ecx # Zero
movb $SEL_SDATA,%cl # To 32-bit
movl %cx,%ss # stack
#
# Launch user task.
#
movb $SEL_TSS,%cl # Set task
ltrl %ecx # register
movl $MEM_USR,%edx # User base address
movzwl %ss:BDA_MEM,%eax # Get free memory
shll $0xa,%eax # To bytes
subl %edx,%eax # Less base
movb $SEL_UDATA,%cl # User data selector
pushl %ecx # Set SS
pushl %eax # Set ESP
pushl $0x202 # Set flags (IF set)
pushl $SEL_UCODE # Set CS
pushl $0x0 # Set EIP
pushl %ecx # Set GS
pushl %ecx # Set FS
pushl %ecx # Set DS
pushl %ecx # Set ES
pushl %edx # Set EAX
movb $0x7,%cl # Set remaining
init.10: pushb $0x0 # general
loop init.10 # registers
popa # and initialize
popl %es # Initialize
popl %ds # user
popl %fs # segment
popl %gs # registers
iret # To user mode
#
# Exit routine.
#
exit: cld # String ops inc
movl $MEM_ESP0,%esp # Clear stack
#
# Turn off paging.
#
movl %cr0,%eax # Get CR0
andl $~0x80000000,%eax # Disable
movl %eax,%cr0 # paging
xorl %ecx,%ecx # Zero
movl %ecx,%cr3 # Flush TLB
#
# To 16 bits.
#
o16 # Reload
jmpfwi(SEL_RCODE,exit.1) # CS
exit.1: movb $SEL_RDATA,%cl # 16-bit selector
movl %cx,%ss # Reload SS
movl %cx,%ds # Load
movl %cx,%es # remaining
movl %cx,%fs # segment
movl %cx,%gs # registers
#
# To real-address mode.
#
decl %eax # Switch to
movl %eax,%cr0 # real mode
jmpfwi(0x0,exit.2) # Reload CS
exit.2: xorl %eax,%eax # Real mode segment
movl %ax,%ss # Reload SS
movl %ax,%ds # Address data
movwir(0x7008,_bx) # Set real mode
callwi(setpic) # IRQ offsets
lidtwm(ivtdesc) # Set IVT
#
# Prompt for reboot.
#
sti # Enable interrupts
movwir(prompt,_si) # Display
callwi(puts16) # prompt
xorb %ah,%ah # BIOS: Get
int $0x16 # keypress
int $0x19 # BIOS: Reboot
#
# Set IRQ offsets by reprogramming 8259A PICs.
#
setpic: inb $0x21,%al # Save master
pushl %eax # IMR
inb $0xa1,%al # Save slave
pushl %eax # IMR
movb $0x11,%al # ICW1 to
outb %al,$0x20 # master,
outb %al,$0xa0 # slave
movb %bl,%al # ICW2 to
outb %al,$0x21 # master
movb %bh,%al # ICW2 to
outb %al,$0xa1 # slave
movb $0x4,%al # ICW3 to
outb %al,$0x21 # master
movb $0x2,%al # ICW3 to
outb %al,$0xa1 # slave
movb $0x1,%al # ICW4 to
outb %al,$0x21 # master,
outb %al,$0xa1 # slave
popl %eax # Restore slave
outb %al,$0xa1 # IMR
popl %eax # Restore master
outb %al,$0x21 # IMR
ret # To caller
#
# Display zero-terminated string [ESI] using BIOS.
#
puts16.0: movwir(0x7,_bx) # Page:attribute
movb $0xe,%ah # BIOS: Display
int $0x10 # char
puts16: lodsb # Load char
testb %al,%al # End of string?
jnz puts16.0 # No
ret # To caller
#
# Initiate return from V86 mode to user mode.
#
inthlt: hlt # To supervisor mode
#
# Exception jump table.
#
intx00: pushb $0x0 # Int 0x0: #DE
jmp ex_noc # Divide error
pushb $0x1 # Int 0x1: #DB
jmp ex_noc # Debug
pushb $0x3 # Int 0x3: #BP
jmp ex_noc # Breakpoint
pushb $0x4 # Int 0x4: #OF
jmp ex_noc # Overflow
pushb $0x5 # Int 0x5: #BR
jmp ex_noc # BOUND range exceeded
pushb $0x6 # Int 0x6: #UD
jmp ex_noc # Invalid opcode
pushb $0x7 # Int 0x7: #NM
jmp ex_noc # Device not available
pushb $0x8 # Int 0x8: #DF
jmp except # Double fault
pushb $0xa # Int 0xa: #TS
jmp except # Invalid TSS
pushb $0xb # Int 0xb: #NP
jmp except # Segment not present
pushb $0xc # Int 0xc: #SS
jmp except # Stack segment fault
pushb $0xd # Int 0xd: #GP
jmp ex_v86 # General protection
pushb $0xe # Int 0xe: #PF
jmp except # Page fault
intx10: pushb $0x10 # Int 0x10: #MF
jmp ex_noc # Floating-point error
#
#
#
ex_v86: testb $0x2,0x12(%esp,1) # V86 mode?
jz except # No
jmp v86mon # To monitor
#
# Save a zero error code.
#
ex_noc: pushl (%esp,1) # Duplicate int no
movb $0x0,0x4(%esp,1) # Fake error code
#
# Handle exception.
#
except: cld # String ops inc
pushl %ds # Save
pushl %es # most
pusha # registers
movb $0x6,%al # Push loop count
testb $0x2,0x3a(%esp,1) # V86 mode?
jnz except.1 # Yes
pushl %gs # Set GS
pushl %fs # Set FS
pushl %ds # Set DS
pushl %es # Set ES
movb $0x2,%al # Push loop count
cmpw $SEL_SCODE,0x44(%esp,1) # Supervisor mode?
jne except.1 # No
pushl %ss # Set SS
leal 0x50(%esp,1),%eax # Set
pushl %eax # ESP
jmp except.2 # Join common code
except.1: pushl 0x50(%esp,1) # Set GS, FS, DS, ES
decb %al # (if V86 mode), and
jne except.1 # SS, ESP
except.2: pushl $SEL_SDATA # Set up
popl %ds # to
pushl %ds # address
popl %es # data
movl %esp,%ebx # Stack frame
movl $dmpfmt,%esi # Dump format string
movl $MEM_BUF,%edi # Buffer
pushl %edi # Dump to
call dump # buffer
popl %esi # and
call putstr # display
leal 0x18(%esp,1),%esp # Discard frame
popa # Restore
popl %es # registers
popl %ds # saved
cmpb $0x3,(%esp,1) # Breakpoint?
je except.3 # Yes
jmp exit # Exit
except.3: leal 0x8(%esp,1),%esp # Discard err, int no
iret # From interrupt
#
# Return to user mode from V86 mode.
#
intrtn: cld # String ops inc
pushl %ds # Address
popl %es # data
leal 0x3c(%ebp),%edx # V86 Segment registers
movl MEM_TSS+TSS_ESP1,%esi # Link stack pointer
lodsl # INT_V86 args pointer
movl %esi,%ebx # Saved exception frame
testl %eax,%eax # INT_V86 args?
jz intrtn.2 # No
movl $MEM_USR,%edi # User base
movl 0x1c(%esi),%ebx # User ESP
movl %eax,(%edi,%ebx,1) # Restore to user stack
leal 0x8(%edi,%eax,1),%edi # Arg segment registers
testb $0x4,-0x6(%edi) # Return flags?
jz intrtn.1 # No
movl 0x30(%ebp),%eax # Get V86 flags
movw %ax,0x18(%esi) # Set user flags
intrtn.1: leal 0x10(%esi),%ebx # Saved exception frame
xchgl %edx,%esi # Segment registers
movb $0x4,%cl # Update seg regs
rep # in INT_V86
movsl # args
intrtn.2: movl %edx,%esi # Segment registers
leal 0x28(%ebp),%edi # Set up seg
movb $0x4,%cl # regs for
rep # later
movsl # pop
movl %ebx,%esi # Restore exception
movb $0x5,%cl # frame to
rep # supervisor
movsl # stack
movl %esi,MEM_TSS+TSS_ESP1 # Link stack pointer
popa # Restore
leal 0x8(%esp,1),%esp # Discard err, int no
popl %es # Restore
popl %ds # user
popl %fs # segment
popl %gs # registers
iret # To user mode
#
# V86 monitor.
#
v86mon: cld # String ops inc
pushl $SEL_SDATA # Set up for
popl %ds # flat addressing
pusha # Save registers
movl %esp,%ebp # Address stack frame
movzwl 0x2c(%ebp),%edi # Load V86 CS
shll $0x4,%edi # To linear
movl 0x28(%ebp),%esi # Load V86 IP
addl %edi,%esi # Code pointer
xorl %ecx,%ecx # Zero
movb $0x2,%cl # 16-bit operands
xorl %eax,%eax # Zero
v86mon.1: lodsb # Get opcode
cmpb $0x66,%al # Operand size prefix?
jne v86mon.2 # No
movb $0x4,%cl # 32-bit operands
jmp v86mon.1 # Continue
v86mon.2: cmpb $0xf4,%al # HLT?
jne v86mon.3 # No
cmpl $inthlt+0x1,%esi # Is inthlt?
jne v86mon.4 # No
jmp intrtn # Return to user mode
v86mon.3: cmpb $0xfa,%al # CLI?
je v86cli # Yes
cmpb $0xfb,%al # STI?
je v86sti # Yes
movzwl 0x38(%ebp),%ebx # Load V86 SS
shll $0x4,%ebx # To offset
pushl %ebx # Save
addl 0x34(%ebp),%ebx # Add V86 SP
movl 0x30(%ebp),%edx # Load V86 flags
cmpb $0x9c,%al # PUSHF/PUSHFD?
je v86pushf # Yes
cmpb $0x9d,%al # POPF/POPFD?
je v86popf # Yes
cmpb $0xcd,%al # INT imm8?
je v86intn # Yes
cmpb $0xcf,%al # IRET/IRETD?
je v86iret # Yes
popl %ebx # Restore
v86mon.4: popa # Restore
jmp except # Handle exception
v86mon.5: movl %edx,0x30(%ebp) # Save V86 flags
v86mon.6: popl %edx # V86 SS adjustment
subl %edx,%ebx # Save V86
movl %ebx,0x34(%ebp) # SP
v86mon.7: subl %edi,%esi # From linear
movl %esi,0x28(%ebp) # Save V86 IP
popa # Restore
leal 0x8(%esp,1),%esp # Discard int no, error
iret # To V86 mode
#
# Emulate CLI.
#
v86cli: andb $~0x2,0x31(%ebp) # Clear IF
jmp v86mon.7 # Finish up
#
# Emulate STI.
#
v86sti: orb $0x2,0x31(%ebp) # Set IF
jmp v86mon.7 # Finish up
#
# Emulate PUSHF/PUSHFD.
#
v86pushf: subl %ecx,%ebx # Adjust SP
cmpb $0x4,%cl # 32-bit
je v86pushf.1 # Yes
o16 # 16-bit
v86pushf.1: movl %edx,(%ebx) # Save flags
jmp v86mon.6 # Finish up
#
# Emulate IRET/IRETD.
#
v86iret: movzwl (%ebx),%esi # Load V86 IP
movzwl 0x2(%ebx),%edi # Load V86 CS
leal 0x4(%ebx),%ebx # Adjust SP
movl %edi,0x2c(%ebp) # Save V86 CS
xorl %edi,%edi # No ESI adjustment
#
# Emulate POPF/POPFD (and remainder of IRET/IRETD).
#
v86popf: cmpb $0x4,%cl # 32-bit?
je v86popf.1 # Yes
movl %edx,%eax # Initialize
o16 # 16-bit
v86popf.1: movl (%ebx),%eax # Load flags
addl %ecx,%ebx # Adjust SP
andl $V86_FLG,%eax # Merge
andl $~V86_FLG,%edx # the
orl %eax,%edx # flags
jmp v86mon.5 # Finish up
#
# Emulate INT imm8.
#
v86intn: lodsb # Get int no
subl %edi,%esi # From
shrl $0x4,%edi # linear
movw %dx,-0x2(%ebx) # Save flags
movw %di,-0x4(%ebx) # Save CS
leal -0x6(%ebx),%ebx # Adjust SP
movw %si,(%ebx) # Save IP
shll $0x2,%eax # Scale
movzwl (%eax),%esi # Load IP
movzwl 0x2(%eax),%edi # Load CS
movl %edi,0x2c(%ebp) # Save CS
xorl %edi,%edi # No ESI adjustment
andb $~0x3,%dh # Clear IF and TF
jmp v86mon.5 # Finish up
#
# Hardware interrupt jump table.
#
intx20: pushb $0x8 # Int 0x20: IRQ0
jmp int_hw # V86 int 0x8
pushb $0x9 # Int 0x21: IRQ1
jmp int_hw # V86 int 0x9
pushb $0xa # Int 0x22: IRQ2
jmp int_hw # V86 int 0xa
pushb $0xb # Int 0x23: IRQ3
jmp int_hw # V86 int 0xb
pushb $0xc # Int 0x24: IRQ4
jmp int_hw # V86 int 0xc
pushb $0xd # Int 0x25: IRQ5
jmp int_hw # V86 int 0xd
pushb $0xe # Int 0x26: IRQ6
jmp int_hw # V86 int 0xe
pushb $0xf # Int 0x27: IRQ7
jmp int_hw # V86 int 0xf
pushb $0x70 # Int 0x28: IRQ8
jmp int_hw # V86 int 0x70
pushb $0x71 # Int 0x29: IRQ9
jmp int_hw # V86 int 0x71
pushb $0x72 # Int 0x2a: IRQ10
jmp int_hw # V86 int 0x72
pushb $0x73 # Int 0x2b: IRQ11
jmp int_hw # V86 int 0x73
pushb $0x74 # Int 0x2c: IRQ12
jmp int_hw # V86 int 0x74
pushb $0x75 # Int 0x2d: IRQ13
jmp int_hw # V86 int 0x75
pushb $0x76 # Int 0x2e: IRQ14
jmp int_hw # V86 int 0x76
pushb $0x77 # Int 0x2f: IRQ15
jmp int_hw # V86 int 0x77
#
# Reflect hardware interrupts.
#
int_hw: testb $0x2,0xe(%esp,1) # V86 mode?
jz intusr # No
pushl $SEL_SDATA # Address
popl %ds # data
xchgl %eax,(%esp,1) # Swap EAX, int no
pushl %ebp # Address
movl %esp,%ebp # stack frame
pushl %ebx # Save
shll $0x2,%eax # Get int
movl (%eax),%eax # vector
subl $0x6,0x14(%ebp) # Adjust V86 ESP
movzwl 0x18(%ebp),%ebx # V86 SS
shll $0x4,%ebx # * 0x10
addl 0x14(%ebp),%ebx # + V86 ESP
xchgw %ax,0x8(%ebp) # Swap V86 IP
rorl $0x10,%eax # Swap words
xchgw %ax,0xc(%ebp) # Swap V86 CS
roll $0x10,%eax # Swap words
movl %eax,(%ebx) # CS:IP for IRET
movl 0x10(%ebp),%eax # V86 flags
movw %ax,0x4(%ebx) # Flags for IRET
andb $~0x3,0x11(%ebp) # Clear IF, TF
popl %ebx # Restore
popl %ebp # saved
popl %eax # registers
iret # To V86 mode
#
# Invoke V86 interrupt from user mode, with arguments.
#
intx31: stc # Have btx_v86
pushl %eax # Missing int no
#
# Invoke V86 interrupt from user mode.
#
intusr: std # String ops dec
pushl %eax # Expand
pushl %eax # stack
pushl %eax # frame
pusha # Save
pushl %gs # Save
movl %esp,%eax # seg regs
pushl %fs # and
pushl %ds # point
pushl %es # to them
pushb $SEL_SDATA # Set up
popl %ds # to
pushl %ds # address
popl %es # data
movl $MEM_USR,%ebx # User base
movl %ebx,%edx # address
jc intusr.1 # If btx_v86
xorl %edx,%edx # Control flags
xorl %ebp,%ebp # btx_v86 pointer
intusr.1: leal 0x50(%esp,1),%esi # Base of frame
pushl %esi # Save
addl -0x4(%esi),%ebx # User ESP
movl MEM_TSS+TSS_ESP1,%edi # Link stack pointer
leal -0x4(%edi),%edi # Adjust for push
xorl %ecx,%ecx # Zero
movb $0x5,%cl # Push exception
rep # frame on
movsl # link stack
xchgl %eax,%esi # Saved seg regs
movl 0x40(%esp,1),%eax # Get int no
testl %edx,%edx # Have btx_v86?
jz intusr.2 # No
movl (%ebx),%ebp # btx_v86 pointer
movb $0x4,%cl # Count
addl %ecx,%ebx # Adjust for pop
rep # Push saved seg regs
movsl # on link stack
addl %ebp,%edx # Flatten btx_v86 ptr
leal 0x14(%edx),%esi # Seg regs pointer
movl 0x4(%edx),%eax # Get int no/address
movzwl 0x2(%edx),%edx # Get control flags
intusr.2: movl %ebp,(%edi) # Push btx_v86 and
movl %edi,MEM_TSS+TSS_ESP1 # save link stack ptr
popl %edi # Base of frame
xchgl %eax,%ebp # Save intno/address
movl 0x48(%esp,1),%eax # Get flags
testb $0x2,%dl # Simulate CALLF?
jnz intusr.3 # Yes
decl %ebx # Push flags
decl %ebx # on V86
movw %ax,(%ebx) # stack
intusr.3: movb $0x4,%cl # Count
subl %ecx,%ebx # Push return address
movl $inthlt,(%ebx) # on V86 stack
rep # Copy seg regs to
movsl # exception frame
xchgl %eax,%ecx # Save flags
movl %ebx,%eax # User ESP
subl $V86_STK,%eax # Less bytes
ja intusr.4 # to
xorl %eax,%eax # keep
intusr.4: shrl $0x4,%eax # Gives segment
stosl # Set SS
shll $0x4,%eax # To bytes
xchgl %eax,%ebx # Swap
subl %ebx,%eax # Gives offset
stosl # Set ESP
xchgl %eax,%ecx # Get flags
btsl $0x11,%eax # Set VM
andb $~0x3,%ah # Clear IF and TF
stosl # Set EFL
xchgl %eax,%ebp # Get int no/address
testb $0x1,%dl # Address?
jnz intusr.5 # Yes
shll $0x2,%eax # XXX Scale
movl (%eax),%eax # Load int vector
intusr.5: movl %eax,%ecx # XXX Save
shrl $0x10,%eax # Gives segment
stosl # Set CS
movw %cx,%ax # XXX Restore
stosl # Set EIP
leal 0x10(%esp,1),%esp # Discard seg regs
popa # Restore
iret # To V86 mode
#
# System Call.
#
intx30: jmp exit # Just exit for now
#
# Dump structure [EBX] to [EDI], using format string [ESI].
#
dump.0: stosb # Save char
dump: lodsb # Load char
testb %al,%al # End of string?
jz dump.10 # Yes
testb $0x80,%al # Control?
jz dump.0 # No
movb %al,%ch # Save control
movb $'=',%al # Append
stosb # '='
lodsb # Get offset
pushl %esi # Save
movsbl %al,%esi # To
addl %ebx,%esi # pointer
testb $DMP_X16,%ch # Dump word?
jz dump.1 # No
lodsw # Get and
call hex16 # dump it
dump.1: testb $DMP_X32,%ch # Dump long?
jz dump.2 # No
lodsl # Get and
call hex32 # dump it
dump.2: testb $DMP_MEM,%ch # Dump memory?
jz dump.8 # No
pushl %ds # Save
testb $0x2,0x52(%ebx) # XXX V86 mode?
jnz dump.3 # Yes
verrl 0x4(%esi) # Readable selector?
jnz dump.3 # No
ldsl (%esi),%esi # Load pointer
jmp dump.4 # Join common code
dump.3: lodsl # Set offset
xchgl %eax,%edx # Save
lodsl # Get segment
shll $0x4,%eax # * 0x10
addl %edx,%eax # + offset
xchgl %eax,%esi # Set pointer
dump.4: movb $0x10,%cl # Bytes to dump
dump.5: lodsb # Get byte and
call hex8 # dump it
decb %cl # Keep count
jz dump.7 # If done
movb $'-',%al # Separator
cmpb $0x8,%cl # Half way?
je dump.6 # Yes
movb $' ',%al # Use space
dump.6: stosb # Save separator
jmp dump.5 # Continue
dump.7: popl %ds # Restore
dump.8: popl %esi # Restore
movb $0xa,%al # Line feed
testb $DMP_EOL,%ch # End of line?
jnz dump.9 # Yes
movb $' ',%al # Use spaces
stosb # Save one
dump.9: jmp dump.0 # Continue
dump.10: stosb # Terminate string
ret # To caller
#
# Convert EAX, AX, or AL to hex, saving the result to [EDI].
#
hex32: pushl %eax # Save
shrl $0x10,%eax # Do upper
call hex16 # 16
popl %eax # Restore
hex16: call hex16.1 # Do upper 8
hex16.1: xchgb %ah,%al # Save/restore
hex8: pushl %eax # Save
shrb $0x4,%al # Do upper
call hex8.1 # 4
popl %eax # Restore
hex8.1: andb $0xf,%al # Get lower 4
cmpb $0xa,%al # Convert
sbbb $0x69,%al # to hex
das # digit
orb $0x20,%al # To lower case
stosb # Save char
ret # (Recursive)
#
# Output zero-terminated string [ESI] to the console.
#
putstr.0: call putchr # Output char
putstr: lodsb # Load char
testb %al,%al # End of string?
jnz putstr.0 # No
ret # To caller
#
# Output character AL to the console.
#
putchr: pusha # Save
xorl %ecx,%ecx # Zero for loops
movb $SCR_MAT,%ah # Mode/attribute
movl $BDA_POS,%ebx # BDA pointer
movw (%ebx),%dx # Cursor position
movl $0xb8000,%edi # Regen buffer (color)
cmpb %ah,BDA_SCR-BDA_POS(%ebx) # Mono mode?
jne putchr.1 # No
xorw %di,%di # Regen buffer (mono)
putchr.1: cmpb $0xa,%al # New line?
je putchr.2 # Yes
xchgl %eax,%ecx # Save char
movb $SCR_COL,%al # Columns per row
mulb %dh # * row position
addb %dl,%al # + column
adcb $0x0,%ah # position
shll %eax # * 2
xchgl %eax,%ecx # Swap char, offset
movw %ax,(%edi,%ecx,1) # Write attr:char
incl %edx # Bump cursor
cmpb $SCR_COL,%dl # Beyond row?
jb putchr.3 # No
putchr.2: xorb %dl,%dl # Zero column
incb %dh # Bump row
putchr.3: cmpb $SCR_ROW,%dh # Beyond screen?
jb putchr.4 # No
leal 2*SCR_COL(%edi),%esi # New top line
movw $(SCR_ROW-1)*SCR_COL/2,%cx # Words to move
rep # Scroll
movsl # screen
movb $' ',%al # Space
movb $SCR_COL,%cl # Columns to clear
rep # Clear
stosw # line
movb $SCR_ROW-1,%dh # Bottom line
putchr.4: movw %dx,(%ebx) # Update position
popa # Restore
ret # To caller
.p2align 4
#
# Global descriptor table.
#
gdt: .word 0x0,0x0,0x0,0x0 # Null entry
.word 0xffff,0x0,0x9a00,0xcf # SEL_SCODE
.word 0xffff,0x0,0x9200,0xcf # SEL_SDATA
.word 0xffff,0x0,0x9a00,0x0 # SEL_RCODE
.word 0xffff,0x0,0x9200,0x0 # SEL_RDATA
.word 0xffff,MEM_USR,0xfa00,0xcf# SEL_UCODE
.word 0xffff,MEM_USR,0xf200,0xcf# SEL_UDATA
.word _TSSLM,MEM_TSS,0x8900,0x0 # SEL_TSS
gdt.1:
#
# Pseudo-descriptors.
#
gdtdesc: .word gdt.1-gdt-1,gdt,0x0 # GDT
idtdesc: .word _IDTLM,MEM_IDT,0x0 # IDT
ivtdesc: .word 0x400-0x0-1,0x0,0x0 # IVT
#
# IDT construction control string.
#
idtctl: .byte 0x10, 0x8e # Int 0x0-0xf
.word 0x7dfb,intx00 # (exceptions)
.byte 0x10, 0x8e # Int 0x10
.word 0x1, intx10 # (exception)
.byte 0x10, 0x8e # Int 0x20-0x2f
.word 0xffff,intx20 # (hardware)
.byte 0x1, 0xee # int 0x30
.word 0x1, intx30 # (system call)
.byte 0x2, 0xee # Int 0x31-0x32
.word 0x1, intx31 # (V86, null)
.byte 0x0 # End of string
#
# Dump format string.
#
dmpfmt: .ascii "int" # "int="
.byte 0x80|DMP_X32, 0x40 # "00000000 "
.ascii "err" # "err="
.byte 0x80|DMP_X32, 0x44 # "00000000 "
.ascii "efl" # "efl="
.byte 0x80|DMP_X32, 0x50 # "00000000 "
.ascii "eip" # "eip="
.byte 0x80|DMP_X32|DMP_EOL,0x48 # "00000000\n"
.ascii "eax" # "eax="
.byte 0x80|DMP_X32, 0x34 # "00000000 "
.ascii "ebx" # "ebx="
.byte 0x80|DMP_X32, 0x28 # "00000000 "
.ascii "ecx" # "ecx="
.byte 0x80|DMP_X32, 0x30 # "00000000 "
.ascii "edx" # "edx="
.byte 0x80|DMP_X32|DMP_EOL,0x2c # "00000000\n"
.ascii "esi" # "esi="
.byte 0x80|DMP_X32, 0x1c # "00000000 "
.ascii "edi" # "edi="
.byte 0x80|DMP_X32, 0x18 # "00000000 "
.ascii "ebp" # "ebp="
.byte 0x80|DMP_X32, 0x20 # "00000000 "
.ascii "esp" # "esp="
.byte 0x80|DMP_X32|DMP_EOL,0x0 # "00000000\n"
.ascii "cs" # "cs="
.byte 0x80|DMP_X16, 0x4c # "0000 "
.ascii "ds" # "ds="
.byte 0x80|DMP_X16, 0xc # "0000 "
.ascii "es" # "es="
.byte 0x80|DMP_X16, 0x8 # "0000 "
.ascii " " # " "
.ascii "fs" # "fs="
.byte 0x80|DMP_X16, 0x10 # "0000 "
.ascii "gs" # "gs="
.byte 0x80|DMP_X16, 0x14 # "0000 "
.ascii "ss" # "ss="
.byte 0x80|DMP_X16|DMP_EOL,0x4 # "0000\n"
.ascii "cs:eip" # "cs:eip="
.byte 0x80|DMP_MEM|DMP_EOL,0x48 # "00 00 ... 00 00\n"
.ascii "ss:esp" # "ss:esp="
.byte 0x80|DMP_MEM|DMP_EOL,0x0 # "00 00 ... 00 00\n"
.byte 0x0 # End of string
#
# Messages.
#
prompt: .asciz "Press ENTER to reboot"
#
# Start of user memory.
#
.p2align 4
break: