freebsd_amp_hwpstate/contrib/ntp/ntpd/refclock_neoclock4x.c

865 lines
23 KiB
C

/*
*
* refclock_neoclock4x.c
* - NeoClock4X driver for DCF77 or FIA Timecode
*
* Date: 2002-04-27 1.0
*
* see http://www.linum.com/redir/jump/id=neoclock4x&action=redir
* for details about the NeoClock4X device
*
* Copyright (C) 2002 by Linum Software GmbH <support@linum.com>
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
*
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#if defined(REFCLOCK) && (defined(CLOCK_NEOCLOCK4X))
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#include <termios.h>
#include <sys/ioctl.h>
#include <ctype.h>
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_control.h"
#include "ntp_refclock.h"
#include "ntp_unixtime.h"
#include "ntp_stdlib.h"
#if defined HAVE_SYS_MODEM_H
# include <sys/modem.h>
# define TIOCMSET MCSETA
# define TIOCMGET MCGETA
# define TIOCM_RTS MRTS
#endif
#ifdef HAVE_TERMIOS_H
# ifdef TERMIOS_NEEDS__SVID3
# define _SVID3
# endif
# include <termios.h>
# ifdef TERMIOS_NEEDS__SVID3
# undef _SVID3
# endif
#endif
#ifdef HAVE_SYS_IOCTL_H
# include <sys/ioctl.h>
#endif
#define NEOCLOCK4X_TIMECODELEN 37
#define NEOCLOCK4X_OFFSET_SERIAL 3
#define NEOCLOCK4X_OFFSET_RADIOSIGNAL 9
#define NEOCLOCK4X_OFFSET_DAY 12
#define NEOCLOCK4X_OFFSET_MONTH 14
#define NEOCLOCK4X_OFFSET_YEAR 16
#define NEOCLOCK4X_OFFSET_HOUR 18
#define NEOCLOCK4X_OFFSET_MINUTE 20
#define NEOCLOCK4X_OFFSET_SECOND 22
#define NEOCLOCK4X_OFFSET_HSEC 24
#define NEOCLOCK4X_OFFSET_DOW 26
#define NEOCLOCK4X_OFFSET_TIMESOURCE 28
#define NEOCLOCK4X_OFFSET_DSTSTATUS 29
#define NEOCLOCK4X_OFFSET_QUARZSTATUS 30
#define NEOCLOCK4X_OFFSET_ANTENNA1 31
#define NEOCLOCK4X_OFFSET_ANTENNA2 33
#define NEOCLOCK4X_OFFSET_CRC 35
struct neoclock4x_unit {
l_fp laststamp; /* last receive timestamp */
short unit; /* NTP refclock unit number */
u_long polled; /* flag to detect noreplies */
char leap_status; /* leap second flag */
int recvnow;
char firmware[80];
char serial[7];
char radiosignal[4];
char timesource;
char dststatus;
char quarzstatus;
int antenna1;
int antenna2;
int utc_year;
int utc_month;
int utc_day;
int utc_hour;
int utc_minute;
int utc_second;
int utc_msec;
};
static int neoclock4x_start P((int, struct peer *));
static void neoclock4x_shutdown P((int, struct peer *));
static void neoclock4x_receive P((struct recvbuf *));
static void neoclock4x_poll P((int, struct peer *));
static void neoclock4x_control P((int, struct refclockstat *, struct refclockstat *, struct peer *));
static int neol_atoi_len P((const char str[], int *, int));
static int neol_hexatoi_len P((const char str[], int *, int));
static void neol_jdn_to_ymd P((unsigned long, int *, int *, int *));
static void neol_localtime P((unsigned long, int* , int*, int*, int*, int*, int*));
static unsigned long neol_mktime P((int, int, int, int, int, int));
static void neol_mdelay P((int));
static int neol_query_firmware P((int, int, char *, int));
struct refclock refclock_neoclock4x = {
neoclock4x_start, /* start up driver */
neoclock4x_shutdown, /* shut down driver */
neoclock4x_poll, /* transmit poll message */
neoclock4x_control,
noentry, /* initialize driver (not used) */
noentry, /* not used */
NOFLAGS /* not used */
};
static int
neoclock4x_start(int unit,
struct peer *peer)
{
struct neoclock4x_unit *up;
struct refclockproc *pp;
int fd;
char dev[20];
int sl232;
struct termios termsettings;
int tries;
(void) sprintf(dev, "/dev/neoclock4x-%d", unit);
/* LDISC_STD, LDISC_RAW
* Open serial port. Use CLK line discipline, if available.
*/
fd = refclock_open(dev, B2400, LDISC_CLK);
if(fd <= 0)
{
return (0);
}
#if defined(TIOCMSET) && (defined(TIOCM_RTS) || defined(CIOCM_RTS))
/* turn on RTS, and DTR for power supply */
/* NeoClock4x is powered from serial line */
if(ioctl(fd, TIOCMGET, (caddr_t)&sl232) == -1)
{
msyslog(LOG_CRIT, "NeoClock4X(%d): can't query RTS/DTR state: %m", unit);
}
#ifdef TIOCM_RTS
sl232 = sl232 | TIOCM_DTR | TIOCM_RTS; /* turn on RTS, and DTR for power supply */
#else
sl232 = sl232 | CIOCM_DTR | CIOCM_RTS; /* turn on RTS, and DTR for power supply */
#endif
if(ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1)
{
msyslog(LOG_CRIT, "NeoClock4X(%d): can't set RTS/DTR to power neoclock4x: %m", unit);
}
if(ioctl(fd, TCGETS, (caddr_t)&termsettings) == -1)
{
msyslog(LOG_CRIT, "NeoClock4X(%d): can't query serial port settings: %m", unit);
}
/* 2400 Baud mit 8N2 */
termsettings.c_cflag &= ~PARENB;
termsettings.c_cflag |= CSTOPB;
termsettings.c_cflag &= ~CSIZE;
termsettings.c_cflag |= CS8;
if(ioctl(fd, TCSETS, &termsettings) == -1)
{
msyslog(LOG_CRIT, "NeoClock4X(%d): can't set serial port to 2400 8N2: %m", unit);
}
#else
msyslog(LOG_EMERG, "NeoClock4X(%d): OS interface is incapable of setting DTR/RTS to power NeoClock4X",
unit);
#endif
up = (struct neoclock4x_unit *) emalloc(sizeof(struct neoclock4x_unit));
if(!(up))
{
msyslog(LOG_ERR, "NeoClock4X(%d): can't allocate memory for: %m",unit);
(void) close(fd);
return (0);
}
memset((char *)up, 0, sizeof(struct neoclock4x_unit));
pp = peer->procptr;
pp->clockdesc = "NeoClock4X";
pp->unitptr = (caddr_t)up;
pp->io.clock_recv = neoclock4x_receive;
pp->io.srcclock = (caddr_t)peer;
pp->io.datalen = 0;
pp->io.fd = fd;
/* no time is given by user! use 169.583333 ms to compensate the serial line delay
* formula is:
* 2400 Baud / 11 bit = 218.18 charaters per second
* (NeoClock4X timecode len)
*/
pp->fudgetime1 = (NEOCLOCK4X_TIMECODELEN * 11) / 2400.0;
if (!io_addclock(&pp->io))
{
msyslog(LOG_ERR, "NeoClock4X(%d): error add peer to ntpd: %m",unit);
(void) close(fd);
free(up);
return (0);
}
/*
* Initialize miscellaneous variables
*/
peer->precision = -10;
peer->burst = NSTAGE;
memcpy((char *)&pp->refid, "neol", 4);
up->leap_status = 0;
up->unit = unit;
strcpy(up->firmware, "?");
strcpy(up->serial, "?");
strcpy(up->radiosignal, "?");
up->timesource = '?';
up->dststatus = '?';
up->quarzstatus = '?';
up->antenna1 = -1;
up->antenna2 = -1;
up->utc_year = 0;
up->utc_month = 0;
up->utc_day = 0;
up->utc_hour = 0;
up->utc_minute = 0;
up->utc_second = 0;
up->utc_msec = 0;
for(tries=0; tries < 5; tries++)
{
/*
* Wait 3 second for receiver to power up
*/
NLOG(NLOG_CLOCKINFO)
msyslog(LOG_INFO, "NeoClock4X(%d): try query NeoClock4X firmware version (%d/5)", unit, tries);
sleep(3);
if(neol_query_firmware(pp->io.fd, up->unit, up->firmware, sizeof(up->firmware)))
{
break;
}
}
NLOG(NLOG_CLOCKINFO)
msyslog(LOG_INFO, "NeoClock4X(%d): receiver setup successful done", unit);
return (1);
}
static void
neoclock4x_shutdown(int unit,
struct peer *peer)
{
struct neoclock4x_unit *up;
struct refclockproc *pp;
int sl232;
pp = peer->procptr;
up = (struct neoclock4x_unit *)pp->unitptr;
#if defined(TIOCMSET) && (defined(TIOCM_RTS) || defined(CIOCM_RTS))
/* turn on RTS, and DTR for power supply */
/* NeoClock4x is powered from serial line */
if(ioctl(pp->io.fd, TIOCMGET, (caddr_t)&sl232) == -1)
{
msyslog(LOG_CRIT, "NeoClock4X(%d): can't query RTS/DTR state: %m", unit);
}
#ifdef TIOCM_RTS
sl232 &= ~(TIOCM_DTR | TIOCM_RTS); /* turn on RTS, and DTR for power supply */
#else
sl232 &= ~(CIOCM_DTR | CIOCM_RTS); /* turn on RTS, and DTR for power supply */
#endif
if(ioctl(pp->io.fd, TIOCMSET, (caddr_t)&sl232) == -1)
{
msyslog(LOG_CRIT, "NeoClock4X(%d): can't set RTS/DTR to power neoclock4x: %m", unit);
}
#endif
msyslog(LOG_ERR, "NeoClock4X(%d): shutdown", unit);
io_closeclock(&pp->io);
free(up);
NLOG(NLOG_CLOCKINFO)
msyslog(LOG_INFO, "NeoClock4X(%d): receiver shutdown done", unit);
}
static void
neoclock4x_receive(struct recvbuf *rbufp)
{
struct neoclock4x_unit *up;
struct refclockproc *pp;
struct peer *peer;
unsigned long calc_utc;
int day;
int month; /* ddd conversion */
int c;
unsigned char calc_chksum;
int recv_chksum;
peer = (struct peer *)rbufp->recv_srcclock;
pp = peer->procptr;
up = (struct neoclock4x_unit *)pp->unitptr;
/* wait till poll interval is reached */
if(0 == up->recvnow)
return;
/* reset poll interval flag */
up->recvnow = 0;
/* read last received timecode */
pp->lencode = refclock_gtlin(rbufp, pp->a_lastcode, BMAX, &pp->lastrec);
if(NEOCLOCK4X_TIMECODELEN != pp->lencode)
{
NLOG(NLOG_CLOCKEVENT)
msyslog(LOG_WARNING, "NeoClock4X(%d): received data has invalid length, expected %d bytes, received %d bytes: %s",
up->unit, NEOCLOCK4X_TIMECODELEN, pp->lencode, pp->a_lastcode);
refclock_report(peer, CEVNT_BADREPLY);
return;
}
neol_hexatoi_len(&pp->a_lastcode[NEOCLOCK4X_OFFSET_CRC], &recv_chksum, 2);
/* calculate checksum */
calc_chksum = 0;
for(c=0; c < NEOCLOCK4X_OFFSET_CRC; c++)
{
calc_chksum += pp->a_lastcode[c];
}
if(recv_chksum != calc_chksum)
{
NLOG(NLOG_CLOCKEVENT)
msyslog(LOG_WARNING, "NeoClock4X(%d): received data has invalid chksum: %s",
up->unit, pp->a_lastcode);
refclock_report(peer, CEVNT_BADREPLY);
return;
}
/* Allow synchronization even is quartz clock is
* never initialized.
* WARNING: This is dangerous!
*/
up->quarzstatus = pp->a_lastcode[NEOCLOCK4X_OFFSET_QUARZSTATUS];
if(0==(pp->sloppyclockflag & CLK_FLAG2))
{
if('I' != up->quarzstatus)
{
NLOG(NLOG_CLOCKEVENT)
msyslog(LOG_NOTICE, "NeoClock4X(%d): quartz clock is not initialized: %s",
up->unit, pp->a_lastcode);
pp->leap = LEAP_NOTINSYNC;
refclock_report(peer, CEVNT_BADDATE);
return;
}
}
if('I' != up->quarzstatus)
{
NLOG(NLOG_CLOCKEVENT)
msyslog(LOG_NOTICE, "NeoClock4X(%d): using uninitialized quartz clock for time synchronization: %s",
up->unit, pp->a_lastcode);
}
/*
* If NeoClock4X is not synchronized to a radio clock
* check if we're allowed to synchronize with the quartz
* clock.
*/
up->timesource = pp->a_lastcode[NEOCLOCK4X_OFFSET_TIMESOURCE];
if(0==(pp->sloppyclockflag & CLK_FLAG2))
{
if('A' != up->timesource)
{
/* not allowed to sync with quartz clock */
if(0==(pp->sloppyclockflag & CLK_FLAG1))
{
refclock_report(peer, CEVNT_BADTIME);
pp->leap = LEAP_NOTINSYNC;
return;
}
}
}
/* this should only used when first install is done */
if(pp->sloppyclockflag & CLK_FLAG4)
{
msyslog(LOG_DEBUG, "NeoClock4X(%d): received data: %s",
up->unit, pp->a_lastcode);
}
/* 123456789012345678901234567890123456789012345 */
/* S/N123456DCF1004021010001202ASX1213CR\r\n */
neol_atoi_len(&pp->a_lastcode[NEOCLOCK4X_OFFSET_YEAR], &pp->year, 2);
neol_atoi_len(&pp->a_lastcode[NEOCLOCK4X_OFFSET_MONTH], &month, 2);
neol_atoi_len(&pp->a_lastcode[NEOCLOCK4X_OFFSET_DAY], &day, 2);
neol_atoi_len(&pp->a_lastcode[NEOCLOCK4X_OFFSET_HOUR], &pp->hour, 2);
neol_atoi_len(&pp->a_lastcode[NEOCLOCK4X_OFFSET_MINUTE], &pp->minute, 2);
neol_atoi_len(&pp->a_lastcode[NEOCLOCK4X_OFFSET_SECOND], &pp->second, 2);
neol_atoi_len(&pp->a_lastcode[NEOCLOCK4X_OFFSET_HSEC], &pp->msec, 2);
pp->msec *= 10; /* convert 1/100s from neoclock to real miliseconds */
memcpy(up->radiosignal, &pp->a_lastcode[NEOCLOCK4X_OFFSET_RADIOSIGNAL], 3);
up->radiosignal[3] = 0;
memcpy(up->serial, &pp->a_lastcode[NEOCLOCK4X_OFFSET_SERIAL], 6);
up->serial[6] = 0;
up->dststatus = pp->a_lastcode[NEOCLOCK4X_OFFSET_DSTSTATUS];
neol_hexatoi_len(&pp->a_lastcode[NEOCLOCK4X_OFFSET_ANTENNA1], &up->antenna1, 2);
neol_hexatoi_len(&pp->a_lastcode[NEOCLOCK4X_OFFSET_ANTENNA2], &up->antenna2, 2);
/*
Validate received values at least enough to prevent internal
array-bounds problems, etc.
*/
if((pp->hour < 0) || (pp->hour > 23) ||
(pp->minute < 0) || (pp->minute > 59) ||
(pp->second < 0) || (pp->second > 60) /*Allow for leap seconds.*/ ||
(day < 1) || (day > 31) ||
(month < 1) || (month > 12) ||
(pp->year < 0) || (pp->year > 99)) {
/* Data out of range. */
NLOG(NLOG_CLOCKEVENT)
msyslog(LOG_WARNING, "NeoClock4X(%d): date/time out of range: %s",
up->unit, pp->a_lastcode);
refclock_report(peer, CEVNT_BADDATE);
return;
}
/* Year-2000 check! */
/* wrap 2-digit date into 4-digit */
if(pp->year < YEAR_PIVOT) /* < 98 */
{
pp->year += 100;
}
pp->year += 1900;
calc_utc = neol_mktime(pp->year, month, day, pp->hour, pp->minute, pp->second);
calc_utc -= 3600;
if('S' == up->dststatus)
calc_utc -= 3600;
neol_localtime(calc_utc, &pp->year, &month, &day, &pp->hour, &pp->minute, &pp->second);
/*
some preparations
*/
pp->day = ymd2yd(pp->year,month,day);
pp->leap = 0;
if(pp->sloppyclockflag & CLK_FLAG4)
{
msyslog(LOG_DEBUG, "NeoClock4X(%d): calculated UTC date/time: %04d-%02d-%02d %02d:%02d:%02d.%03d",
up->unit,
pp->year, month, day,
pp->hour, pp->minute, pp->second, pp->msec);
}
up->utc_year = pp->year;
up->utc_month = month;
up->utc_day = day;
up->utc_hour = pp->hour;
up->utc_minute = pp->minute;
up->utc_second = pp->second;
up->utc_msec = pp->msec;
if(!refclock_process(pp))
{
NLOG(NLOG_CLOCKEVENT)
msyslog(LOG_WARNING, "NeoClock4X(%d): refclock_process failed!", up->unit);
refclock_report(peer, CEVNT_FAULT);
return;
}
refclock_receive(peer);
record_clock_stats(&peer->srcadr, pp->a_lastcode);
}
static void
neoclock4x_poll(int unit,
struct peer *peer)
{
struct neoclock4x_unit *up;
struct refclockproc *pp;
pp = peer->procptr;
up = (struct neoclock4x_unit *)pp->unitptr;
pp->polls++;
up->recvnow = 1;
}
static void
neoclock4x_control(int unit,
struct refclockstat *in,
struct refclockstat *out,
struct peer *peer)
{
struct neoclock4x_unit *up;
struct refclockproc *pp;
if(NULL == peer)
{
msyslog(LOG_ERR, "NeoClock4X(%d): control: unit invalid/inactive", unit);
return;
}
pp = peer->procptr;
if(NULL == pp)
{
msyslog(LOG_ERR, "NeoClock4X(%d): control: unit invalid/inactive", unit);
return;
}
up = (struct neoclock4x_unit *)pp->unitptr;
if(NULL == up)
{
msyslog(LOG_ERR, "NeoClock4X(%d): control: unit invalid/inactive", unit);
return;
}
if(NULL != in)
{
/* check to see if a user supplied time offset is given */
if(in->haveflags & CLK_HAVETIME1)
{
pp->fudgetime1 = in->fudgetime1;
NLOG(NLOG_CLOCKINFO)
msyslog(LOG_NOTICE, "NeoClock4X(%d): using fudgetime1 with %0.5fs from ntp.conf.",
unit, pp->fudgetime1);
}
/* notify */
if(pp->sloppyclockflag & CLK_FLAG1)
{
NLOG(NLOG_CLOCKINFO)
msyslog(LOG_NOTICE, "NeoClock4X(%d): quartz clock is used to synchronize time if radio clock has no reception.", unit);
}
else
{
NLOG(NLOG_CLOCKINFO)
msyslog(LOG_NOTICE, "NeoClock4X(%d): time is only adjusted with radio signal reception.", unit);
}
}
if(NULL != out)
{
static char outstatus[800]; /* status output buffer */
char *tt;
char tmpbuf[80];
outstatus[0] = '\0';
out->kv_list = (struct ctl_var *)0;
out->type = REFCLK_NEOCLOCK4X;
sprintf(tmpbuf, "%04d-%02d-%02d %02d:%02d:%02d.%03d",
up->utc_year, up->utc_month, up->utc_day,
up->utc_hour, up->utc_minute, up->utc_second,
up->utc_msec);
tt = add_var(&out->kv_list, 512, RO|DEF);
tt += sprintf(tt, "calc_utc=\"%s\"", tmpbuf);
tt = add_var(&out->kv_list, 512, RO|DEF);
tt += sprintf(tt, "radiosignal=\"%s\"", up->radiosignal);
tt = add_var(&out->kv_list, 512, RO|DEF);
tt += sprintf(tt, "antenna1=\"%d\"", up->antenna1);
tt = add_var(&out->kv_list, 512, RO|DEF);
tt += sprintf(tt, "antenna2=\"%d\"", up->antenna2);
tt = add_var(&out->kv_list, 512, RO|DEF);
if('A' == up->timesource)
tt += sprintf(tt, "timesource=\"radio\"");
else if('C' == up->timesource)
tt += sprintf(tt, "timesource=\"quartz\"");
else
tt += sprintf(tt, "timesource=\"unknown\"");
tt = add_var(&out->kv_list, 512, RO|DEF);
if('I' == up->quarzstatus)
tt += sprintf(tt, "quartzstatus=\"synchronized\"");
else if('X' == up->quarzstatus)
tt += sprintf(tt, "quartzstatus=\"not synchronized\"");
else
tt += sprintf(tt, "quartzstatus=\"unknown\"");
tt = add_var(&out->kv_list, 512, RO|DEF);
if('S' == up->dststatus)
tt += sprintf(tt, "dststatus=\"summer\"");
else if('W' == up->dststatus)
tt += sprintf(tt, "dststatus=\"winter\"");
else
tt += sprintf(tt, "dststatus=\"unknown\"");
tt = add_var(&out->kv_list, 512, RO|DEF);
tt += sprintf(tt, "firmware=\"%s\"", up->firmware);
tt = add_var(&out->kv_list, 512, RO|DEF);
tt += sprintf(tt, "serialnumber=\"%s\"", up->serial);
tt = add_var(&out->kv_list, 512, RO|DEF);
}
}
static int neol_hexatoi_len(const char str[],
int *result,
int maxlen)
{
int hexdigit;
int i;
int n = 0;
for(i=0; isxdigit(str[i]) && i < maxlen; i++)
{
hexdigit = isdigit(str[i]) ? toupper(str[i]) - '0' : toupper(str[i]) - 'A' + 10;
n = 16 * n + hexdigit;
}
*result = n;
return (n);
}
int neol_atoi_len(const char str[],
int *result,
int maxlen)
{
int digit;
int i;
int n = 0;
for(i=0; isdigit(str[i]) && i < maxlen; i++)
{
digit = str[i] - '0';
n = 10 * n + digit;
}
*result = n;
return (n);
}
/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
*
* [For the Julian calendar (which was used in Russia before 1917,
* Britain & colonies before 1752, anywhere else before 1582,
* and is still in use by some communities) leave out the
* -year/100+year/400 terms, and add 10.]
*
* This algorithm was first published by Gauss (I think).
*
* WARNING: this function will overflow on 2106-02-07 06:28:16 on
* machines were long is 32-bit! (However, as time_t is signed, we
* will already get problems at other places on 2038-01-19 03:14:08)
*/
static unsigned long neol_mktime(int year,
int mon,
int day,
int hour,
int min,
int sec)
{
if (0 >= (int) (mon -= 2)) { /* 1..12 . 11,12,1..10 */
mon += 12; /* Puts Feb last since it has leap day */
year -= 1;
}
return (((
(unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) +
year*365 - 719499
)*24 + hour /* now have hours */
)*60 + min /* now have minutes */
)*60 + sec; /* finally seconds */
}
static void neol_localtime(unsigned long utc,
int* year,
int* month,
int* day,
int* hour,
int* minute,
int* second)
{
ldiv_t d;
/* Sekunden */
d = ldiv(utc, 60);
*second = d.rem;
/* Minute */
d = ldiv(d.quot, 60);
*minute = d.rem;
/* Stunden */
d = ldiv(d.quot, 24);
*hour = d.rem;
/* JDN Date 1/1/1970 */
neol_jdn_to_ymd(d.quot + 2440588L, year, month, day);
}
static void neol_jdn_to_ymd(unsigned long jdn,
int *yy,
int *mm,
int *dd)
{
unsigned long x, z, m, d, y;
unsigned long daysPer400Years = 146097UL;
unsigned long fudgedDaysPer4000Years = 1460970UL + 31UL;
x = jdn + 68569UL;
z = 4UL * x / daysPer400Years;
x = x - (daysPer400Years * z + 3UL) / 4UL;
y = 4000UL * (x + 1) / fudgedDaysPer4000Years;
x = x - 1461UL * y / 4UL + 31UL;
m = 80UL * x / 2447UL;
d = x - 2447UL * m / 80UL;
x = m / 11UL;
m = m + 2UL - 12UL * x;
y = 100UL * (z - 49UL) + y + x;
*yy = (int)y;
*mm = (int)m;
*dd = (int)d;
}
/*
* delay in milliseconds
*/
static void
neol_mdelay(int milliseconds)
{
struct timeval tv;
if (milliseconds)
{
tv.tv_sec = 0;
tv.tv_usec = milliseconds * 1000;
select(1, NULL, NULL, NULL, &tv);
}
}
static int
neol_query_firmware(int fd,
int unit,
char *firmware,
int maxlen)
{
unsigned char tmpbuf[256];
int len;
int lastsearch;
unsigned char c;
int last_c_was_crlf;
int last_crlf_conv_len;
int init;
int read_tries;
int flag = 0;
/* wait a little bit */
neol_mdelay(250);
if(-1 != write(fd, "V", 1))
{
/* wait a little bit */
neol_mdelay(250);
memset(tmpbuf, 0x00, sizeof(tmpbuf));
len = 0;
lastsearch = 0;
last_c_was_crlf = 0;
last_crlf_conv_len = 0;
init = 1;
read_tries = 0;
for(;;)
{
if(read_tries++ > 500)
{
msyslog(LOG_ERR, "NeoClock4X(%d): can't read firmware version (timeout)", unit);
strcpy(tmpbuf, "unknown due to timeout");
break;
}
if(-1 == read(fd, &c, 1))
{
neol_mdelay(25);
continue;
}
if(init)
{
if(0xA9 != c) /* wait for (c) char in input stream */
continue;
strcpy(tmpbuf, "(c)");
len = 3;
init = 0;
continue;
}
//msyslog(LOG_NOTICE, "NeoClock4X(%d): firmware %c = %02Xh", unit, c, c);
if(0x0A == c || 0x0D == c)
{
if(last_c_was_crlf)
{
char *ptr;
ptr = strstr(&tmpbuf[lastsearch], "S/N");
if(NULL != ptr)
{
tmpbuf[last_crlf_conv_len] = 0;
flag = 1;
break;
}
/* convert \n to / */
last_crlf_conv_len = len;
tmpbuf[len++] = ' ';
tmpbuf[len++] = '/';
tmpbuf[len++] = ' ';
lastsearch = len;
}
last_c_was_crlf = 1;
}
else
{
last_c_was_crlf = 0;
if(0x00 != c)
tmpbuf[len++] = c;
}
tmpbuf[len] = '\0';
if(len > sizeof(tmpbuf)-5)
break;
}
}
else
{
msyslog(LOG_ERR, "NeoClock4X(%d): can't query firmware version", unit);
strcpy(tmpbuf, "unknown error");
}
strncpy(firmware, tmpbuf, maxlen);
firmware[maxlen] = '\0';
if(flag)
{
NLOG(NLOG_CLOCKINFO)
msyslog(LOG_INFO, "NeoClock4X(%d): firmware version: %s", unit, firmware);
}
return (flag);
}
#else
int refclock_neoclock4x_bs;
#endif /* REFCLOCK */
/*
* History:
* refclock_neoclock4x.c
*
* 2002/04/27 cjh
* Revision 1.0 first release
*
* 2002/0715 cjh
* preparing for bitkeeper reposity
*
*/