freebsd_amp_hwpstate/clang/lib/Sema/SemaConcept.cpp

1640 lines
65 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for C++ constraints and concepts.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaConcept.h"
#include "TreeTransform.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/OperatorPrecedence.h"
#include "clang/Sema/EnterExpressionEvaluationContext.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Overload.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Template.h"
#include "clang/Sema/TemplateDeduction.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringExtras.h"
#include <optional>
using namespace clang;
using namespace sema;
namespace {
class LogicalBinOp {
SourceLocation Loc;
OverloadedOperatorKind Op = OO_None;
const Expr *LHS = nullptr;
const Expr *RHS = nullptr;
public:
LogicalBinOp(const Expr *E) {
if (auto *BO = dyn_cast<BinaryOperator>(E)) {
Op = BinaryOperator::getOverloadedOperator(BO->getOpcode());
LHS = BO->getLHS();
RHS = BO->getRHS();
Loc = BO->getExprLoc();
} else if (auto *OO = dyn_cast<CXXOperatorCallExpr>(E)) {
// If OO is not || or && it might not have exactly 2 arguments.
if (OO->getNumArgs() == 2) {
Op = OO->getOperator();
LHS = OO->getArg(0);
RHS = OO->getArg(1);
Loc = OO->getOperatorLoc();
}
}
}
bool isAnd() const { return Op == OO_AmpAmp; }
bool isOr() const { return Op == OO_PipePipe; }
explicit operator bool() const { return isAnd() || isOr(); }
const Expr *getLHS() const { return LHS; }
const Expr *getRHS() const { return RHS; }
ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS) const {
return recreateBinOp(SemaRef, LHS, const_cast<Expr *>(getRHS()));
}
ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS,
ExprResult RHS) const {
assert((isAnd() || isOr()) && "Not the right kind of op?");
assert((!LHS.isInvalid() && !RHS.isInvalid()) && "not good expressions?");
if (!LHS.isUsable() || !RHS.isUsable())
return ExprEmpty();
// We should just be able to 'normalize' these to the builtin Binary
// Operator, since that is how they are evaluated in constriant checks.
return BinaryOperator::Create(SemaRef.Context, LHS.get(), RHS.get(),
BinaryOperator::getOverloadedOpcode(Op),
SemaRef.Context.BoolTy, VK_PRValue,
OK_Ordinary, Loc, FPOptionsOverride{});
}
};
}
bool Sema::CheckConstraintExpression(const Expr *ConstraintExpression,
Token NextToken, bool *PossibleNonPrimary,
bool IsTrailingRequiresClause) {
// C++2a [temp.constr.atomic]p1
// ..E shall be a constant expression of type bool.
ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts();
if (LogicalBinOp BO = ConstraintExpression) {
return CheckConstraintExpression(BO.getLHS(), NextToken,
PossibleNonPrimary) &&
CheckConstraintExpression(BO.getRHS(), NextToken,
PossibleNonPrimary);
} else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression))
return CheckConstraintExpression(C->getSubExpr(), NextToken,
PossibleNonPrimary);
QualType Type = ConstraintExpression->getType();
auto CheckForNonPrimary = [&] {
if (!PossibleNonPrimary)
return;
*PossibleNonPrimary =
// We have the following case:
// template<typename> requires func(0) struct S { };
// The user probably isn't aware of the parentheses required around
// the function call, and we're only going to parse 'func' as the
// primary-expression, and complain that it is of non-bool type.
//
// However, if we're in a lambda, this might also be:
// []<typename> requires var () {};
// Which also looks like a function call due to the lambda parentheses,
// but unlike the first case, isn't an error, so this check is skipped.
(NextToken.is(tok::l_paren) &&
(IsTrailingRequiresClause ||
(Type->isDependentType() &&
isa<UnresolvedLookupExpr>(ConstraintExpression) &&
!dyn_cast_if_present<LambdaScopeInfo>(getCurFunction())) ||
Type->isFunctionType() ||
Type->isSpecificBuiltinType(BuiltinType::Overload))) ||
// We have the following case:
// template<typename T> requires size_<T> == 0 struct S { };
// The user probably isn't aware of the parentheses required around
// the binary operator, and we're only going to parse 'func' as the
// first operand, and complain that it is of non-bool type.
getBinOpPrecedence(NextToken.getKind(),
/*GreaterThanIsOperator=*/true,
getLangOpts().CPlusPlus11) > prec::LogicalAnd;
};
// An atomic constraint!
if (ConstraintExpression->isTypeDependent()) {
CheckForNonPrimary();
return true;
}
if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) {
Diag(ConstraintExpression->getExprLoc(),
diag::err_non_bool_atomic_constraint) << Type
<< ConstraintExpression->getSourceRange();
CheckForNonPrimary();
return false;
}
if (PossibleNonPrimary)
*PossibleNonPrimary = false;
return true;
}
namespace {
struct SatisfactionStackRAII {
Sema &SemaRef;
bool Inserted = false;
SatisfactionStackRAII(Sema &SemaRef, const NamedDecl *ND,
const llvm::FoldingSetNodeID &FSNID)
: SemaRef(SemaRef) {
if (ND) {
SemaRef.PushSatisfactionStackEntry(ND, FSNID);
Inserted = true;
}
}
~SatisfactionStackRAII() {
if (Inserted)
SemaRef.PopSatisfactionStackEntry();
}
};
} // namespace
template <typename AtomicEvaluator>
static ExprResult
calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr,
ConstraintSatisfaction &Satisfaction,
AtomicEvaluator &&Evaluator) {
ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts();
if (LogicalBinOp BO = ConstraintExpr) {
ExprResult LHSRes = calculateConstraintSatisfaction(
S, BO.getLHS(), Satisfaction, Evaluator);
if (LHSRes.isInvalid())
return ExprError();
bool IsLHSSatisfied = Satisfaction.IsSatisfied;
if (BO.isOr() && IsLHSSatisfied)
// [temp.constr.op] p3
// A disjunction is a constraint taking two operands. To determine if
// a disjunction is satisfied, the satisfaction of the first operand
// is checked. If that is satisfied, the disjunction is satisfied.
// Otherwise, the disjunction is satisfied if and only if the second
// operand is satisfied.
// LHS is instantiated while RHS is not. Skip creating invalid BinaryOp.
return LHSRes;
if (BO.isAnd() && !IsLHSSatisfied)
// [temp.constr.op] p2
// A conjunction is a constraint taking two operands. To determine if
// a conjunction is satisfied, the satisfaction of the first operand
// is checked. If that is not satisfied, the conjunction is not
// satisfied. Otherwise, the conjunction is satisfied if and only if
// the second operand is satisfied.
// LHS is instantiated while RHS is not. Skip creating invalid BinaryOp.
return LHSRes;
ExprResult RHSRes = calculateConstraintSatisfaction(
S, BO.getRHS(), Satisfaction, std::forward<AtomicEvaluator>(Evaluator));
if (RHSRes.isInvalid())
return ExprError();
return BO.recreateBinOp(S, LHSRes, RHSRes);
}
if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr)) {
// These aren't evaluated, so we don't care about cleanups, so we can just
// evaluate these as if the cleanups didn't exist.
return calculateConstraintSatisfaction(
S, C->getSubExpr(), Satisfaction,
std::forward<AtomicEvaluator>(Evaluator));
}
// An atomic constraint expression
ExprResult SubstitutedAtomicExpr = Evaluator(ConstraintExpr);
if (SubstitutedAtomicExpr.isInvalid())
return ExprError();
if (!SubstitutedAtomicExpr.isUsable())
// Evaluator has decided satisfaction without yielding an expression.
return ExprEmpty();
// We don't have the ability to evaluate this, since it contains a
// RecoveryExpr, so we want to fail overload resolution. Otherwise,
// we'd potentially pick up a different overload, and cause confusing
// diagnostics. SO, add a failure detail that will cause us to make this
// overload set not viable.
if (SubstitutedAtomicExpr.get()->containsErrors()) {
Satisfaction.IsSatisfied = false;
Satisfaction.ContainsErrors = true;
PartialDiagnostic Msg = S.PDiag(diag::note_constraint_references_error);
SmallString<128> DiagString;
DiagString = ": ";
Msg.EmitToString(S.getDiagnostics(), DiagString);
unsigned MessageSize = DiagString.size();
char *Mem = new (S.Context) char[MessageSize];
memcpy(Mem, DiagString.c_str(), MessageSize);
Satisfaction.Details.emplace_back(
ConstraintExpr,
new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
SubstitutedAtomicExpr.get()->getBeginLoc(),
StringRef(Mem, MessageSize)});
return SubstitutedAtomicExpr;
}
EnterExpressionEvaluationContext ConstantEvaluated(
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
SmallVector<PartialDiagnosticAt, 2> EvaluationDiags;
Expr::EvalResult EvalResult;
EvalResult.Diag = &EvaluationDiags;
if (!SubstitutedAtomicExpr.get()->EvaluateAsConstantExpr(EvalResult,
S.Context) ||
!EvaluationDiags.empty()) {
// C++2a [temp.constr.atomic]p1
// ...E shall be a constant expression of type bool.
S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(),
diag::err_non_constant_constraint_expression)
<< SubstitutedAtomicExpr.get()->getSourceRange();
for (const PartialDiagnosticAt &PDiag : EvaluationDiags)
S.Diag(PDiag.first, PDiag.second);
return ExprError();
}
assert(EvalResult.Val.isInt() &&
"evaluating bool expression didn't produce int");
Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue();
if (!Satisfaction.IsSatisfied)
Satisfaction.Details.emplace_back(ConstraintExpr,
SubstitutedAtomicExpr.get());
return SubstitutedAtomicExpr;
}
static bool
DiagRecursiveConstraintEval(Sema &S, llvm::FoldingSetNodeID &ID,
const NamedDecl *Templ, const Expr *E,
const MultiLevelTemplateArgumentList &MLTAL) {
E->Profile(ID, S.Context, /*Canonical=*/true);
for (const auto &List : MLTAL)
for (const auto &TemplateArg : List.Args)
TemplateArg.Profile(ID, S.Context);
// Note that we have to do this with our own collection, because there are
// times where a constraint-expression check can cause us to need to evaluate
// other constriants that are unrelated, such as when evaluating a recovery
// expression, or when trying to determine the constexpr-ness of special
// members. Otherwise we could just use the
// Sema::InstantiatingTemplate::isAlreadyBeingInstantiated function.
if (S.SatisfactionStackContains(Templ, ID)) {
S.Diag(E->getExprLoc(), diag::err_constraint_depends_on_self)
<< const_cast<Expr *>(E) << E->getSourceRange();
return true;
}
return false;
}
static ExprResult calculateConstraintSatisfaction(
Sema &S, const NamedDecl *Template, SourceLocation TemplateNameLoc,
const MultiLevelTemplateArgumentList &MLTAL, const Expr *ConstraintExpr,
ConstraintSatisfaction &Satisfaction) {
return calculateConstraintSatisfaction(
S, ConstraintExpr, Satisfaction, [&](const Expr *AtomicExpr) {
EnterExpressionEvaluationContext ConstantEvaluated(
S, Sema::ExpressionEvaluationContext::ConstantEvaluated,
Sema::ReuseLambdaContextDecl);
// Atomic constraint - substitute arguments and check satisfaction.
ExprResult SubstitutedExpression;
{
TemplateDeductionInfo Info(TemplateNameLoc);
Sema::InstantiatingTemplate Inst(S, AtomicExpr->getBeginLoc(),
Sema::InstantiatingTemplate::ConstraintSubstitution{},
const_cast<NamedDecl *>(Template), Info,
AtomicExpr->getSourceRange());
if (Inst.isInvalid())
return ExprError();
llvm::FoldingSetNodeID ID;
if (Template &&
DiagRecursiveConstraintEval(S, ID, Template, AtomicExpr, MLTAL)) {
Satisfaction.IsSatisfied = false;
Satisfaction.ContainsErrors = true;
return ExprEmpty();
}
SatisfactionStackRAII StackRAII(S, Template, ID);
// We do not want error diagnostics escaping here.
Sema::SFINAETrap Trap(S);
SubstitutedExpression =
S.SubstConstraintExpr(const_cast<Expr *>(AtomicExpr), MLTAL);
if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) {
// C++2a [temp.constr.atomic]p1
// ...If substitution results in an invalid type or expression, the
// constraint is not satisfied.
if (!Trap.hasErrorOccurred())
// A non-SFINAE error has occurred as a result of this
// substitution.
return ExprError();
PartialDiagnosticAt SubstDiag{SourceLocation(),
PartialDiagnostic::NullDiagnostic()};
Info.takeSFINAEDiagnostic(SubstDiag);
// FIXME: Concepts: This is an unfortunate consequence of there
// being no serialization code for PartialDiagnostics and the fact
// that serializing them would likely take a lot more storage than
// just storing them as strings. We would still like, in the
// future, to serialize the proper PartialDiagnostic as serializing
// it as a string defeats the purpose of the diagnostic mechanism.
SmallString<128> DiagString;
DiagString = ": ";
SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString);
unsigned MessageSize = DiagString.size();
char *Mem = new (S.Context) char[MessageSize];
memcpy(Mem, DiagString.c_str(), MessageSize);
Satisfaction.Details.emplace_back(
AtomicExpr,
new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
SubstDiag.first, StringRef(Mem, MessageSize)});
Satisfaction.IsSatisfied = false;
return ExprEmpty();
}
}
if (!S.CheckConstraintExpression(SubstitutedExpression.get()))
return ExprError();
// [temp.constr.atomic]p3: To determine if an atomic constraint is
// satisfied, the parameter mapping and template arguments are first
// substituted into its expression. If substitution results in an
// invalid type or expression, the constraint is not satisfied.
// Otherwise, the lvalue-to-rvalue conversion is performed if necessary,
// and E shall be a constant expression of type bool.
//
// Perform the L to R Value conversion if necessary. We do so for all
// non-PRValue categories, else we fail to extend the lifetime of
// temporaries, and that fails the constant expression check.
if (!SubstitutedExpression.get()->isPRValue())
SubstitutedExpression = ImplicitCastExpr::Create(
S.Context, SubstitutedExpression.get()->getType(),
CK_LValueToRValue, SubstitutedExpression.get(),
/*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());
return SubstitutedExpression;
});
}
static bool CheckConstraintSatisfaction(
Sema &S, const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
llvm::SmallVectorImpl<Expr *> &Converted,
const MultiLevelTemplateArgumentList &TemplateArgsLists,
SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction) {
if (ConstraintExprs.empty()) {
Satisfaction.IsSatisfied = true;
return false;
}
if (TemplateArgsLists.isAnyArgInstantiationDependent()) {
// No need to check satisfaction for dependent constraint expressions.
Satisfaction.IsSatisfied = true;
return false;
}
ArrayRef<TemplateArgument> TemplateArgs =
TemplateArgsLists.getNumSubstitutedLevels() > 0
? TemplateArgsLists.getOutermost()
: ArrayRef<TemplateArgument> {};
Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(),
Sema::InstantiatingTemplate::ConstraintsCheck{},
const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange);
if (Inst.isInvalid())
return true;
for (const Expr *ConstraintExpr : ConstraintExprs) {
ExprResult Res = calculateConstraintSatisfaction(
S, Template, TemplateIDRange.getBegin(), TemplateArgsLists,
ConstraintExpr, Satisfaction);
if (Res.isInvalid())
return true;
Converted.push_back(Res.get());
if (!Satisfaction.IsSatisfied) {
// Backfill the 'converted' list with nulls so we can keep the Converted
// and unconverted lists in sync.
Converted.append(ConstraintExprs.size() - Converted.size(), nullptr);
// [temp.constr.op] p2
// [...] To determine if a conjunction is satisfied, the satisfaction
// of the first operand is checked. If that is not satisfied, the
// conjunction is not satisfied. [...]
return false;
}
}
return false;
}
bool Sema::CheckConstraintSatisfaction(
const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
llvm::SmallVectorImpl<Expr *> &ConvertedConstraints,
const MultiLevelTemplateArgumentList &TemplateArgsLists,
SourceRange TemplateIDRange, ConstraintSatisfaction &OutSatisfaction) {
if (ConstraintExprs.empty()) {
OutSatisfaction.IsSatisfied = true;
return false;
}
if (!Template) {
return ::CheckConstraintSatisfaction(
*this, nullptr, ConstraintExprs, ConvertedConstraints,
TemplateArgsLists, TemplateIDRange, OutSatisfaction);
}
// A list of the template argument list flattened in a predictible manner for
// the purposes of caching. The ConstraintSatisfaction type is in AST so it
// has no access to the MultiLevelTemplateArgumentList, so this has to happen
// here.
llvm::SmallVector<TemplateArgument, 4> FlattenedArgs;
for (auto List : TemplateArgsLists)
FlattenedArgs.insert(FlattenedArgs.end(), List.Args.begin(),
List.Args.end());
llvm::FoldingSetNodeID ID;
ConstraintSatisfaction::Profile(ID, Context, Template, FlattenedArgs);
void *InsertPos;
if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) {
OutSatisfaction = *Cached;
return false;
}
auto Satisfaction =
std::make_unique<ConstraintSatisfaction>(Template, FlattenedArgs);
if (::CheckConstraintSatisfaction(*this, Template, ConstraintExprs,
ConvertedConstraints, TemplateArgsLists,
TemplateIDRange, *Satisfaction)) {
OutSatisfaction = *Satisfaction;
return true;
}
if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) {
// The evaluation of this constraint resulted in us trying to re-evaluate it
// recursively. This isn't really possible, except we try to form a
// RecoveryExpr as a part of the evaluation. If this is the case, just
// return the 'cached' version (which will have the same result), and save
// ourselves the extra-insert. If it ever becomes possible to legitimately
// recursively check a constraint, we should skip checking the 'inner' one
// above, and replace the cached version with this one, as it would be more
// specific.
OutSatisfaction = *Cached;
return false;
}
// Else we can simply add this satisfaction to the list.
OutSatisfaction = *Satisfaction;
// We cannot use InsertPos here because CheckConstraintSatisfaction might have
// invalidated it.
// Note that entries of SatisfactionCache are deleted in Sema's destructor.
SatisfactionCache.InsertNode(Satisfaction.release());
return false;
}
bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr,
ConstraintSatisfaction &Satisfaction) {
return calculateConstraintSatisfaction(
*this, ConstraintExpr, Satisfaction,
[this](const Expr *AtomicExpr) -> ExprResult {
// We only do this to immitate lvalue-to-rvalue conversion.
return PerformContextuallyConvertToBool(
const_cast<Expr *>(AtomicExpr));
})
.isInvalid();
}
bool Sema::addInstantiatedCapturesToScope(
FunctionDecl *Function, const FunctionDecl *PatternDecl,
LocalInstantiationScope &Scope,
const MultiLevelTemplateArgumentList &TemplateArgs) {
const auto *LambdaClass = cast<CXXMethodDecl>(Function)->getParent();
const auto *LambdaPattern = cast<CXXMethodDecl>(PatternDecl)->getParent();
unsigned Instantiated = 0;
auto AddSingleCapture = [&](const ValueDecl *CapturedPattern,
unsigned Index) {
ValueDecl *CapturedVar = LambdaClass->getCapture(Index)->getCapturedVar();
if (cast<CXXMethodDecl>(Function)->isConst()) {
QualType T = CapturedVar->getType();
T.addConst();
CapturedVar->setType(T);
}
if (CapturedVar->isInitCapture())
Scope.InstantiatedLocal(CapturedPattern, CapturedVar);
};
for (const LambdaCapture &CapturePattern : LambdaPattern->captures()) {
if (!CapturePattern.capturesVariable()) {
Instantiated++;
continue;
}
const ValueDecl *CapturedPattern = CapturePattern.getCapturedVar();
if (!CapturedPattern->isParameterPack()) {
AddSingleCapture(CapturedPattern, Instantiated++);
} else {
Scope.MakeInstantiatedLocalArgPack(CapturedPattern);
std::optional<unsigned> NumArgumentsInExpansion =
getNumArgumentsInExpansion(CapturedPattern->getType(), TemplateArgs);
if (!NumArgumentsInExpansion)
continue;
for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg)
AddSingleCapture(CapturedPattern, Instantiated++);
}
}
return false;
}
bool Sema::SetupConstraintScope(
FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
MultiLevelTemplateArgumentList MLTAL, LocalInstantiationScope &Scope) {
if (FD->isTemplateInstantiation() && FD->getPrimaryTemplate()) {
FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate();
InstantiatingTemplate Inst(
*this, FD->getPointOfInstantiation(),
Sema::InstantiatingTemplate::ConstraintsCheck{}, PrimaryTemplate,
TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{},
SourceRange());
if (Inst.isInvalid())
return true;
// addInstantiatedParametersToScope creates a map of 'uninstantiated' to
// 'instantiated' parameters and adds it to the context. For the case where
// this function is a template being instantiated NOW, we also need to add
// the list of current template arguments to the list so that they also can
// be picked out of the map.
if (auto *SpecArgs = FD->getTemplateSpecializationArgs()) {
MultiLevelTemplateArgumentList JustTemplArgs(FD, SpecArgs->asArray(),
/*Final=*/false);
if (addInstantiatedParametersToScope(
FD, PrimaryTemplate->getTemplatedDecl(), Scope, JustTemplArgs))
return true;
}
// If this is a member function, make sure we get the parameters that
// reference the original primary template.
if (const auto *FromMemTempl =
PrimaryTemplate->getInstantiatedFromMemberTemplate()) {
if (addInstantiatedParametersToScope(FD, FromMemTempl->getTemplatedDecl(),
Scope, MLTAL))
return true;
// Make sure the captures are also added to the instantiation scope.
if (isLambdaCallOperator(FD) &&
addInstantiatedCapturesToScope(FD, FromMemTempl->getTemplatedDecl(),
Scope, MLTAL))
return true;
}
return false;
}
if (FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization ||
FD->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate) {
FunctionDecl *InstantiatedFrom =
FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization
? FD->getInstantiatedFromMemberFunction()
: FD->getInstantiatedFromDecl();
InstantiatingTemplate Inst(
*this, FD->getPointOfInstantiation(),
Sema::InstantiatingTemplate::ConstraintsCheck{}, InstantiatedFrom,
TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{},
SourceRange());
if (Inst.isInvalid())
return true;
// Case where this was not a template, but instantiated as a
// child-function.
if (addInstantiatedParametersToScope(FD, InstantiatedFrom, Scope, MLTAL))
return true;
// Make sure the captures are also added to the instantiation scope.
if (isLambdaCallOperator(FD) &&
addInstantiatedCapturesToScope(FD, InstantiatedFrom, Scope, MLTAL))
return true;
}
return false;
}
// This function collects all of the template arguments for the purposes of
// constraint-instantiation and checking.
std::optional<MultiLevelTemplateArgumentList>
Sema::SetupConstraintCheckingTemplateArgumentsAndScope(
FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
LocalInstantiationScope &Scope) {
MultiLevelTemplateArgumentList MLTAL;
// Collect the list of template arguments relative to the 'primary' template.
// We need the entire list, since the constraint is completely uninstantiated
// at this point.
MLTAL =
getTemplateInstantiationArgs(FD, /*Final=*/false, /*Innermost=*/nullptr,
/*RelativeToPrimary=*/true,
/*Pattern=*/nullptr,
/*ForConstraintInstantiation=*/true);
if (SetupConstraintScope(FD, TemplateArgs, MLTAL, Scope))
return std::nullopt;
return MLTAL;
}
bool Sema::CheckFunctionConstraints(const FunctionDecl *FD,
ConstraintSatisfaction &Satisfaction,
SourceLocation UsageLoc,
bool ForOverloadResolution) {
// Don't check constraints if the function is dependent. Also don't check if
// this is a function template specialization, as the call to
// CheckinstantiatedFunctionTemplateConstraints after this will check it
// better.
if (FD->isDependentContext() ||
FD->getTemplatedKind() ==
FunctionDecl::TK_FunctionTemplateSpecialization) {
Satisfaction.IsSatisfied = true;
return false;
}
// A lambda conversion operator has the same constraints as the call operator
// and constraints checking relies on whether we are in a lambda call operator
// (and may refer to its parameters), so check the call operator instead.
if (const auto *MD = dyn_cast<CXXConversionDecl>(FD);
MD && isLambdaConversionOperator(const_cast<CXXConversionDecl *>(MD)))
return CheckFunctionConstraints(MD->getParent()->getLambdaCallOperator(),
Satisfaction, UsageLoc,
ForOverloadResolution);
DeclContext *CtxToSave = const_cast<FunctionDecl *>(FD);
while (isLambdaCallOperator(CtxToSave) || FD->isTransparentContext()) {
if (isLambdaCallOperator(CtxToSave))
CtxToSave = CtxToSave->getParent()->getParent();
else
CtxToSave = CtxToSave->getNonTransparentContext();
}
ContextRAII SavedContext{*this, CtxToSave};
LocalInstantiationScope Scope(*this, !ForOverloadResolution ||
isLambdaCallOperator(FD));
std::optional<MultiLevelTemplateArgumentList> MLTAL =
SetupConstraintCheckingTemplateArgumentsAndScope(
const_cast<FunctionDecl *>(FD), {}, Scope);
if (!MLTAL)
return true;
Qualifiers ThisQuals;
CXXRecordDecl *Record = nullptr;
if (auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
ThisQuals = Method->getMethodQualifiers();
Record = const_cast<CXXRecordDecl *>(Method->getParent());
}
CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
return CheckConstraintSatisfaction(
FD, {FD->getTrailingRequiresClause()}, *MLTAL,
SourceRange(UsageLoc.isValid() ? UsageLoc : FD->getLocation()),
Satisfaction);
}
// Figure out the to-translation-unit depth for this function declaration for
// the purpose of seeing if they differ by constraints. This isn't the same as
// getTemplateDepth, because it includes already instantiated parents.
static unsigned
CalculateTemplateDepthForConstraints(Sema &S, const NamedDecl *ND,
bool SkipForSpecialization = false) {
MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
ND, /*Final=*/false, /*Innermost=*/nullptr, /*RelativeToPrimary=*/true,
/*Pattern=*/nullptr,
/*ForConstraintInstantiation=*/true, SkipForSpecialization);
return MLTAL.getNumLevels();
}
namespace {
class AdjustConstraintDepth : public TreeTransform<AdjustConstraintDepth> {
unsigned TemplateDepth = 0;
public:
using inherited = TreeTransform<AdjustConstraintDepth>;
AdjustConstraintDepth(Sema &SemaRef, unsigned TemplateDepth)
: inherited(SemaRef), TemplateDepth(TemplateDepth) {}
using inherited::TransformTemplateTypeParmType;
QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
TemplateTypeParmTypeLoc TL, bool) {
const TemplateTypeParmType *T = TL.getTypePtr();
TemplateTypeParmDecl *NewTTPDecl = nullptr;
if (TemplateTypeParmDecl *OldTTPDecl = T->getDecl())
NewTTPDecl = cast_or_null<TemplateTypeParmDecl>(
TransformDecl(TL.getNameLoc(), OldTTPDecl));
QualType Result = getSema().Context.getTemplateTypeParmType(
T->getDepth() + TemplateDepth, T->getIndex(), T->isParameterPack(),
NewTTPDecl);
TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
};
} // namespace
static const Expr *SubstituteConstraintExpression(Sema &S, const NamedDecl *ND,
const Expr *ConstrExpr) {
MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
ND, /*Final=*/false, /*Innermost=*/nullptr,
/*RelativeToPrimary=*/true,
/*Pattern=*/nullptr, /*ForConstraintInstantiation=*/true,
/*SkipForSpecialization*/ false);
if (MLTAL.getNumSubstitutedLevels() == 0)
return ConstrExpr;
Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/false);
Sema::InstantiatingTemplate Inst(
S, ND->getLocation(),
Sema::InstantiatingTemplate::ConstraintNormalization{},
const_cast<NamedDecl *>(ND), SourceRange{});
if (Inst.isInvalid())
return nullptr;
std::optional<Sema::CXXThisScopeRAII> ThisScope;
if (auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()))
ThisScope.emplace(S, const_cast<CXXRecordDecl *>(RD), Qualifiers());
ExprResult SubstConstr =
S.SubstConstraintExpr(const_cast<clang::Expr *>(ConstrExpr), MLTAL);
if (SFINAE.hasErrorOccurred() || !SubstConstr.isUsable())
return nullptr;
return SubstConstr.get();
}
bool Sema::AreConstraintExpressionsEqual(const NamedDecl *Old,
const Expr *OldConstr,
const NamedDecl *New,
const Expr *NewConstr) {
if (OldConstr == NewConstr)
return true;
// C++ [temp.constr.decl]p4
if (Old && New && Old != New &&
Old->getLexicalDeclContext() != New->getLexicalDeclContext()) {
if (const Expr *SubstConstr =
SubstituteConstraintExpression(*this, Old, OldConstr))
OldConstr = SubstConstr;
else
return false;
if (const Expr *SubstConstr =
SubstituteConstraintExpression(*this, New, NewConstr))
NewConstr = SubstConstr;
else
return false;
}
llvm::FoldingSetNodeID ID1, ID2;
OldConstr->Profile(ID1, Context, /*Canonical=*/true);
NewConstr->Profile(ID2, Context, /*Canonical=*/true);
return ID1 == ID2;
}
bool Sema::FriendConstraintsDependOnEnclosingTemplate(const FunctionDecl *FD) {
assert(FD->getFriendObjectKind() && "Must be a friend!");
// The logic for non-templates is handled in ASTContext::isSameEntity, so we
// don't have to bother checking 'DependsOnEnclosingTemplate' for a
// non-function-template.
assert(FD->getDescribedFunctionTemplate() &&
"Non-function templates don't need to be checked");
SmallVector<const Expr *, 3> ACs;
FD->getDescribedFunctionTemplate()->getAssociatedConstraints(ACs);
unsigned OldTemplateDepth = CalculateTemplateDepthForConstraints(*this, FD);
for (const Expr *Constraint : ACs)
if (ConstraintExpressionDependsOnEnclosingTemplate(FD, OldTemplateDepth,
Constraint))
return true;
return false;
}
bool Sema::EnsureTemplateArgumentListConstraints(
TemplateDecl *TD, const MultiLevelTemplateArgumentList &TemplateArgsLists,
SourceRange TemplateIDRange) {
ConstraintSatisfaction Satisfaction;
llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
TD->getAssociatedConstraints(AssociatedConstraints);
if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgsLists,
TemplateIDRange, Satisfaction))
return true;
if (!Satisfaction.IsSatisfied) {
SmallString<128> TemplateArgString;
TemplateArgString = " ";
TemplateArgString += getTemplateArgumentBindingsText(
TD->getTemplateParameters(), TemplateArgsLists.getInnermost().data(),
TemplateArgsLists.getInnermost().size());
Diag(TemplateIDRange.getBegin(),
diag::err_template_arg_list_constraints_not_satisfied)
<< (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD
<< TemplateArgString << TemplateIDRange;
DiagnoseUnsatisfiedConstraint(Satisfaction);
return true;
}
return false;
}
bool Sema::CheckInstantiatedFunctionTemplateConstraints(
SourceLocation PointOfInstantiation, FunctionDecl *Decl,
ArrayRef<TemplateArgument> TemplateArgs,
ConstraintSatisfaction &Satisfaction) {
// In most cases we're not going to have constraints, so check for that first.
FunctionTemplateDecl *Template = Decl->getPrimaryTemplate();
// Note - code synthesis context for the constraints check is created
// inside CheckConstraintsSatisfaction.
SmallVector<const Expr *, 3> TemplateAC;
Template->getAssociatedConstraints(TemplateAC);
if (TemplateAC.empty()) {
Satisfaction.IsSatisfied = true;
return false;
}
// Enter the scope of this instantiation. We don't use
// PushDeclContext because we don't have a scope.
Sema::ContextRAII savedContext(*this, Decl);
LocalInstantiationScope Scope(*this);
std::optional<MultiLevelTemplateArgumentList> MLTAL =
SetupConstraintCheckingTemplateArgumentsAndScope(Decl, TemplateArgs,
Scope);
if (!MLTAL)
return true;
Qualifiers ThisQuals;
CXXRecordDecl *Record = nullptr;
if (auto *Method = dyn_cast<CXXMethodDecl>(Decl)) {
ThisQuals = Method->getMethodQualifiers();
Record = Method->getParent();
}
CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
FunctionScopeRAII FuncScope(*this);
if (isLambdaCallOperator(Decl))
PushLambdaScope();
else
FuncScope.disable();
llvm::SmallVector<Expr *, 1> Converted;
return CheckConstraintSatisfaction(Template, TemplateAC, Converted, *MLTAL,
PointOfInstantiation, Satisfaction);
}
static void diagnoseUnsatisfiedRequirement(Sema &S,
concepts::ExprRequirement *Req,
bool First) {
assert(!Req->isSatisfied()
&& "Diagnose() can only be used on an unsatisfied requirement");
switch (Req->getSatisfactionStatus()) {
case concepts::ExprRequirement::SS_Dependent:
llvm_unreachable("Diagnosing a dependent requirement");
break;
case concepts::ExprRequirement::SS_ExprSubstitutionFailure: {
auto *SubstDiag = Req->getExprSubstitutionDiagnostic();
if (!SubstDiag->DiagMessage.empty())
S.Diag(SubstDiag->DiagLoc,
diag::note_expr_requirement_expr_substitution_error)
<< (int)First << SubstDiag->SubstitutedEntity
<< SubstDiag->DiagMessage;
else
S.Diag(SubstDiag->DiagLoc,
diag::note_expr_requirement_expr_unknown_substitution_error)
<< (int)First << SubstDiag->SubstitutedEntity;
break;
}
case concepts::ExprRequirement::SS_NoexceptNotMet:
S.Diag(Req->getNoexceptLoc(),
diag::note_expr_requirement_noexcept_not_met)
<< (int)First << Req->getExpr();
break;
case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: {
auto *SubstDiag =
Req->getReturnTypeRequirement().getSubstitutionDiagnostic();
if (!SubstDiag->DiagMessage.empty())
S.Diag(SubstDiag->DiagLoc,
diag::note_expr_requirement_type_requirement_substitution_error)
<< (int)First << SubstDiag->SubstitutedEntity
<< SubstDiag->DiagMessage;
else
S.Diag(SubstDiag->DiagLoc,
diag::note_expr_requirement_type_requirement_unknown_substitution_error)
<< (int)First << SubstDiag->SubstitutedEntity;
break;
}
case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: {
ConceptSpecializationExpr *ConstraintExpr =
Req->getReturnTypeRequirementSubstitutedConstraintExpr();
if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
// A simple case - expr type is the type being constrained and the concept
// was not provided arguments.
Expr *e = Req->getExpr();
S.Diag(e->getBeginLoc(),
diag::note_expr_requirement_constraints_not_satisfied_simple)
<< (int)First << S.Context.getReferenceQualifiedType(e)
<< ConstraintExpr->getNamedConcept();
} else {
S.Diag(ConstraintExpr->getBeginLoc(),
diag::note_expr_requirement_constraints_not_satisfied)
<< (int)First << ConstraintExpr;
}
S.DiagnoseUnsatisfiedConstraint(ConstraintExpr->getSatisfaction());
break;
}
case concepts::ExprRequirement::SS_Satisfied:
llvm_unreachable("We checked this above");
}
}
static void diagnoseUnsatisfiedRequirement(Sema &S,
concepts::TypeRequirement *Req,
bool First) {
assert(!Req->isSatisfied()
&& "Diagnose() can only be used on an unsatisfied requirement");
switch (Req->getSatisfactionStatus()) {
case concepts::TypeRequirement::SS_Dependent:
llvm_unreachable("Diagnosing a dependent requirement");
return;
case concepts::TypeRequirement::SS_SubstitutionFailure: {
auto *SubstDiag = Req->getSubstitutionDiagnostic();
if (!SubstDiag->DiagMessage.empty())
S.Diag(SubstDiag->DiagLoc,
diag::note_type_requirement_substitution_error) << (int)First
<< SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage;
else
S.Diag(SubstDiag->DiagLoc,
diag::note_type_requirement_unknown_substitution_error)
<< (int)First << SubstDiag->SubstitutedEntity;
return;
}
default:
llvm_unreachable("Unknown satisfaction status");
return;
}
}
static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
Expr *SubstExpr,
bool First = true);
static void diagnoseUnsatisfiedRequirement(Sema &S,
concepts::NestedRequirement *Req,
bool First) {
using SubstitutionDiagnostic = std::pair<SourceLocation, StringRef>;
for (auto &Pair : Req->getConstraintSatisfaction()) {
if (auto *SubstDiag = Pair.second.dyn_cast<SubstitutionDiagnostic *>())
S.Diag(SubstDiag->first, diag::note_nested_requirement_substitution_error)
<< (int)First << Req->getInvalidConstraintEntity() << SubstDiag->second;
else
diagnoseWellFormedUnsatisfiedConstraintExpr(
S, Pair.second.dyn_cast<Expr *>(), First);
First = false;
}
}
static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
Expr *SubstExpr,
bool First) {
SubstExpr = SubstExpr->IgnoreParenImpCasts();
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) {
switch (BO->getOpcode()) {
// These two cases will in practice only be reached when using fold
// expressions with || and &&, since otherwise the || and && will have been
// broken down into atomic constraints during satisfaction checking.
case BO_LOr:
// Or evaluated to false - meaning both RHS and LHS evaluated to false.
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
/*First=*/false);
return;
case BO_LAnd: {
bool LHSSatisfied =
BO->getLHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
if (LHSSatisfied) {
// LHS is true, so RHS must be false.
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First);
return;
}
// LHS is false
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
// RHS might also be false
bool RHSSatisfied =
BO->getRHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
if (!RHSSatisfied)
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
/*First=*/false);
return;
}
case BO_GE:
case BO_LE:
case BO_GT:
case BO_LT:
case BO_EQ:
case BO_NE:
if (BO->getLHS()->getType()->isIntegerType() &&
BO->getRHS()->getType()->isIntegerType()) {
Expr::EvalResult SimplifiedLHS;
Expr::EvalResult SimplifiedRHS;
BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context,
Expr::SE_NoSideEffects,
/*InConstantContext=*/true);
BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context,
Expr::SE_NoSideEffects,
/*InConstantContext=*/true);
if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) {
S.Diag(SubstExpr->getBeginLoc(),
diag::note_atomic_constraint_evaluated_to_false_elaborated)
<< (int)First << SubstExpr
<< toString(SimplifiedLHS.Val.getInt(), 10)
<< BinaryOperator::getOpcodeStr(BO->getOpcode())
<< toString(SimplifiedRHS.Val.getInt(), 10);
return;
}
}
break;
default:
break;
}
} else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) {
if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
S.Diag(
CSE->getSourceRange().getBegin(),
diag::
note_single_arg_concept_specialization_constraint_evaluated_to_false)
<< (int)First
<< CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument()
<< CSE->getNamedConcept();
} else {
S.Diag(SubstExpr->getSourceRange().getBegin(),
diag::note_concept_specialization_constraint_evaluated_to_false)
<< (int)First << CSE;
}
S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction());
return;
} else if (auto *RE = dyn_cast<RequiresExpr>(SubstExpr)) {
// FIXME: RequiresExpr should store dependent diagnostics.
for (concepts::Requirement *Req : RE->getRequirements())
if (!Req->isDependent() && !Req->isSatisfied()) {
if (auto *E = dyn_cast<concepts::ExprRequirement>(Req))
diagnoseUnsatisfiedRequirement(S, E, First);
else if (auto *T = dyn_cast<concepts::TypeRequirement>(Req))
diagnoseUnsatisfiedRequirement(S, T, First);
else
diagnoseUnsatisfiedRequirement(
S, cast<concepts::NestedRequirement>(Req), First);
break;
}
return;
}
S.Diag(SubstExpr->getSourceRange().getBegin(),
diag::note_atomic_constraint_evaluated_to_false)
<< (int)First << SubstExpr;
}
template<typename SubstitutionDiagnostic>
static void diagnoseUnsatisfiedConstraintExpr(
Sema &S, const Expr *E,
const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record,
bool First = true) {
if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()){
S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed)
<< Diag->second;
return;
}
diagnoseWellFormedUnsatisfiedConstraintExpr(S,
Record.template get<Expr *>(), First);
}
void
Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction,
bool First) {
assert(!Satisfaction.IsSatisfied &&
"Attempted to diagnose a satisfied constraint");
for (auto &Pair : Satisfaction.Details) {
diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
First = false;
}
}
void Sema::DiagnoseUnsatisfiedConstraint(
const ASTConstraintSatisfaction &Satisfaction,
bool First) {
assert(!Satisfaction.IsSatisfied &&
"Attempted to diagnose a satisfied constraint");
for (auto &Pair : Satisfaction) {
diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
First = false;
}
}
const NormalizedConstraint *
Sema::getNormalizedAssociatedConstraints(
NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) {
// In case the ConstrainedDecl comes from modules, it is necessary to use
// the canonical decl to avoid different atomic constraints with the 'same'
// declarations.
ConstrainedDecl = cast<NamedDecl>(ConstrainedDecl->getCanonicalDecl());
auto CacheEntry = NormalizationCache.find(ConstrainedDecl);
if (CacheEntry == NormalizationCache.end()) {
auto Normalized =
NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl,
AssociatedConstraints);
CacheEntry =
NormalizationCache
.try_emplace(ConstrainedDecl,
Normalized
? new (Context) NormalizedConstraint(
std::move(*Normalized))
: nullptr)
.first;
}
return CacheEntry->second;
}
static bool
substituteParameterMappings(Sema &S, NormalizedConstraint &N,
ConceptDecl *Concept,
const MultiLevelTemplateArgumentList &MLTAL,
const ASTTemplateArgumentListInfo *ArgsAsWritten) {
if (!N.isAtomic()) {
if (substituteParameterMappings(S, N.getLHS(), Concept, MLTAL,
ArgsAsWritten))
return true;
return substituteParameterMappings(S, N.getRHS(), Concept, MLTAL,
ArgsAsWritten);
}
TemplateParameterList *TemplateParams = Concept->getTemplateParameters();
AtomicConstraint &Atomic = *N.getAtomicConstraint();
TemplateArgumentListInfo SubstArgs;
if (!Atomic.ParameterMapping) {
llvm::SmallBitVector OccurringIndices(TemplateParams->size());
S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false,
/*Depth=*/0, OccurringIndices);
TemplateArgumentLoc *TempArgs =
new (S.Context) TemplateArgumentLoc[OccurringIndices.count()];
for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I)
if (OccurringIndices[I])
new (&(TempArgs)[J++])
TemplateArgumentLoc(S.getIdentityTemplateArgumentLoc(
TemplateParams->begin()[I],
// Here we assume we do not support things like
// template<typename A, typename B>
// concept C = ...;
//
// template<typename... Ts> requires C<Ts...>
// struct S { };
// The above currently yields a diagnostic.
// We still might have default arguments for concept parameters.
ArgsAsWritten->NumTemplateArgs > I
? ArgsAsWritten->arguments()[I].getLocation()
: SourceLocation()));
Atomic.ParameterMapping.emplace(TempArgs, OccurringIndices.count());
}
Sema::InstantiatingTemplate Inst(
S, ArgsAsWritten->arguments().front().getSourceRange().getBegin(),
Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept,
ArgsAsWritten->arguments().front().getSourceRange());
if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs))
return true;
TemplateArgumentLoc *TempArgs =
new (S.Context) TemplateArgumentLoc[SubstArgs.size()];
std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(),
TempArgs);
Atomic.ParameterMapping.emplace(TempArgs, SubstArgs.size());
return false;
}
static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N,
const ConceptSpecializationExpr *CSE) {
TemplateArgumentList TAL{TemplateArgumentList::OnStack,
CSE->getTemplateArguments()};
MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
CSE->getNamedConcept(), /*Final=*/false, &TAL,
/*RelativeToPrimary=*/true,
/*Pattern=*/nullptr,
/*ForConstraintInstantiation=*/true);
return substituteParameterMappings(S, N, CSE->getNamedConcept(), MLTAL,
CSE->getTemplateArgsAsWritten());
}
std::optional<NormalizedConstraint>
NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D,
ArrayRef<const Expr *> E) {
assert(E.size() != 0);
auto Conjunction = fromConstraintExpr(S, D, E[0]);
if (!Conjunction)
return std::nullopt;
for (unsigned I = 1; I < E.size(); ++I) {
auto Next = fromConstraintExpr(S, D, E[I]);
if (!Next)
return std::nullopt;
*Conjunction = NormalizedConstraint(S.Context, std::move(*Conjunction),
std::move(*Next), CCK_Conjunction);
}
return Conjunction;
}
std::optional<NormalizedConstraint>
NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) {
assert(E != nullptr);
// C++ [temp.constr.normal]p1.1
// [...]
// - The normal form of an expression (E) is the normal form of E.
// [...]
E = E->IgnoreParenImpCasts();
// C++2a [temp.param]p4:
// [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
// Fold expression is considered atomic constraints per current wording.
// See http://cplusplus.github.io/concepts-ts/ts-active.html#28
if (LogicalBinOp BO = E) {
auto LHS = fromConstraintExpr(S, D, BO.getLHS());
if (!LHS)
return std::nullopt;
auto RHS = fromConstraintExpr(S, D, BO.getRHS());
if (!RHS)
return std::nullopt;
return NormalizedConstraint(S.Context, std::move(*LHS), std::move(*RHS),
BO.isAnd() ? CCK_Conjunction : CCK_Disjunction);
} else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) {
const NormalizedConstraint *SubNF;
{
Sema::InstantiatingTemplate Inst(
S, CSE->getExprLoc(),
Sema::InstantiatingTemplate::ConstraintNormalization{}, D,
CSE->getSourceRange());
// C++ [temp.constr.normal]p1.1
// [...]
// The normal form of an id-expression of the form C<A1, A2, ..., AN>,
// where C names a concept, is the normal form of the
// constraint-expression of C, after substituting A1, A2, ..., AN for Cs
// respective template parameters in the parameter mappings in each atomic
// constraint. If any such substitution results in an invalid type or
// expression, the program is ill-formed; no diagnostic is required.
// [...]
ConceptDecl *CD = CSE->getNamedConcept();
SubNF = S.getNormalizedAssociatedConstraints(CD,
{CD->getConstraintExpr()});
if (!SubNF)
return std::nullopt;
}
std::optional<NormalizedConstraint> New;
New.emplace(S.Context, *SubNF);
if (substituteParameterMappings(S, *New, CSE))
return std::nullopt;
return New;
}
return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)};
}
using NormalForm =
llvm::SmallVector<llvm::SmallVector<AtomicConstraint *, 2>, 4>;
static NormalForm makeCNF(const NormalizedConstraint &Normalized) {
if (Normalized.isAtomic())
return {{Normalized.getAtomicConstraint()}};
NormalForm LCNF = makeCNF(Normalized.getLHS());
NormalForm RCNF = makeCNF(Normalized.getRHS());
if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) {
LCNF.reserve(LCNF.size() + RCNF.size());
while (!RCNF.empty())
LCNF.push_back(RCNF.pop_back_val());
return LCNF;
}
// Disjunction
NormalForm Res;
Res.reserve(LCNF.size() * RCNF.size());
for (auto &LDisjunction : LCNF)
for (auto &RDisjunction : RCNF) {
NormalForm::value_type Combined;
Combined.reserve(LDisjunction.size() + RDisjunction.size());
std::copy(LDisjunction.begin(), LDisjunction.end(),
std::back_inserter(Combined));
std::copy(RDisjunction.begin(), RDisjunction.end(),
std::back_inserter(Combined));
Res.emplace_back(Combined);
}
return Res;
}
static NormalForm makeDNF(const NormalizedConstraint &Normalized) {
if (Normalized.isAtomic())
return {{Normalized.getAtomicConstraint()}};
NormalForm LDNF = makeDNF(Normalized.getLHS());
NormalForm RDNF = makeDNF(Normalized.getRHS());
if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) {
LDNF.reserve(LDNF.size() + RDNF.size());
while (!RDNF.empty())
LDNF.push_back(RDNF.pop_back_val());
return LDNF;
}
// Conjunction
NormalForm Res;
Res.reserve(LDNF.size() * RDNF.size());
for (auto &LConjunction : LDNF) {
for (auto &RConjunction : RDNF) {
NormalForm::value_type Combined;
Combined.reserve(LConjunction.size() + RConjunction.size());
std::copy(LConjunction.begin(), LConjunction.end(),
std::back_inserter(Combined));
std::copy(RConjunction.begin(), RConjunction.end(),
std::back_inserter(Combined));
Res.emplace_back(Combined);
}
}
return Res;
}
template<typename AtomicSubsumptionEvaluator>
static bool subsumes(const NormalForm &PDNF, const NormalForm &QCNF,
AtomicSubsumptionEvaluator E) {
// C++ [temp.constr.order] p2
// Then, P subsumes Q if and only if, for every disjunctive clause Pi in the
// disjunctive normal form of P, Pi subsumes every conjunctive clause Qj in
// the conjuctive normal form of Q, where [...]
for (const auto &Pi : PDNF) {
for (const auto &Qj : QCNF) {
// C++ [temp.constr.order] p2
// - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if
// and only if there exists an atomic constraint Pia in Pi for which
// there exists an atomic constraint, Qjb, in Qj such that Pia
// subsumes Qjb.
bool Found = false;
for (const AtomicConstraint *Pia : Pi) {
for (const AtomicConstraint *Qjb : Qj) {
if (E(*Pia, *Qjb)) {
Found = true;
break;
}
}
if (Found)
break;
}
if (!Found)
return false;
}
}
return true;
}
template<typename AtomicSubsumptionEvaluator>
static bool subsumes(Sema &S, NamedDecl *DP, ArrayRef<const Expr *> P,
NamedDecl *DQ, ArrayRef<const Expr *> Q, bool &Subsumes,
AtomicSubsumptionEvaluator E) {
// C++ [temp.constr.order] p2
// In order to determine if a constraint P subsumes a constraint Q, P is
// transformed into disjunctive normal form, and Q is transformed into
// conjunctive normal form. [...]
auto *PNormalized = S.getNormalizedAssociatedConstraints(DP, P);
if (!PNormalized)
return true;
const NormalForm PDNF = makeDNF(*PNormalized);
auto *QNormalized = S.getNormalizedAssociatedConstraints(DQ, Q);
if (!QNormalized)
return true;
const NormalForm QCNF = makeCNF(*QNormalized);
Subsumes = subsumes(PDNF, QCNF, E);
return false;
}
bool Sema::IsAtLeastAsConstrained(NamedDecl *D1,
MutableArrayRef<const Expr *> AC1,
NamedDecl *D2,
MutableArrayRef<const Expr *> AC2,
bool &Result) {
if (const auto *FD1 = dyn_cast<FunctionDecl>(D1)) {
auto IsExpectedEntity = [](const FunctionDecl *FD) {
FunctionDecl::TemplatedKind Kind = FD->getTemplatedKind();
return Kind == FunctionDecl::TK_NonTemplate ||
Kind == FunctionDecl::TK_FunctionTemplate;
};
const auto *FD2 = dyn_cast<FunctionDecl>(D2);
(void)IsExpectedEntity;
(void)FD1;
(void)FD2;
assert(IsExpectedEntity(FD1) && FD2 && IsExpectedEntity(FD2) &&
"use non-instantiated function declaration for constraints partial "
"ordering");
}
if (AC1.empty()) {
Result = AC2.empty();
return false;
}
if (AC2.empty()) {
// TD1 has associated constraints and TD2 does not.
Result = true;
return false;
}
std::pair<NamedDecl *, NamedDecl *> Key{D1, D2};
auto CacheEntry = SubsumptionCache.find(Key);
if (CacheEntry != SubsumptionCache.end()) {
Result = CacheEntry->second;
return false;
}
unsigned Depth1 = CalculateTemplateDepthForConstraints(*this, D1, true);
unsigned Depth2 = CalculateTemplateDepthForConstraints(*this, D2, true);
for (size_t I = 0; I != AC1.size() && I != AC2.size(); ++I) {
if (Depth2 > Depth1) {
AC1[I] = AdjustConstraintDepth(*this, Depth2 - Depth1)
.TransformExpr(const_cast<Expr *>(AC1[I]))
.get();
} else if (Depth1 > Depth2) {
AC2[I] = AdjustConstraintDepth(*this, Depth1 - Depth2)
.TransformExpr(const_cast<Expr *>(AC2[I]))
.get();
}
}
if (subsumes(*this, D1, AC1, D2, AC2, Result,
[this] (const AtomicConstraint &A, const AtomicConstraint &B) {
return A.subsumes(Context, B);
}))
return true;
SubsumptionCache.try_emplace(Key, Result);
return false;
}
bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) {
if (isSFINAEContext())
// No need to work here because our notes would be discarded.
return false;
if (AC1.empty() || AC2.empty())
return false;
auto NormalExprEvaluator =
[this] (const AtomicConstraint &A, const AtomicConstraint &B) {
return A.subsumes(Context, B);
};
const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr;
auto IdenticalExprEvaluator =
[&] (const AtomicConstraint &A, const AtomicConstraint &B) {
if (!A.hasMatchingParameterMapping(Context, B))
return false;
const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr;
if (EA == EB)
return true;
// Not the same source level expression - are the expressions
// identical?
llvm::FoldingSetNodeID IDA, IDB;
EA->Profile(IDA, Context, /*Canonical=*/true);
EB->Profile(IDB, Context, /*Canonical=*/true);
if (IDA != IDB)
return false;
AmbiguousAtomic1 = EA;
AmbiguousAtomic2 = EB;
return true;
};
{
// The subsumption checks might cause diagnostics
SFINAETrap Trap(*this);
auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1);
if (!Normalized1)
return false;
const NormalForm DNF1 = makeDNF(*Normalized1);
const NormalForm CNF1 = makeCNF(*Normalized1);
auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2);
if (!Normalized2)
return false;
const NormalForm DNF2 = makeDNF(*Normalized2);
const NormalForm CNF2 = makeCNF(*Normalized2);
bool Is1AtLeastAs2Normally = subsumes(DNF1, CNF2, NormalExprEvaluator);
bool Is2AtLeastAs1Normally = subsumes(DNF2, CNF1, NormalExprEvaluator);
bool Is1AtLeastAs2 = subsumes(DNF1, CNF2, IdenticalExprEvaluator);
bool Is2AtLeastAs1 = subsumes(DNF2, CNF1, IdenticalExprEvaluator);
if (Is1AtLeastAs2 == Is1AtLeastAs2Normally &&
Is2AtLeastAs1 == Is2AtLeastAs1Normally)
// Same result - no ambiguity was caused by identical atomic expressions.
return false;
}
// A different result! Some ambiguous atomic constraint(s) caused a difference
assert(AmbiguousAtomic1 && AmbiguousAtomic2);
Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints)
<< AmbiguousAtomic1->getSourceRange();
Diag(AmbiguousAtomic2->getBeginLoc(),
diag::note_ambiguous_atomic_constraints_similar_expression)
<< AmbiguousAtomic2->getSourceRange();
return true;
}
concepts::ExprRequirement::ExprRequirement(
Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
ReturnTypeRequirement Req, SatisfactionStatus Status,
ConceptSpecializationExpr *SubstitutedConstraintExpr) :
Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent,
Status == SS_Dependent &&
(E->containsUnexpandedParameterPack() ||
Req.containsUnexpandedParameterPack()),
Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc),
TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr),
Status(Status) {
assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
"Simple requirement must not have a return type requirement or a "
"noexcept specification");
assert((Status > SS_TypeRequirementSubstitutionFailure && Req.isTypeConstraint()) ==
(SubstitutedConstraintExpr != nullptr));
}
concepts::ExprRequirement::ExprRequirement(
SubstitutionDiagnostic *ExprSubstDiag, bool IsSimple,
SourceLocation NoexceptLoc, ReturnTypeRequirement Req) :
Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(),
Req.containsUnexpandedParameterPack(), /*IsSatisfied=*/false),
Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req),
Status(SS_ExprSubstitutionFailure) {
assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
"Simple requirement must not have a return type requirement or a "
"noexcept specification");
}
concepts::ExprRequirement::ReturnTypeRequirement::
ReturnTypeRequirement(TemplateParameterList *TPL) :
TypeConstraintInfo(TPL, false) {
assert(TPL->size() == 1);
const TypeConstraint *TC =
cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint();
assert(TC &&
"TPL must have a template type parameter with a type constraint");
auto *Constraint =
cast<ConceptSpecializationExpr>(TC->getImmediatelyDeclaredConstraint());
bool Dependent =
Constraint->getTemplateArgsAsWritten() &&
TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1));
TypeConstraintInfo.setInt(Dependent ? true : false);
}
concepts::TypeRequirement::TypeRequirement(TypeSourceInfo *T) :
Requirement(RK_Type, T->getType()->isInstantiationDependentType(),
T->getType()->containsUnexpandedParameterPack(),
// We reach this ctor with either dependent types (in which
// IsSatisfied doesn't matter) or with non-dependent type in
// which the existence of the type indicates satisfaction.
/*IsSatisfied=*/true),
Value(T),
Status(T->getType()->isInstantiationDependentType() ? SS_Dependent
: SS_Satisfied) {}