freebsd_amp_hwpstate/sys/amd64/amd64/machdep.c

1700 lines
44 KiB
C

/*-
* Copyright (c) 1992 Terrence R. Lambert.
* Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
* $Id: machdep.c,v 1.115 1995/03/17 04:19:19 davidg Exp $
*/
#include "npx.h"
#include "isa.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/signalvar.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/buf.h>
#include <sys/reboot.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mount.h>
#include <sys/msgbuf.h>
#include <sys/ioctl.h>
#include <sys/sysent.h>
#include <sys/tty.h>
#include <sys/sysctl.h>
#include <sys/devconf.h>
#ifdef SYSVSHM
#include <sys/shm.h>
#endif
#ifdef SYSVMSG
#include <sys/msg.h>
#endif
#ifdef SYSVSEM
#include <sys/sem.h>
#endif
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <sys/exec.h>
#include <sys/vnode.h>
#include <ddb/ddb.h>
#include <net/netisr.h>
/* XXX correctly declaring all the netisr's is painful. */
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <netinet/ip_var.h>
#include <netns/ns.h>
#include <netns/ns_if.h>
#include <netiso/iso.h>
#include <netiso/iso_var.h>
#include <netccitt/dll.h>
#include <netccitt/x25.h>
#include <netccitt/pk.h>
#include <sys/socketvar.h>
#include <netccitt/pk_var.h>
#include "ether.h"
#include <machine/cpu.h>
#include <machine/npx.h>
#include <machine/reg.h>
#include <machine/psl.h>
#include <machine/clock.h>
#include <machine/specialreg.h>
#include <machine/sysarch.h>
#include <machine/cons.h>
#include <machine/devconf.h>
#include <machine/bootinfo.h>
#include <machine/md_var.h>
#include <i386/isa/isa.h>
#include <i386/isa/isa_device.h>
#include <i386/isa/rtc.h>
static void identifycpu(void);
static void initcpu(void);
char machine[] = "i386";
char cpu_model[sizeof("Cy486DLC") + 1];
#ifndef PANIC_REBOOT_WAIT_TIME
#define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */
#endif
/*
* Declare these as initialized data so we can patch them.
*/
int nswbuf = 0;
#ifdef NBUF
int nbuf = NBUF;
#else
int nbuf = 0;
#endif
#ifdef BOUNCE_BUFFERS
extern char *bouncememory;
extern int maxbkva;
#ifdef BOUNCEPAGES
int bouncepages = BOUNCEPAGES;
#else
int bouncepages = 0;
#endif
#endif /* BOUNCE_BUFFERS */
extern int freebufspace;
int msgbufmapped = 0; /* set when safe to use msgbuf */
int _udatasel, _ucodesel;
/*
* Machine-dependent startup code
*/
int boothowto = 0, bootverbose = 0, Maxmem = 0, badpages = 0, physmem = 0;
long dumplo;
extern int bootdev;
int biosmem;
vm_offset_t phys_avail[6];
int cpu_class;
void dumpsys __P((void));
vm_offset_t buffer_sva, buffer_eva;
vm_offset_t clean_sva, clean_eva;
vm_offset_t pager_sva, pager_eva;
extern int pager_map_size;
#define offsetof(type, member) ((size_t)(&((type *)0)->member))
void
cpu_startup()
{
register unsigned i;
register caddr_t v;
vm_offset_t maxaddr;
vm_size_t size = 0;
int firstaddr;
vm_offset_t minaddr;
if (boothowto & RB_VERBOSE)
bootverbose++;
/*
* Initialize error message buffer (at end of core).
*/
/* avail_end was pre-decremented in init_386() to compensate */
for (i = 0; i < btoc(sizeof (struct msgbuf)); i++)
pmap_enter(pmap_kernel(), (vm_offset_t)msgbufp,
avail_end + i * NBPG,
VM_PROT_ALL, TRUE);
msgbufmapped = 1;
/*
* Good {morning,afternoon,evening,night}.
*/
printf(version);
startrtclock();
identifycpu();
printf("real memory = %d (%d pages)\n", ptoa(physmem), physmem);
if (badpages)
printf("bad memory = %d (%d pages)\n", ptoa(badpages), badpages);
/*
* Quickly wire in netisrs.
*/
#define DONET(isr, n) do { netisrs[n] = isr; } while(0)
#ifdef INET
#if NETHER > 0
DONET(arpintr, NETISR_ARP);
#endif
DONET(ipintr, NETISR_IP);
#endif
#ifdef NS
DONET(nsintr, NETISR_NS);
#endif
#ifdef ISO
DONET(clnlintr, NETISR_ISO);
#endif
#ifdef CCITT
DONET(ccittintr, NETISR_CCITT);
#endif
#ifdef ISDN
DONET(isdnintr, NETISR_ISDN);
#endif
#undef DONET
/*
* Allocate space for system data structures.
* The first available kernel virtual address is in "v".
* As pages of kernel virtual memory are allocated, "v" is incremented.
* As pages of memory are allocated and cleared,
* "firstaddr" is incremented.
* An index into the kernel page table corresponding to the
* virtual memory address maintained in "v" is kept in "mapaddr".
*/
/*
* Make two passes. The first pass calculates how much memory is
* needed and allocates it. The second pass assigns virtual
* addresses to the various data structures.
*/
firstaddr = 0;
again:
v = (caddr_t)firstaddr;
#define valloc(name, type, num) \
(name) = (type *)v; v = (caddr_t)((name)+(num))
#define valloclim(name, type, num, lim) \
(name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
valloc(callout, struct callout, ncallout);
#ifdef SYSVSHM
valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
#endif
#ifdef SYSVSEM
valloc(sema, struct semid_ds, seminfo.semmni);
valloc(sem, struct sem, seminfo.semmns);
/* This is pretty disgusting! */
valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
#endif
#ifdef SYSVMSG
valloc(msgpool, char, msginfo.msgmax);
valloc(msgmaps, struct msgmap, msginfo.msgseg);
valloc(msghdrs, struct msg, msginfo.msgtql);
valloc(msqids, struct msqid_ds, msginfo.msgmni);
#endif
if (nbuf == 0) {
nbuf = 30;
if( physmem > 1024)
nbuf += min((physmem - 1024) / 12, 1024);
}
nswbuf = min(nbuf, 128);
valloc(swbuf, struct buf, nswbuf);
valloc(buf, struct buf, nbuf);
#ifdef BOUNCE_BUFFERS
/*
* If there is more than 16MB of memory, allocate some bounce buffers
*/
if (Maxmem > 4096) {
if (bouncepages == 0) {
bouncepages = 64;
bouncepages += ((Maxmem - 4096) / 2048) * 32;
}
v = (caddr_t)((vm_offset_t)((vm_offset_t)v + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1));
valloc(bouncememory, char, bouncepages * PAGE_SIZE);
}
#endif
/*
* End of first pass, size has been calculated so allocate memory
*/
if (firstaddr == 0) {
size = (vm_size_t)(v - firstaddr);
firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
if (firstaddr == 0)
panic("startup: no room for tables");
goto again;
}
/*
* End of second pass, addresses have been assigned
*/
if ((vm_size_t)(v - firstaddr) != size)
panic("startup: table size inconsistency");
#ifdef BOUNCE_BUFFERS
clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
(nbuf*MAXBSIZE) + (nswbuf*MAXPHYS) +
maxbkva + pager_map_size, TRUE);
io_map = kmem_suballoc(clean_map, &minaddr, &maxaddr, maxbkva, FALSE);
#else
clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
(nbuf*MAXBSIZE) + (nswbuf*MAXPHYS) + pager_map_size, TRUE);
#endif
buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
(nbuf*MAXBSIZE), TRUE);
pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
(nswbuf*MAXPHYS) + pager_map_size, TRUE);
exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
(16*ARG_MAX), TRUE);
u_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
(maxproc*UPAGES*PAGE_SIZE), FALSE);
/*
* Finally, allocate mbuf pool. Since mclrefcnt is an off-size
* we use the more space efficient malloc in place of kmem_alloc.
*/
mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
M_MBUF, M_NOWAIT);
bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
VM_MBUF_SIZE, FALSE);
/*
* Initialize callouts
*/
callfree = callout;
for (i = 1; i < ncallout; i++)
callout[i-1].c_next = &callout[i];
if (boothowto & RB_CONFIG)
userconfig();
printf("avail memory = %d (%d pages)\n", ptoa(cnt.v_free_count), cnt.v_free_count);
#ifdef BOUNCE_BUFFERS
/*
* init bounce buffers
*/
vm_bounce_init();
#endif
/*
* Set up CPU-specific registers, cache, etc.
*/
initcpu();
/*
* Set up buffers, so they can be used to read disk labels.
*/
bufinit();
vm_pager_bufferinit();
/*
* Configure the system.
*/
configure();
if (bootverbose) {
printf("BIOS Geometries:");
for (i=0; i < N_BIOS_GEOM; i++)
printf(" %x:%x\n", i, bootinfo.bi_bios_geom[i]);
printf(" %d accounted for\n", bootinfo.bi_n_bios_used);
}
}
struct cpu_nameclass i386_cpus[] = {
{ "Intel 80286", CPUCLASS_286 }, /* CPU_286 */
{ "i386SX", CPUCLASS_386 }, /* CPU_386SX */
{ "i386DX", CPUCLASS_386 }, /* CPU_386 */
{ "i486SX", CPUCLASS_486 }, /* CPU_486SX */
{ "i486DX", CPUCLASS_486 }, /* CPU_486 */
{ "Pentium", CPUCLASS_586 }, /* CPU_586 */
{ "Cy486DLC", CPUCLASS_486 }, /* CPU_486DLC */
};
static void
identifycpu()
{
printf("CPU: ");
if (cpu >= 0
&& cpu < (sizeof i386_cpus/sizeof(struct cpu_nameclass))) {
printf("%s", i386_cpus[cpu].cpu_name);
cpu_class = i386_cpus[cpu].cpu_class;
strncpy(cpu_model, i386_cpus[cpu].cpu_name, sizeof cpu_model);
} else {
printf("unknown cpu type %d\n", cpu);
panic("startup: bad cpu id");
}
printf(" (");
switch(cpu_class) {
case CPUCLASS_286:
printf("286");
break;
case CPUCLASS_386:
printf("386");
break;
case CPUCLASS_486:
printf("486");
break;
case CPUCLASS_586:
printf("Pentium");
break;
default:
printf("unknown"); /* will panic below... */
}
printf("-class CPU)");
#ifdef I586_CPU
if(cpu_class == CPUCLASS_586) {
calibrate_cyclecounter();
printf(" %d MHz", pentium_mhz);
}
#endif
if(*cpu_vendor)
printf(" Origin = \"%s\"",cpu_vendor);
if(cpu_id)
printf(" Id = 0x%lx",cpu_id);
printf("\n"); /* cpu speed would be nice, but how? */
if (!strcmp(cpu_vendor,"GenuineIntel")) {
printf(" This is a");
if ((cpu_id & 0xf00) > 3) {
switch (cpu_id & 0x3000) {
case 0x1000: printf("Overdrive "); break;
case 0x2000: printf("Dual "); break;
}
if ((cpu_id & 0xf00) == 0x400)
printf("n i486");
else if ((cpu_id & 0xf00) == 0x500)
printf(" Pentium ");
else
printf(" unknown CPU");
switch (cpu_id & 0xff0) {
case 0x400: printf("DX"); break;
case 0x410: printf("DX"); break;
case 0x420: printf("SX"); break;
case 0x430: printf("DX2"); break;
case 0x440: printf("SL"); break;
case 0x450: printf("SX2"); break;
case 0x470: printf("DX2 Write-Back Enhanced");
break;
case 0x480: printf("DX4"); break;
case 0x510: printf("510\\60 or 567\\66"); break;
case 0x520: printf("735\\90 or 815\\100"); break;
}
}
printf(" Stepping=%d\n", cpu_id & 0xf);
if (cpu_high > 0) {
printf(" Features=0x%lx",cpu_feature);
if (cpu_feature & 0x1) printf(" FPU");
if (cpu_feature & 0x2) printf(" VME");
if (cpu_feature & 0x8) printf(" PSE");
if (cpu_feature & 0x80) printf(" MCE");
if (cpu_feature & 0x100) printf(" CX8");
if (cpu_feature & 0x200) printf(" APIC");
printf("\n");
}
}
/*
* Now that we have told the user what they have,
* let them know if that machine type isn't configured.
*/
switch (cpu_class) {
case CPUCLASS_286: /* a 286 should not make it this far, anyway */
#if !defined(I386_CPU) && !defined(I486_CPU) && !defined(I586_CPU)
#error This kernel is not configured for one of the supported CPUs
#endif
#if !defined(I386_CPU)
case CPUCLASS_386:
#endif
#if !defined(I486_CPU)
case CPUCLASS_486:
#endif
#if !defined(I586_CPU)
case CPUCLASS_586:
#endif
panic("CPU class not configured");
default:
break;
}
}
/*
* Send an interrupt to process.
*
* Stack is set up to allow sigcode stored
* in u. to call routine, followed by kcall
* to sigreturn routine below. After sigreturn
* resets the signal mask, the stack, and the
* frame pointer, it returns to the user
* specified pc, psl.
*/
void
sendsig(catcher, sig, mask, code)
sig_t catcher;
int sig, mask;
unsigned code;
{
register struct proc *p = curproc;
register int *regs;
register struct sigframe *fp;
struct sigframe sf;
struct sigacts *psp = p->p_sigacts;
int oonstack;
regs = p->p_md.md_regs;
oonstack = psp->ps_sigstk.ss_flags & SA_ONSTACK;
/*
* Allocate and validate space for the signal handler
* context. Note that if the stack is in P0 space, the
* call to grow() is a nop, and the useracc() check
* will fail if the process has not already allocated
* the space with a `brk'.
*/
if ((psp->ps_flags & SAS_ALTSTACK) &&
(psp->ps_sigstk.ss_flags & SA_ONSTACK) == 0 &&
(psp->ps_sigonstack & sigmask(sig))) {
fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
psp->ps_sigstk.ss_size - sizeof(struct sigframe));
psp->ps_sigstk.ss_flags |= SA_ONSTACK;
} else {
fp = (struct sigframe *)(regs[tESP]
- sizeof(struct sigframe));
}
/*
* grow() will return FALSE if the fp will not fit inside the stack
* and the stack can not be grown. useracc will return FALSE
* if access is denied.
*/
if ((grow(p, (int)fp) == FALSE) ||
(useracc((caddr_t)fp, sizeof (struct sigframe), B_WRITE) == FALSE)) {
/*
* Process has trashed its stack; give it an illegal
* instruction to halt it in its tracks.
*/
SIGACTION(p, SIGILL) = SIG_DFL;
sig = sigmask(SIGILL);
p->p_sigignore &= ~sig;
p->p_sigcatch &= ~sig;
p->p_sigmask &= ~sig;
psignal(p, SIGILL);
return;
}
/*
* Build the argument list for the signal handler.
*/
if (p->p_sysent->sv_sigtbl) {
if (sig < p->p_sysent->sv_sigsize)
sig = p->p_sysent->sv_sigtbl[sig];
else
sig = p->p_sysent->sv_sigsize + 1;
}
sf.sf_signum = sig;
sf.sf_code = code;
sf.sf_scp = &fp->sf_sc;
sf.sf_addr = (char *) regs[tERR];
sf.sf_handler = catcher;
/* save scratch registers */
sf.sf_sc.sc_eax = regs[tEAX];
sf.sf_sc.sc_ebx = regs[tEBX];
sf.sf_sc.sc_ecx = regs[tECX];
sf.sf_sc.sc_edx = regs[tEDX];
sf.sf_sc.sc_esi = regs[tESI];
sf.sf_sc.sc_edi = regs[tEDI];
sf.sf_sc.sc_cs = regs[tCS];
sf.sf_sc.sc_ds = regs[tDS];
sf.sf_sc.sc_ss = regs[tSS];
sf.sf_sc.sc_es = regs[tES];
sf.sf_sc.sc_isp = regs[tISP];
/*
* Build the signal context to be used by sigreturn.
*/
sf.sf_sc.sc_onstack = oonstack;
sf.sf_sc.sc_mask = mask;
sf.sf_sc.sc_sp = regs[tESP];
sf.sf_sc.sc_fp = regs[tEBP];
sf.sf_sc.sc_pc = regs[tEIP];
sf.sf_sc.sc_ps = regs[tEFLAGS];
/*
* Copy the sigframe out to the user's stack.
*/
if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
/*
* Something is wrong with the stack pointer.
* ...Kill the process.
*/
sigexit(p, SIGILL);
};
regs[tESP] = (int)fp;
regs[tEIP] = (int)((struct pcb *)kstack)->pcb_sigc;
regs[tEFLAGS] &= ~PSL_VM;
regs[tCS] = _ucodesel;
regs[tDS] = _udatasel;
regs[tES] = _udatasel;
regs[tSS] = _udatasel;
}
/*
* System call to cleanup state after a signal
* has been taken. Reset signal mask and
* stack state from context left by sendsig (above).
* Return to previous pc and psl as specified by
* context left by sendsig. Check carefully to
* make sure that the user has not modified the
* state to gain improper privileges.
*/
struct sigreturn_args {
struct sigcontext *sigcntxp;
};
int
sigreturn(p, uap, retval)
struct proc *p;
struct sigreturn_args *uap;
int *retval;
{
register struct sigcontext *scp;
register struct sigframe *fp;
register int *regs = p->p_md.md_regs;
int eflags;
/*
* (XXX old comment) regs[tESP] points to the return address.
* The user scp pointer is above that.
* The return address is faked in the signal trampoline code
* for consistency.
*/
scp = uap->sigcntxp;
fp = (struct sigframe *)
((caddr_t)scp - offsetof(struct sigframe, sf_sc));
if (useracc((caddr_t)fp, sizeof (*fp), 0) == 0)
return(EINVAL);
/*
* Don't allow users to change privileged or reserved flags.
*/
#define EFLAGS_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
eflags = scp->sc_ps;
/*
* XXX do allow users to change the privileged flag PSL_RF. The
* cpu sets PSL_RF in tf_eflags for faults. Debuggers should
* sometimes set it there too. tf_eflags is kept in the signal
* context during signal handling and there is no other place
* to remember it, so the PSL_RF bit may be corrupted by the
* signal handler without us knowing. Corruption of the PSL_RF
* bit at worst causes one more or one less debugger trap, so
* allowing it is fairly harmless.
*/
if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs[tEFLAGS] & ~PSL_RF)) {
#ifdef DEBUG
printf("sigreturn: eflags = 0x%x\n", eflags);
#endif
return(EINVAL);
}
/*
* Don't allow users to load a valid privileged %cs. Let the
* hardware check for invalid selectors, excess privilege in
* other selectors, invalid %eip's and invalid %esp's.
*/
#define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
if (!CS_SECURE(scp->sc_cs)) {
#ifdef DEBUG
printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
#endif
trapsignal(p, SIGBUS, T_PROTFLT);
return(EINVAL);
}
/* restore scratch registers */
regs[tEAX] = scp->sc_eax;
regs[tEBX] = scp->sc_ebx;
regs[tECX] = scp->sc_ecx;
regs[tEDX] = scp->sc_edx;
regs[tESI] = scp->sc_esi;
regs[tEDI] = scp->sc_edi;
regs[tCS] = scp->sc_cs;
regs[tDS] = scp->sc_ds;
regs[tES] = scp->sc_es;
regs[tSS] = scp->sc_ss;
regs[tISP] = scp->sc_isp;
if (useracc((caddr_t)scp, sizeof (*scp), 0) == 0)
return(EINVAL);
if (scp->sc_onstack & 01)
p->p_sigacts->ps_sigstk.ss_flags |= SA_ONSTACK;
else
p->p_sigacts->ps_sigstk.ss_flags &= ~SA_ONSTACK;
p->p_sigmask = scp->sc_mask &~
(sigmask(SIGKILL)|sigmask(SIGCONT)|sigmask(SIGSTOP));
regs[tEBP] = scp->sc_fp;
regs[tESP] = scp->sc_sp;
regs[tEIP] = scp->sc_pc;
regs[tEFLAGS] = eflags;
return(EJUSTRETURN);
}
/*
* a simple function to make the system panic (and dump a vmcore)
* in a predictable fashion
*/
void diediedie()
{
panic("because you said to!");
}
int waittime = -1;
struct pcb dumppcb;
__dead void
boot(arghowto)
int arghowto;
{
register long dummy; /* r12 is reserved */
register int howto; /* r11 == how to boot */
register int devtype; /* r10 == major of root dev */
if (cold) {
printf("hit reset please");
for(;;);
}
howto = arghowto;
if ((howto&RB_NOSYNC) == 0 && waittime < 0) {
register struct buf *bp;
int iter, nbusy;
waittime = 0;
printf("\nsyncing disks... ");
/*
* Release inodes held by texts before update.
*/
if (panicstr == 0)
vnode_pager_umount(NULL);
sync(&proc0, NULL, NULL);
for (iter = 0; iter < 20; iter++) {
nbusy = 0;
for (bp = &buf[nbuf]; --bp >= buf; ) {
if ((bp->b_flags & (B_BUSY|B_INVAL)) == B_BUSY) {
nbusy++;
}
}
if (nbusy == 0)
break;
printf("%d ", nbusy);
DELAY(40000 * iter);
}
if (nbusy) {
/*
* Failed to sync all blocks. Indicate this and don't
* unmount filesystems (thus forcing an fsck on reboot).
*/
printf("giving up\n");
} else {
printf("done\n");
/*
* Unmount filesystems
*/
if (panicstr == 0)
vfs_unmountall();
}
DELAY(100000); /* wait for console output to finish */
dev_shutdownall(FALSE);
}
splhigh();
devtype = major(rootdev);
if (howto&RB_HALT) {
printf("\n");
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
} else {
if (howto & RB_DUMP) {
savectx(&dumppcb, 0);
dumppcb.pcb_ptd = rcr3();
dumpsys();
if (PANIC_REBOOT_WAIT_TIME != 0) {
if (PANIC_REBOOT_WAIT_TIME != -1) {
int loop;
printf("Automatic reboot in %d seconds - press a key on the console to abort\n",
PANIC_REBOOT_WAIT_TIME);
for (loop = PANIC_REBOOT_WAIT_TIME; loop > 0; --loop) {
DELAY(1000 * 1000); /* one second */
if (cncheckc()) /* Did user type a key? */
break;
}
if (!loop)
goto die;
}
} else { /* zero time specified - reboot NOW */
goto die;
}
printf("--> Press a key on the console to reboot <--\n");
cngetc();
}
}
#ifdef lint
dummy = 0; dummy = dummy;
printf("howto %d, devtype %d\n", arghowto, devtype);
#endif
die:
printf("Rebooting...\n");
DELAY(1000000); /* wait 1 sec for printf's to complete and be read */
cpu_reset();
for(;;) ;
/* NOTREACHED */
}
unsigned long dumpmag = 0x8fca0101UL; /* magic number for savecore */
int dumpsize = 0; /* also for savecore */
#ifdef DODUMP
int dodump = 1;
#else
int dodump = 0;
#endif
/*
* Doadump comes here after turning off memory management and
* getting on the dump stack, either when called above, or by
* the auto-restart code.
*/
void
dumpsys()
{
if (!dodump)
return;
if (dumpdev == NODEV)
return;
if ((minor(dumpdev)&07) != 1)
return;
dumpsize = Maxmem;
printf("\ndumping to dev %lx, offset %ld\n", dumpdev, dumplo);
printf("dump ");
switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
case ENXIO:
printf("device bad\n");
break;
case EFAULT:
printf("device not ready\n");
break;
case EINVAL:
printf("area improper\n");
break;
case EIO:
printf("i/o error\n");
break;
case EINTR:
printf("aborted from console\n");
break;
default:
printf("succeeded\n");
break;
}
}
static void
initcpu()
{
}
/*
* Clear registers on exec
*/
void
setregs(p, entry, stack)
struct proc *p;
u_long entry;
u_long stack;
{
int *regs = p->p_md.md_regs;
bzero(regs, sizeof(struct trapframe));
regs[tEIP] = entry;
regs[tESP] = stack;
regs[tEFLAGS] = PSL_USER | (regs[tEFLAGS] & PSL_T);
regs[tSS] = _udatasel;
regs[tDS] = _udatasel;
regs[tES] = _udatasel;
regs[tCS] = _ucodesel;
p->p_addr->u_pcb.pcb_flags = 0; /* no fp at all */
load_cr0(rcr0() | CR0_TS); /* start emulating */
#if NNPX > 0
npxinit(__INITIAL_NPXCW__);
#endif /* NNPX > 0 */
}
/*
* machine dependent system variables.
*/
int
cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
int *name;
u_int namelen;
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
struct proc *p;
{
int error;
/* all sysctl names at this level are terminal */
if (namelen != 1)
return (ENOTDIR); /* overloaded */
switch (name[0]) {
case CPU_CONSDEV:
return (sysctl_rdstruct(oldp, oldlenp, newp, &cn_tty->t_dev,
sizeof cn_tty->t_dev));
case CPU_ADJKERNTZ:
error = sysctl_int(oldp, oldlenp, newp, newlen, &adjkerntz);
if (!error && newp)
resettodr();
return error;
case CPU_DISRTCSET:
return (sysctl_int(oldp, oldlenp, newp, newlen, &disable_rtc_set));
default:
return (EOPNOTSUPP);
}
/* NOTREACHED */
}
/*
* Initialize 386 and configure to run kernel
*/
/*
* Initialize segments & interrupt table
*/
int currentldt;
int _default_ldt;
union descriptor gdt[NGDT]; /* global descriptor table */
struct gate_descriptor idt[NIDT]; /* interrupt descriptor table */
union descriptor ldt[NLDT]; /* local descriptor table */
struct i386tss tss, panic_tss;
extern struct user *proc0paddr;
/* software prototypes -- in more palatable form */
struct soft_segment_descriptor gdt_segs[] = {
/* GNULL_SEL 0 Null Descriptor */
{ 0x0, /* segment base address */
0x0, /* length */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GCODE_SEL 1 Code Descriptor for kernel */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMERA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GDATA_SEL 2 Data Descriptor for kernel */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMRWA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GLDT_SEL 3 LDT Descriptor */
{ (int) ldt, /* segment base address */
sizeof(ldt)-1, /* length - all address space */
SDT_SYSLDT, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GTGATE_SEL 4 Null Descriptor - Placeholder */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GPANIC_SEL 5 Panic Tss Descriptor */
{ (int) &panic_tss, /* segment base address */
sizeof(tss)-1, /* length - all address space */
SDT_SYS386TSS, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GPROC0_SEL 6 Proc 0 Tss Descriptor */
{ (int) kstack, /* segment base address */
sizeof(tss)-1, /* length - all address space */
SDT_SYS386TSS, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GUSERLDT_SEL 7 User LDT Descriptor per process */
{ (int) ldt, /* segment base address */
(512 * sizeof(union descriptor)-1), /* length */
SDT_SYSLDT, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
{ 0, /* segment base address (overwritten by APM) */
0xfffff, /* length */
SDT_MEMERA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
{ 0, /* segment base address (overwritten by APM) */
0xfffff, /* length */
SDT_MEMERA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GAPMDATA_SEL 10 APM BIOS 32-bit interface (Data) */
{ 0, /* segment base address (overwritten by APM) */
0xfffff, /* length */
SDT_MEMRWA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
};
struct soft_segment_descriptor ldt_segs[] = {
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Code Descriptor for user */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMERA, /* segment type */
SEL_UPL, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* Data Descriptor for user */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMRWA, /* segment type */
SEL_UPL, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
};
void
setidt(idx, func, typ, dpl)
int idx;
inthand_t *func;
int typ;
int dpl;
{
struct gate_descriptor *ip = idt + idx;
ip->gd_looffset = (int)func;
ip->gd_selector = 8;
ip->gd_stkcpy = 0;
ip->gd_xx = 0;
ip->gd_type = typ;
ip->gd_dpl = dpl;
ip->gd_p = 1;
ip->gd_hioffset = ((int)func)>>16 ;
}
#define IDTVEC(name) __CONCAT(X,name)
extern inthand_t
IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(dble), IDTVEC(fpusegm),
IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
IDTVEC(page), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
IDTVEC(syscall);
#ifdef COMPAT_LINUX
extern inthand_t
IDTVEC(linux_syscall);
#endif
void
sdtossd(sd, ssd)
struct segment_descriptor *sd;
struct soft_segment_descriptor *ssd;
{
ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
ssd->ssd_type = sd->sd_type;
ssd->ssd_dpl = sd->sd_dpl;
ssd->ssd_p = sd->sd_p;
ssd->ssd_def32 = sd->sd_def32;
ssd->ssd_gran = sd->sd_gran;
}
void
init386(first)
int first;
{
int x;
unsigned biosbasemem, biosextmem;
struct gate_descriptor *gdp;
int gsel_tss;
/* table descriptors - used to load tables by microp */
struct region_descriptor r_gdt, r_idt;
int pagesinbase, pagesinext;
int target_page;
proc0.p_addr = proc0paddr;
/*
* Initialize the console before we print anything out.
*/
cninit ();
/*
* make gdt memory segments, the code segment goes up to end of the
* page with etext in it, the data segment goes to the end of
* the address space
*/
/*
* XXX text protection is temporarily (?) disabled. The limit was
* i386_btop(i386_round_page(etext)) - 1.
*/
gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
for (x = 0; x < NGDT; x++)
ssdtosd(&gdt_segs[x], &gdt[x].sd);
/* make ldt memory segments */
/*
* The data segment limit must not cover the user area because we
* don't want the user area to be writable in copyout() etc. (page
* level protection is lost in kernel mode on 386's). Also, we
* don't want the user area to be writable directly (page level
* protection of the user area is not available on 486's with
* CR0_WP set, because there is no user-read/kernel-write mode).
*
* XXX - VM_MAXUSER_ADDRESS is an end address, not a max. And it
* should be spelled ...MAX_USER...
*/
#define VM_END_USER_RW_ADDRESS VM_MAXUSER_ADDRESS
/*
* The code segment limit has to cover the user area until we move
* the signal trampoline out of the user area. This is safe because
* the code segment cannot be written to directly.
*/
#define VM_END_USER_R_ADDRESS (VM_END_USER_RW_ADDRESS + UPAGES * NBPG)
ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
/* Note. eventually want private ldts per process */
for (x = 0; x < NLDT; x++)
ssdtosd(&ldt_segs[x], &ldt[x].sd);
/* exceptions */
for (x = 0; x < NIDT; x++)
setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL);
setidt(0, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL);
setidt(1, &IDTVEC(dbg), SDT_SYS386TGT, SEL_KPL);
setidt(2, &IDTVEC(nmi), SDT_SYS386TGT, SEL_KPL);
setidt(3, &IDTVEC(bpt), SDT_SYS386TGT, SEL_UPL);
setidt(4, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL);
setidt(5, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL);
setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL);
setidt(7, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL);
setidt(8, &IDTVEC(dble), SDT_SYS386TGT, SEL_KPL);
setidt(9, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL);
setidt(10, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL);
setidt(11, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL);
setidt(12, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL);
setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL);
setidt(14, &IDTVEC(page), SDT_SYS386TGT, SEL_KPL);
setidt(15, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL);
setidt(16, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL);
setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL);
#ifdef COMPAT_LINUX
setidt(0x80, &IDTVEC(linux_syscall), SDT_SYS386TGT, SEL_UPL);
#endif
#include "isa.h"
#if NISA >0
isa_defaultirq();
#endif
r_gdt.rd_limit = sizeof(gdt) - 1;
r_gdt.rd_base = (int) gdt;
lgdt(&r_gdt);
r_idt.rd_limit = sizeof(idt) - 1;
r_idt.rd_base = (int) idt;
lidt(&r_idt);
_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
lldt(_default_ldt);
currentldt = _default_ldt;
#ifdef DDB
kdb_init();
if (boothowto & RB_KDB)
Debugger("Boot flags requested debugger");
#endif
/* Use BIOS values stored in RTC CMOS RAM, since probing
* breaks certain 386 AT relics.
*/
biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
/*
* Print a warning if the official BIOS interface disagrees
* with the hackish interface used above. Eventually only
* the official interface should be used.
*/
if (bootinfo.bi_memsizes_valid) {
if (bootinfo.bi_basemem != biosbasemem)
printf("BIOS basemem (%dK) != RTC basemem (%dK)\n",
bootinfo.bi_basemem, biosbasemem);
if (bootinfo.bi_extmem != biosextmem)
printf("BIOS extmem (%dK) != RTC extmem (%dK)\n",
bootinfo.bi_extmem, biosextmem);
}
/*
* If BIOS tells us that it has more than 640k in the basemem,
* don't believe it - set it to 640k.
*/
if (biosbasemem > 640)
biosbasemem = 640;
/*
* Some 386 machines might give us a bogus number for extended
* mem. If this happens, stop now.
*/
#ifndef LARGEMEM
if (biosextmem > 65536) {
panic("extended memory beyond limit of 64MB");
/* NOTREACHED */
}
#endif
pagesinbase = biosbasemem * 1024 / NBPG;
pagesinext = biosextmem * 1024 / NBPG;
/*
* Special hack for chipsets that still remap the 384k hole when
* there's 16MB of memory - this really confuses people that
* are trying to use bus mastering ISA controllers with the
* "16MB limit"; they only have 16MB, but the remapping puts
* them beyond the limit.
*/
/*
* If extended memory is between 15-16MB (16-17MB phys address range),
* chop it to 15MB.
*/
if ((pagesinext > 3840) && (pagesinext < 4096))
pagesinext = 3840;
/*
* Maxmem isn't the "maximum memory", it's one larger than the
* highest page of of the physical address space. It should be
* called something like "Maxphyspage".
*/
Maxmem = pagesinext + 0x100000/PAGE_SIZE;
#ifdef MAXMEM
Maxmem = MAXMEM/4;
#endif
/*
* Calculate number of physical pages, but account for Maxmem
* adjustment above.
*/
physmem = pagesinbase + Maxmem - 0x100000/PAGE_SIZE;
/* call pmap initialization to make new kernel address space */
pmap_bootstrap (first, 0);
/*
* Do a quick, non-destructive check over extended memory to verify
* what the BIOS tells us agrees with reality. Adjust down Maxmem
* if we find that the page can't be correctly written to/read from.
*/
for (target_page = Maxmem - 1; target_page >= atop(first); target_page--) {
int tmp;
/*
* map page into kernel: valid, read/write, non-cacheable
*/
*(int *)CMAP1 = PG_V | PG_KW | PG_N | ptoa(target_page);
pmap_update();
tmp = *(int *)CADDR1;
/*
* Test for alternating 1's and 0's
*/
*(int *)CADDR1 = 0xaaaaaaaa;
if (*(int *)CADDR1 != 0xaaaaaaaa) {
Maxmem = target_page;
badpages++;
continue;
}
/*
* Test for alternating 0's and 1's
*/
*(int *)CADDR1 = 0x55555555;
if (*(int *)CADDR1 != 0x55555555) {
Maxmem = target_page;
badpages++;
continue;
}
/*
* Test for all 1's
*/
*(int *)CADDR1 = 0xffffffff;
if (*(int *)CADDR1 != 0xffffffff) {
Maxmem = target_page;
badpages++;
continue;
}
/*
* Test for all 0's
*/
*(int *)CADDR1 = 0x0;
if (*(int *)CADDR1 != 0x0) {
/*
* test of page failed
*/
Maxmem = target_page;
badpages++;
continue;
}
*(int *)CADDR1 = tmp;
}
if (badpages != 0)
printf("WARNING: BIOS extended memory size and reality don't agree.\n");
*(int *)CMAP1 = 0;
pmap_update();
avail_end = (Maxmem << PAGE_SHIFT)
- i386_round_page(sizeof(struct msgbuf));
/*
* Initialize pointers to the two chunks of memory; for use
* later in vm_page_startup.
*/
/* avail_start is initialized in pmap_bootstrap */
x = 0;
if (pagesinbase > 1) {
phys_avail[x++] = NBPG; /* skip first page of memory */
phys_avail[x++] = pagesinbase * NBPG; /* memory up to the ISA hole */
}
phys_avail[x++] = avail_start; /* memory up to the end */
phys_avail[x++] = avail_end;
phys_avail[x++] = 0; /* no more chunks */
phys_avail[x++] = 0;
/* now running on new page tables, configured,and u/iom is accessible */
/* make a initial tss so microp can get interrupt stack on syscall! */
proc0.p_addr->u_pcb.pcb_tss.tss_esp0 = (int) kstack + UPAGES*NBPG;
proc0.p_addr->u_pcb.pcb_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
((struct i386tss *)gdt_segs[GPROC0_SEL].ssd_base)->tss_ioopt =
(sizeof(tss))<<16;
ltr(gsel_tss);
/* make a call gate to reenter kernel with */
gdp = &ldt[LSYS5CALLS_SEL].gd;
x = (int) &IDTVEC(syscall);
gdp->gd_looffset = x++;
gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
gdp->gd_stkcpy = 1;
gdp->gd_type = SDT_SYS386CGT;
gdp->gd_dpl = SEL_UPL;
gdp->gd_p = 1;
gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
/* transfer to user mode */
_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
/* setup proc 0's pcb */
bcopy(&sigcode, proc0.p_addr->u_pcb.pcb_sigc, szsigcode);
proc0.p_addr->u_pcb.pcb_flags = 0;
proc0.p_addr->u_pcb.pcb_ptd = IdlePTD;
}
/*
* The registers are in the frame; the frame is in the user area of
* the process in question; when the process is active, the registers
* are in "the kernel stack"; when it's not, they're still there, but
* things get flipped around. So, since p->p_md.md_regs is the whole address
* of the register set, take its offset from the kernel stack, and
* index into the user block. Don't you just *love* virtual memory?
* (I'm starting to think seymour is right...)
*/
#define TF_REGP(p) ((struct trapframe *) \
((char *)(p)->p_addr \
+ ((char *)(p)->p_md.md_regs - kstack)))
int
ptrace_set_pc(p, addr)
struct proc *p;
unsigned int addr;
{
TF_REGP(p)->tf_eip = addr;
return (0);
}
int
ptrace_single_step(p)
struct proc *p;
{
TF_REGP(p)->tf_eflags |= PSL_T;
return (0);
}
int
ptrace_getregs(p, addr)
struct proc *p;
unsigned int *addr;
{
int error;
struct reg regs;
error = fill_regs(p, &regs);
if (error)
return (error);
return (copyout(&regs, addr, sizeof regs));
}
int
ptrace_setregs(p, addr)
struct proc *p;
unsigned int *addr;
{
int error;
struct reg regs;
error = copyin(addr, &regs, sizeof regs);
if (error)
return (error);
return (set_regs(p, &regs));
}
int ptrace_write_u(p, off, data)
struct proc *p;
vm_offset_t off;
int data;
{
struct trapframe frame_copy;
vm_offset_t min;
struct trapframe *tp;
/*
* Privileged kernel state is scattered all over the user area.
* Only allow write access to parts of regs and to fpregs.
*/
min = (char *)p->p_md.md_regs - kstack;
if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
tp = TF_REGP(p);
frame_copy = *tp;
*(int *)((char *)&frame_copy + (off - min)) = data;
if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
!CS_SECURE(frame_copy.tf_cs))
return (EINVAL);
*(int*)((char *)p->p_addr + off) = data;
return (0);
}
min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
*(int*)((char *)p->p_addr + off) = data;
return (0);
}
return (EFAULT);
}
int
fill_regs(p, regs)
struct proc *p;
struct reg *regs;
{
struct trapframe *tp;
tp = TF_REGP(p);
regs->r_es = tp->tf_es;
regs->r_ds = tp->tf_ds;
regs->r_edi = tp->tf_edi;
regs->r_esi = tp->tf_esi;
regs->r_ebp = tp->tf_ebp;
regs->r_ebx = tp->tf_ebx;
regs->r_edx = tp->tf_edx;
regs->r_ecx = tp->tf_ecx;
regs->r_eax = tp->tf_eax;
regs->r_eip = tp->tf_eip;
regs->r_cs = tp->tf_cs;
regs->r_eflags = tp->tf_eflags;
regs->r_esp = tp->tf_esp;
regs->r_ss = tp->tf_ss;
return (0);
}
int
set_regs(p, regs)
struct proc *p;
struct reg *regs;
{
struct trapframe *tp;
tp = TF_REGP(p);
if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
!CS_SECURE(regs->r_cs))
return (EINVAL);
tp->tf_es = regs->r_es;
tp->tf_ds = regs->r_ds;
tp->tf_edi = regs->r_edi;
tp->tf_esi = regs->r_esi;
tp->tf_ebp = regs->r_ebp;
tp->tf_ebx = regs->r_ebx;
tp->tf_edx = regs->r_edx;
tp->tf_ecx = regs->r_ecx;
tp->tf_eax = regs->r_eax;
tp->tf_eip = regs->r_eip;
tp->tf_cs = regs->r_cs;
tp->tf_eflags = regs->r_eflags;
tp->tf_esp = regs->r_esp;
tp->tf_ss = regs->r_ss;
return (0);
}
#ifndef DDB
void
Debugger(const char *msg)
{
printf("Debugger(\"%s\") called.\n", msg);
}
#endif /* no DDB */
#include <sys/disklabel.h>
#define b_cylin b_resid
/*
* Determine the size of the transfer, and make sure it is
* within the boundaries of the partition. Adjust transfer
* if needed, and signal errors or early completion.
*/
int
bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
{
struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
int labelsect = lp->d_partitions[0].p_offset;
int maxsz = p->p_size,
sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
/* overwriting disk label ? */
/* XXX should also protect bootstrap in first 8K */
if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
#if LABELSECTOR != 0
bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
#endif
(bp->b_flags & B_READ) == 0 && wlabel == 0) {
bp->b_error = EROFS;
goto bad;
}
#if defined(DOSBBSECTOR) && defined(notyet)
/* overwriting master boot record? */
if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
(bp->b_flags & B_READ) == 0 && wlabel == 0) {
bp->b_error = EROFS;
goto bad;
}
#endif
/* beyond partition? */
if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
/* if exactly at end of disk, return an EOF */
if (bp->b_blkno == maxsz) {
bp->b_resid = bp->b_bcount;
return(0);
}
/* or truncate if part of it fits */
sz = maxsz - bp->b_blkno;
if (sz <= 0) {
bp->b_error = EINVAL;
goto bad;
}
bp->b_bcount = sz << DEV_BSHIFT;
}
/* calculate cylinder for disksort to order transfers with */
bp->b_pblkno = bp->b_blkno + p->p_offset;
bp->b_cylin = bp->b_pblkno / lp->d_secpercyl;
return(1);
bad:
bp->b_flags |= B_ERROR;
return(-1);
}
int
disk_externalize(int drive, void *userp, size_t *maxlen)
{
if(*maxlen < sizeof drive) {
return ENOMEM;
}
*maxlen -= sizeof drive;
return copyout(&drive, userp, sizeof drive);
}